# cython: infer_types=True # cython: profile=True import math cimport cython import functools import numpy as np from cython.view cimport array as cvarray from libc.stdlib cimport malloc, free # TODO: use a cdef class # C representation of dither_pattern.DitherPattern data, for efficient access. cdef struct Dither: float* pattern # Flattened dither pattern int x_shape int y_shape int x_origin int y_origin cdef float clip(float a, float min_value, float max_value) nogil: return min(max(a, min_value), max_value) # Compute left-hand bounding box for dithering at horizontal position x. cdef int dither_bounds_xl(Dither *dither, int x) nogil: cdef int el = max(dither.x_origin - x, 0) cdef int xl = x - dither.x_origin + el return xl #Compute right-hand bounding box for dithering at horizontal position x. cdef int dither_bounds_xr(Dither *dither, int x_res, int x) nogil: cdef int er = min(dither.x_shape, x_res - x) cdef int xr = x - dither.x_origin + er return xr # Compute upper bounding box for dithering at vertical position y. cdef int dither_bounds_yt(Dither *dither, int y) nogil: cdef int et = max(dither.y_origin - y, 0) cdef int yt = y - dither.y_origin + et return yt # Compute lower bounding box for dithering at vertical position y. cdef int dither_bounds_yb(Dither *dither, int y_res, int y) nogil: cdef int eb = min(dither.y_shape, y_res - y) cdef int yb = y - dither.y_origin + eb return yb cdef inline unsigned char lookahead_pixels(unsigned char last_pixel_nbit, unsigned int next_pixels, int lookahead) nogil: """Compute all possible n-bit palette values for upcoming pixels, given x coord and state of n pixels to the left. Args: XXX screen: python screen.Screen object lookahead: how many pixels to lookahead last_pixel_nbit: n-bit value representing n pixels to left of current position, which determine available colours. x: current x position Returns: matrix of size (2**lookahead, lookahead) containing all 2**lookahead possible vectors of n-bit palette values accessible at positions x .. x + lookahead """ # XXX palette bit depth return (last_pixel_nbit >> (lookahead+1)) | (next_pixels << (8 - (lookahead + 1))) # Look ahead a number of pixels and compute choice for next pixel with lowest total squared error after dithering. # # Args: # dither: error diffusion pattern to apply # palette_rgb: matrix of all n-bit colour palette RGB values # image_rgb: RGB image in the process of dithering # x: current horizontal screen position # y: current vertical screen position # options_nbit: matrix of (2**lookahead, lookahead) possible n-bit colour choices at positions x .. x + lookahead # lookahead: how many horizontal pixels to look ahead # distances: matrix of (24-bit RGB, n-bit palette) perceptual colour distances # x_res: horizontal screen resolution # # Returns: index from 0 .. 2**lookahead into options_nbit representing best available choice for position (x,y) # @cython.boundscheck(False) @cython.wraparound(False) cdef int dither_lookahead(Dither* dither, float[:, :, ::1] palette_rgb, float[:, :, ::1] image_rgb, int x, int y, int lookahead, unsigned char last_pixels, int x_res) nogil: cdef int i, j, k cdef float[3] quant_error cdef int best cdef float best_error = 2**31-1 cdef float total_error cdef unsigned char next_pixels cdef int phase # Don't bother dithering past the lookahead horizon or edge of screen. cdef int xxr = min(x + lookahead, x_res) cdef int lah_shape1 = xxr - x cdef int lah_shape2 = 3 cdef float *lah_image_rgb = malloc(lah_shape1 * lah_shape2 * sizeof(float)) # For each 2**lookahead possibilities for the on/off state of the next lookahead pixels, apply error diffusion # and compute the total squared error to the source image. Since we only have two possible colours for each # given pixel (dependent on the state already chosen for pixels to the left), we need to look beyond local minima. # i.e. it might be better to make a sub-optimal choice for this pixel if it allows access to much better pixel # colours at later positions. for i in range(1 << lookahead): # Working copy of input pixels for j in range(xxr - x): for k in range(3): lah_image_rgb[j * lah_shape2 + k] = image_rgb[y, x+j, k] total_error = 0 for j in range(xxr - x): xl = dither_bounds_xl(dither, j) xr = dither_bounds_xr(dither, xxr - x, j) phase = (x + j) % 4 next_pixels = lookahead_pixels(last_pixels, next_pixels=i, lookahead=j) # We don't update the input at position x (since we've already chosen # fixed outputs), but we do propagate quantization errors to positions >x # so we can compensate for how good/bad these choices were. i.e. the # options_rgb choices are fixed, but we can still distribute quantization error # from having made these choices, in order to compute the total error. for k in range(3): quant_error[k] = lah_image_rgb[j * lah_shape2 + k] - palette_rgb[next_pixels, phase, k] apply_one_line(dither, xl, xr, j, lah_image_rgb, lah_shape2, quant_error) total_error += colour_distance_squared( lah_image_rgb[j*lah_shape2], lah_image_rgb[j*lah_shape2+1], lah_image_rgb[j*lah_shape2+2], palette_rgb[next_pixels, phase]) if total_error >= best_error: break if total_error < best_error: best_error = total_error best = i free(lah_image_rgb) return best # XXX fix signature @cython.boundscheck(False) @cython.wraparound(False) cdef inline float colour_distance_squared(float colour1_0, float colour1_1, float colour1_2, float[::1] colour2) nogil: return (colour1_0 - colour2[0])**2 + (colour1_1 - colour2[1])**2 + (colour1_2 - colour2[2])**2 # Perform error diffusion to a single image row. # # Args: # dither: dither pattern to apply # xl: lower x bounding box # xr: upper x bounding box # x: starting horizontal position to apply error diffusion # image: array of shape (image_shape1, 3) representing RGB pixel data for a single image line, to be mutated. # image_shape1: horizontal dimension of image # quant_error: RGB quantization error to be diffused # cdef void apply_one_line(Dither* dither, int xl, int xr, int x, float[] image, int image_shape1, float[] quant_error) nogil: cdef int i, j cdef float error_fraction for i in range(xl, xr): error_fraction = dither.pattern[i - x + dither.x_origin] for j in range(3): image[i * image_shape1 + j] = clip(image[i * image_shape1 + j] + error_fraction * quant_error[j], 0 if j == 0 else -1, 1) # Perform error diffusion across multiple image rows. # # Args: # dither: dither pattern to apply # x_res: horizontal image resolution # y_res: vertical image resolution # x: starting horizontal position to apply error diffusion # y: starting vertical position to apply error diffusion # image: RGB pixel data, to be mutated # quant_error: RGB quantization error to be diffused # @cython.boundscheck(False) @cython.wraparound(False) cdef void apply(Dither* dither, int x_res, int y_res, int x, int y, float[:,:,::1] image, float[] quant_error) nogil: cdef int i, j, k cdef int yt = dither_bounds_yt(dither, y) cdef int yb = dither_bounds_yb(dither, y_res, y) cdef int xl = dither_bounds_xl(dither, x) cdef int xr = dither_bounds_xr(dither, x_res, x) cdef float error_fraction # We could avoid clipping here, i.e. allow RGB values to extend beyond # 0..255 to capture a larger range of residual error. This is faster # but seems to reduce image quality. # TODO: is this still true? for i in range(yt, yb): for j in range(xl, xr): error_fraction = dither.pattern[(i - y) * dither.x_shape + j - x + dither.x_origin] for k in range(3): image[i,j,k] = clip(image[i,j,k] + error_fraction * quant_error[k], 0 if k == 0 else -1, 1) # Compute closest colour from array of candidate n-bit colour palette values. # # Args: # pixel_rgb: source RGB colour value to be matched # options_nbit: array of candidate n-bit colour palette values # distances: matrix of (24-bit RGB value, n-bit colour value) perceptual colour differences # # Returns: # index of options_nbit entry having lowest distance value # @cython.boundscheck(False) @cython.wraparound(False) cdef unsigned char find_nearest_colour(float[::1] pixel_rgb, unsigned char[::1] options_nbit, unsigned char[:, ::1] distances): cdef int best, dist cdef unsigned char bit4 cdef int best_dist = 2**8 cdef long flat for i in range(options_nbit.shape[0]): flat = (pixel_rgb[0] << 16) + (pixel_rgb[1] << 8) + pixel_rgb[2] bit4 = options_nbit[i] dist = distances[flat, bit4] if dist < best_dist: best_dist = dist best = i return options_nbit[best] # Dither a source image # # Args: # screen: screen.Screen object # image_rgb: input RGB image # dither: dither_pattern.DitherPattern to apply during dithering # lookahead: how many x positions to look ahead to optimize colour choices # verbose: whether to output progress during image conversion # # Returns: tuple of n-bit output image array and RGB output image array # @cython.boundscheck(False) @cython.wraparound(False) def dither_image(screen, float[:, :, ::1] image_rgb, dither, int lookahead, unsigned char verbose): cdef int y, x, i, j, k # cdef float[3] input_pixel_rgb cdef float[3] quant_error cdef unsigned char output_pixel_nbit cdef unsigned char best_next_pixels cdef float[3] output_pixel_rgb # Hoist some python attribute accesses into C variables for efficient access during the main loop cdef int yres = screen.Y_RES cdef int xres = screen.X_RES # XXX not rgb any more cdef float[:, :, ::1] palette_rgb = np.zeros((len(screen.palette.CAM02UCS), 4, 3), dtype=np.float32) for i, j in screen.palette.CAM02UCS.keys(): for k in range(3): palette_rgb[i, j, k] = screen.palette.CAM02UCS[i, j][k] cdef Dither cdither cdither.y_shape = dither.PATTERN.shape[0] cdither.x_shape = dither.PATTERN.shape[1] cdither.y_origin = dither.ORIGIN[0] cdither.x_origin = dither.ORIGIN[1] # TODO: should be just as efficient to use a memoryview? cdither.pattern = malloc(cdither.x_shape * cdither.y_shape * sizeof(float)) for i in range(cdither.y_shape): for j in range(cdither.x_shape): cdither.pattern[i * cdither.x_shape + j] = dither.PATTERN[i, j] cdef (unsigned char)[:, ::1] image_nbit = np.empty( (image_rgb.shape[0], image_rgb.shape[1]), dtype=np.uint8) for y in range(yres): if verbose: print("%d/%d" % (y, yres)) output_pixel_nbit = 0 for x in range(xres): #for i in range(3): # input_pixel_rgb[i] = image_rgb[y,x,i] if lookahead: # Compute all possible 2**N choices of n-bit pixel colours for positions x .. x + lookahead # lookahead_palette_choices_nbit = lookahead_options(lookahead, output_pixel_nbit) # Apply error diffusion for each of these 2**N choices, and compute which produces the closest match # to the source image over the succeeding N pixels best_next_pixels = dither_lookahead( &cdither, palette_rgb, image_rgb, x, y, lookahead, output_pixel_nbit, xres) # Apply best choice for next 1 pixel output_pixel_nbit = lookahead_pixels(output_pixel_nbit, best_next_pixels, lookahead=0) #else: # # Choose the closest colour among the available n-bit palette options # palette_choices_nbit = screen.pixel_palette_options(output_pixel_nbit, x) # output_pixel_nbit = find_nearest_colour(input_pixel_rgb, palette_choices_nbit, distances) # Apply error diffusion from chosen output pixel value for i in range(3): output_pixel_rgb[i] = palette_rgb[output_pixel_nbit, x % 4, i] quant_error[i] = image_rgb[y,x,i] - output_pixel_rgb[i] apply(&cdither, xres, yres, x, y, image_rgb, quant_error) # Update image with our chosen image pixel image_nbit[y, x] = output_pixel_nbit for i in range(3): image_rgb[y, x, i] = output_pixel_rgb[i] free(cdither.pattern) return image_nbit, np.array(image_rgb)