import argparse from PIL import Image import numpy as np X_RES = 560 Y_RES = 192 RGB = { (False, False, False, False): np.array((0, 0, 0)), # Black (False, False, False, True): np.array((148, 12, 125)), # Magenta (False, False, True, False): np.array((99, 77, 0)), # Brown (False, False, True, True): np.array((249, 86, 29)), # Orange (False, True, False, False): np.array((51, 111, 0)), # Dark green # XXX RGB values are used as keys in DOTS dict, need to be unique (False, True, False, True): np.array((126, 126, 125)), # Grey1 (False, True, True, False): np.array((67, 200, 0)), # Green (False, True, True, True): np.array((221, 206, 23)), # Yellow (True, False, False, False): np.array((32, 54, 212)), # Dark blue (True, False, False, True): np.array((188, 55, 255)), # Violet (True, False, True, False): np.array((126, 126, 126)), # Grey2 (True, False, True, True): np.array((255, 129, 236)), # Pink (True, True, False, False): np.array((7, 168, 225)), # Med blue (True, True, False, True): np.array((158, 172, 255)), # Light blue (True, True, True, False): np.array((93, 248, 133)), # Aqua (True, True, True, True): np.array((255, 255, 255)), # White } NAMES = { (0, 0, 0): "Black", (148, 12, 125): "Magenta", (99, 77, 0): "Brown", (249, 86, 29): "Orange", (51, 111, 0): "Dark green", (126, 126, 125): "Grey1", # XXX (67, 200, 0): "Green", (221, 206, 23): "Yellow", (32, 54, 212): "Dark blue", (188, 55, 255): "Violet", (126, 126, 126): "Grey2", (255, 129, 236): "Pink", (7, 168, 225): "Med blue", (158, 172, 255): "Light blue", (93, 248, 133): "Aqua", (255, 255, 255): "White" } DOTS = {} for k, v in RGB.items(): DOTS[tuple(v)] = k def find_closest_color(pixel, last_pixel, x: int): least_diff = 1e9 best_colour = None last_dots = DOTS[tuple(last_pixel)] other_dots = list(last_dots) other_dots[x % 4] = not other_dots[x % 4] other_dots = tuple(other_dots) for v in (RGB[last_dots], RGB[other_dots]): diff = np.sum(np.power(v - np.array(pixel), 2)) if diff < least_diff: least_diff = diff best_colour = v return best_colour class Dither: PATTERN = None ORIGIN = None def apply(self, image, x, y, quant_error): pattern = self.PATTERN[:Y_RES - y, :X_RES - x] / np.sum(self.PATTERN) for offset, error_fraction in np.ndenumerate(pattern): coord = (x + offset[1] - self.ORIGIN[1], y + offset[0] - self.ORIGIN[0]) new_pixel = image.getpixel(coord) + error_fraction * quant_error image.putpixel(coord, tuple(new_pixel.astype(int))) class FloydSteinbergDither(Dither): # 0 * 7 # 3 5 1 PATTERN = np.array(((0, 0, 7), (3, 5, 1))) ORIGIN = (0, 1) class KennawayDither(Dither): # 0 * 7 5 3 1 # 3 5 3 1 1 0 PATTERN = np.array(((0, 0, 7, 5, 3, 1), (3, 5, 3, 1, 1, 0))) ORIGIN = (0, 1) def dither(filename): im = Image.open(filename) if im.mode != "RGB": im = im.convert("RGB") im.resize((X_RES, Y_RES), resample=Image.LANCZOS) im.show() # ditherer = FloydSteinbergDither() ditherer = KennawayDither() for y in range(Y_RES): print(y) newpixel = (0, 0, 0) for x in range(X_RES): oldpixel = im.getpixel((x, y)) newpixel = find_closest_color(oldpixel, newpixel, x) im.putpixel((x, y), tuple(newpixel)) quant_error = oldpixel - newpixel ditherer.apply(im, x, y, quant_error) im.show() def main(): parser = argparse.ArgumentParser() parser.add_argument("input", type=str, help="Input file to process") args = parser.parse_args() dither(args.input) if __name__ == "__main__": main()