ii-pix/screen.py
KrisKennaway 3aa29f2d2c
Add support for hi-res conversions (#11)
Hi-Res is essentially a more constrained version of Double Hi-Res, in which only about half of the 560 horizontal screen pixels can be independently addressed.

In particular an 8 bit byte in screen memory controls 14 or 15 screen pixels.  Bits 0-7 are doubled, and bit 8 shifts these 14 dots to the right if enabled.  In this case bit 7 of the previous byte is repeated a third time.

This means that we have to optimize all 8 bits at once and move forward in increments of 14 screen pixels.

There's also a timing difference that results in a phase shift of the NTSC colour signal, which means the mappings from dot patterns to effective colours are rotated.

Error diffusion seems to give best results if we only distribute about 2/3 of the quantization error according to the dither pattern.
2023-02-03 00:40:32 +00:00

269 lines
9.4 KiB
Python

"""Representation of Apple II screen memory."""
from enum import Enum
import numpy as np
import palette as palette_py
class Mode(Enum):
LO_RES = 1
DOUBLE_LO_RES = 2
HI_RES = 3
DOUBLE_HI_RES = 4
SUPER_HI_RES_320 = 5
SUPER_HI_RES_640 = 6
SUPER_HI_RES_3200 = 7
class SHR320Screen:
X_RES = 320
Y_RES = 200
MODE = Mode.SUPER_HI_RES_320
def __init__(self):
self.palettes = {k: np.zeros((16, 3), dtype=np.uint8) for k in
range(16)}
# Really 4-bit values, indexing into palette
self.pixels = np.array((self.Y_RES, self.X_RES), dtype=np.uint8)
# Choice of palette per scan-line
self.line_palette = np.zeros(self.Y_RES, dtype=np.uint8)
self.memory = None
def set_palette(self, idx: int, palette: np.array):
if idx < 0 or idx > 15:
raise ValueError("Palette index %s must be in range 0 .. 15" % idx)
if palette.shape != (16, 3):
raise ValueError("Palette size %s != (16, 3)" % palette.shape)
# XXX check element range
if palette.dtype != np.uint8:
raise ValueError("Palette must be of type np.uint8")
# print(palette)
self.palettes[idx] = np.array(palette)
def set_pixels(self, pixels):
self.pixels = np.array(pixels)
def pack(self):
dump = np.zeros(32768, dtype=np.uint8)
for y in range(self.Y_RES):
pixel_pair = 0
for x in range(self.X_RES):
if x % 2 == 0:
pixel_pair |= (self.pixels[y, x] << 4)
else:
pixel_pair |= self.pixels[y, x]
# print(pixel_pair)
dump[y * 160 + (x - 1) // 2] = pixel_pair
pixel_pair = 0
scan_control_offset = 320 * 200 // 2
for y in range(self.Y_RES):
dump[scan_control_offset + y] = self.line_palette[y]
palette_offset = scan_control_offset + 256
for palette_idx, palette in self.palettes.items():
for rgb_idx, rgb in enumerate(palette):
r, g, b = rgb
assert r <= 15 and g <= 15 and b <= 15
# print(r, g, b)
rgb_low = (g << 4) | b
rgb_hi = r
# print(hex(rgb_hi), hex(rgb_low))
palette_idx_offset = palette_offset + (32 * palette_idx)
dump[palette_idx_offset + (2 * rgb_idx)] = rgb_low
dump[palette_idx_offset + (2 * rgb_idx + 1)] = rgb_hi
self.memory = dump
class BaseDHGRScreen:
@staticmethod
def y_to_base_addr(y: int) -> int:
"""Maps y coordinate to screen memory base address."""
a = y // 64
d = y - 64 * a
b = d // 8
c = d - 8 * b
return 1024 * c + 128 * b + 40 * a
class DHGRScreen(BaseDHGRScreen):
X_RES = 560
Y_RES = 192
MODE = Mode.DOUBLE_HI_RES
def __init__(self):
self.main = np.zeros(8192, dtype=np.uint8)
self.aux = np.zeros(8192, dtype=np.uint8)
def pack(self, bitmap: np.ndarray):
"""Packs an image into memory format (8k AUX + 8K MAIN)."""
# The DHGR display encodes 7 pixels across interleaved 4-byte sequences
# of AUX and MAIN memory, as follows:
# PBBBAAAA PDDCCCCB PFEEEEDD PGGGGFFF
# Aux N Main N Aux N+1 Main N+1 (N even)
main_col = np.zeros(
(self.Y_RES, self.X_RES // 14), dtype=np.uint8)
aux_col = np.zeros(
(self.Y_RES, self.X_RES // 14), dtype=np.uint8)
for byte_offset in range(80):
column = np.zeros(self.Y_RES, dtype=np.uint8)
for bit in range(7):
column |= (bitmap[:, 7 * byte_offset + bit].astype(
np.uint8) << bit)
if byte_offset % 2 == 0:
aux_col[:, byte_offset // 2] = column
else:
main_col[:, (byte_offset - 1) // 2] = column
for y in range(self.Y_RES):
addr = self.y_to_base_addr(y)
self.aux[addr:addr + 40] = aux_col[y, :]
self.main[addr:addr + 40] = main_col[y, :]
return
class NTSCScreen:
NTSC_PHASE_SHIFT = None
def _sin(self, pos):
x = pos % 12 + self.NTSC_PHASE_SHIFT * 3
return np.sin(x * 2 * np.pi / 12)
def _cos(self, pos):
x = pos % 12 + self.NTSC_PHASE_SHIFT * 3
return np.cos(x * 2 * np.pi / 12)
def _read(self, line, pos):
if pos < 0:
return 0
return 1 if line[pos] else 0
def bitmap_to_image_ntsc(self, bitmap: np.ndarray) -> np.ndarray:
y_width = 12
u_width = 24
v_width = 24
contrast = 1
# TODO: This is necessary to match OpenEmulator. I think it is because
# they introduce an extra (unexplained) factor of 2 when applying the
# Chebyshev/Lanczos filtering to the u and v components.
saturation = 2
# TODO: this phase shift is necessary to match OpenEmulator. I'm not
# sure where it comes from - e.g. it doesn't match the phaseInfo
# calculation for the signal phase at the start of the visible region.
hue = 0.2 * (2 * np.pi)
# Apply effect of saturation
yuv_to_rgb = np.array(
((1, 0, 0), (0, saturation, 0), (0, 0, saturation)),
dtype=np.float32)
# Apply hue phase rotation
yuv_to_rgb = np.matmul(np.array(
((1, 0, 0), (0, np.cos(hue), np.sin(hue)), (0, -np.sin(hue),
np.cos(hue)))),
yuv_to_rgb)
# Y'UV to R'G'B' conversion
yuv_to_rgb = np.matmul(np.array(
((1, 0, 1.139883), (1, -0.394642, -.5806227), (1, 2.032062, 0))),
yuv_to_rgb)
# Apply effect of contrast
yuv_to_rgb *= contrast
out_rgb = np.empty((bitmap.shape[0], bitmap.shape[1] * 3, 3),
dtype=np.uint8)
for y in range(bitmap.shape[0]):
ysum = 0
usum = 0
vsum = 0
line = np.repeat(bitmap[y], 3)
for x in range(bitmap.shape[1] * 3):
ysum += self._read(line, x) - self._read(line, x - y_width)
usum += self._read(line, x) * self._sin(x) - self._read(
line, x - u_width) * self._sin((x - u_width))
vsum += self._read(line, x) * self._cos(x) - self._read(
line, x - v_width) * self._cos((x - v_width))
rgb = np.matmul(
yuv_to_rgb, np.array(
(ysum / y_width, usum / u_width,
vsum / v_width)).reshape((3, 1))).reshape(3)
r = min(255, max(0, rgb[0] * 255))
g = min(255, max(0, rgb[1] * 255))
b = min(255, max(0, rgb[2] * 255))
out_rgb[y, x, :] = (r, g, b)
return out_rgb
def bitmap_to_image_rgb(self, bitmap: np.ndarray) -> np.ndarray:
"""Convert our 2-bit bitmap image into a RGB image.
Colour at every pixel is determined by the value of an n-bit sliding
window and x % 4, which give the index into our RGB palette.
"""
image_rgb = np.empty((self.Y_RES, self.X_RES, 3), dtype=np.uint8)
for y in range(self.Y_RES):
bitmap_window = [False] * self.palette.PALETTE_DEPTH
for x in range(self.X_RES):
# Maintain a sliding window of pixels of width PALETTE_DEPTH
bitmap_window = bitmap_window[1:] + [bitmap[y, x]]
image_rgb[y, x, :] = self.palette.RGB[
self.palette.bitmap_to_idx(
# Mapping from bit pattern to colour is rotated by
# NTSC phase shift
np.roll(
np.array(bitmap_window, dtype=bool),
self.NTSC_PHASE_SHIFT
)
), x % 4]
return image_rgb
class DHGRNTSCScreen(DHGRScreen, NTSCScreen):
def __init__(self, palette: palette_py.Palette):
self.palette = palette
super(DHGRNTSCScreen, self).__init__()
NTSC_PHASE_SHIFT = 0
class HGRNTSCScreen(BaseDHGRScreen, NTSCScreen):
# Hi-Res really is 560 pixels horizontally, not 280 - but unlike DHGR
# you can only independently control about half of the pixels.
#
# In more detail, hi-res graphics works like this:
# - Each of the low 7 bits in a byte of screen memory results in
# enabling or disabling two sequential 560-resolution pixels.
# - pixel screen order is from LSB to MSB
# - if bit 8 (the "palette bit") is set then the 14-pixel sequence is
# shifted one position to the right, and the left-most pixel is filled
# in by duplicating the right-most pixel produced by the previous
# screen byte (i.e. bit 7)
# - thus each byte produces a 15 or 14 pixel sequence depending on
# whether or not the palette bit is set.
X_RES = 560
Y_RES = 192
MODE = Mode.HI_RES
NTSC_PHASE_SHIFT = 3
def __init__(self, palette: palette_py.Palette):
self.main = np.zeros(8192, dtype=np.uint8)
self.palette = palette
super(HGRNTSCScreen, self).__init__()
def pack_bytes(self, linear_bytemap: np.ndarray):
"""Packs an image into memory format (8K main)."""
for y in range(self.Y_RES):
addr = self.y_to_base_addr(y)
self.main[addr:addr + 40] = linear_bytemap[y, :]
return