2019-03-21 22:56:45 +00:00
|
|
|
"""Computes visual differences between screen image data.
|
|
|
|
|
|
|
|
This is the core of the video encoding, for three reasons:
|
|
|
|
|
|
|
|
- The edit distance between old and new frames is used to prioritize which
|
|
|
|
screen bytes to send
|
|
|
|
|
|
|
|
- When deciding which other offset bytes to send along with a chosen screen
|
|
|
|
byte, we minimize the error introduced by sending this (probably non-optimal)
|
|
|
|
byte instead of the actual target screen byte. This needs to account for the
|
|
|
|
colour artifacts introduced by this byte as well as weighting perceived
|
|
|
|
errors introduced (e.g. long runs of colour)
|
|
|
|
|
|
|
|
- The byte_screen_error_distance function is on the critical path of the encoding.
|
|
|
|
"""
|
2019-03-21 16:42:47 +00:00
|
|
|
|
2019-03-14 22:32:52 +00:00
|
|
|
import functools
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
import weighted_levenshtein
|
|
|
|
|
|
|
|
|
|
|
|
@functools.lru_cache(None)
|
2019-03-21 15:59:56 +00:00
|
|
|
def byte_to_nominal_colour_string(b: int, is_odd_offset: bool) -> str:
|
|
|
|
"""Compute nominal pixel colours for a byte.
|
|
|
|
|
|
|
|
This ignores any fringing/colour combining effects, as well as
|
|
|
|
half-ignoring what happens to the colour pixel that crosses the byte
|
|
|
|
boundary.
|
|
|
|
|
|
|
|
A better implementation of this might be to consider neighbouring (even,
|
|
|
|
odd) column bytes together since this will allow correctly colouring the
|
|
|
|
split pixel in the middle.
|
|
|
|
|
|
|
|
There are also even weirder colour artifacts that happen when
|
|
|
|
neighbouring bytes have mismatched colour palettes, which also cross the
|
|
|
|
odd/even boundary. But these may not be worth worrying about.
|
2019-03-21 22:56:45 +00:00
|
|
|
|
|
|
|
:param b: byte to encode
|
|
|
|
:param is_odd_offset: whether byte is at an odd screen column
|
|
|
|
:return: string encoding nominal colour of pixels in the byte, with "0"
|
|
|
|
or "1" for the "hanging" bit that spans the neighbouring byte.
|
2019-03-21 15:59:56 +00:00
|
|
|
"""
|
2019-03-14 22:32:52 +00:00
|
|
|
pixels = []
|
|
|
|
|
|
|
|
idx = 0
|
|
|
|
if is_odd_offset:
|
|
|
|
pixels.append("01"[b & 0x01])
|
|
|
|
idx += 1
|
|
|
|
|
|
|
|
# K = black
|
|
|
|
# G = green
|
|
|
|
# V = violet
|
|
|
|
# W = white
|
|
|
|
palettes = (
|
|
|
|
(
|
|
|
|
"K", # 0x00
|
|
|
|
"V", # 0x01
|
|
|
|
"G", # 0x10
|
|
|
|
"W" # 0x11
|
|
|
|
), (
|
|
|
|
"K", # 0x00
|
|
|
|
"B", # 0x01
|
|
|
|
"O", # 0x10
|
|
|
|
"W" # 0x11
|
|
|
|
)
|
|
|
|
)
|
|
|
|
palette = palettes[(b & 0x80) != 0]
|
|
|
|
|
|
|
|
for _ in range(3):
|
|
|
|
pixel = palette[(b >> idx) & 0b11]
|
|
|
|
pixels.append(pixel)
|
|
|
|
idx += 2
|
|
|
|
|
|
|
|
if not is_odd_offset:
|
2019-03-21 15:59:56 +00:00
|
|
|
pixels.append("01"[(b & 0x40) != 0])
|
2019-03-14 22:32:52 +00:00
|
|
|
idx += 1
|
|
|
|
|
|
|
|
return "".join(pixels)
|
|
|
|
|
|
|
|
|
2019-03-21 15:59:56 +00:00
|
|
|
@functools.lru_cache(None)
|
|
|
|
def byte_to_colour_string_with_white_coalescing(
|
|
|
|
b: int, is_odd_offset: bool) -> str:
|
|
|
|
"""Model the combining of neighbouring 1 bits to produce white.
|
|
|
|
|
|
|
|
The output is a string of length 7 representing the 7 display dots that now
|
|
|
|
have colour.
|
|
|
|
|
|
|
|
Attempt to model the colour artifacting that consecutive runs of
|
|
|
|
1 bits are coerced to white. This isn't quite correct since:
|
|
|
|
|
|
|
|
a) it doesn't operate across byte boundaries (see note on
|
|
|
|
byte_to_nominal_colour_string)
|
|
|
|
|
|
|
|
b) a sequence like WVV appears more like WWWVVV or WWVVVV rather than WWWKVV
|
|
|
|
(at least on the //gs)
|
|
|
|
|
|
|
|
It also ignores other colour fringing e.g. from NTSC artifacts.
|
|
|
|
|
|
|
|
TODO: this needs more work.
|
2019-03-21 22:56:45 +00:00
|
|
|
|
|
|
|
:param b:
|
|
|
|
:param is_odd_offset:
|
|
|
|
:return:
|
2019-03-21 15:59:56 +00:00
|
|
|
"""
|
|
|
|
|
|
|
|
pixels = []
|
|
|
|
|
|
|
|
fringing = {
|
|
|
|
"1V": "WWK", # 110
|
|
|
|
"1W": "WWW", # 111
|
|
|
|
|
|
|
|
"1B": "WWB", # 110
|
|
|
|
|
|
|
|
"WV": "WWWK", # 1110
|
|
|
|
"WB": "WWWK", # 1110
|
|
|
|
|
|
|
|
"GV": "KWWK", # 0110
|
|
|
|
"OB": "KWWK", # 0110
|
|
|
|
|
|
|
|
"GW": "KWWW", # 0111
|
|
|
|
"OW": "KWWW", # 0111
|
|
|
|
|
|
|
|
"W1": "WWW", # 111
|
|
|
|
"G1": "KWW", # 011
|
|
|
|
"O1": "KWW", # 011
|
|
|
|
}
|
|
|
|
|
|
|
|
nominal = byte_to_nominal_colour_string(b, is_odd_offset)
|
|
|
|
for idx in range(3):
|
2019-03-21 16:02:18 +00:00
|
|
|
pair = nominal[idx:idx + 2]
|
2019-03-21 15:59:56 +00:00
|
|
|
effective = fringing.get(pair)
|
|
|
|
if not effective:
|
|
|
|
e = []
|
|
|
|
if pair[0] in {"0", "1"}:
|
|
|
|
e.append(pair[0])
|
|
|
|
else:
|
|
|
|
e.extend([pair[0], pair[0]])
|
|
|
|
if pair[1] in {"0", "1"}:
|
|
|
|
e.append(pair[1])
|
|
|
|
else:
|
|
|
|
e.extend([pair[1], pair[1]])
|
|
|
|
effective = "".join(e)
|
|
|
|
|
|
|
|
if pixels:
|
|
|
|
pixels.append(effective[2:])
|
|
|
|
else:
|
|
|
|
pixels.append(effective)
|
|
|
|
|
|
|
|
return "".join(pixels)
|
|
|
|
|
2019-03-14 22:32:52 +00:00
|
|
|
|
|
|
|
substitute_costs = np.ones((128, 128), dtype=np.float64)
|
2019-03-21 15:59:56 +00:00
|
|
|
|
|
|
|
# Substitution costs to use when evaluating other potential offsets at which
|
|
|
|
# to store a content byte. We penalize more harshly for introducing
|
|
|
|
# errors that alter pixel colours, since these tend to be very
|
|
|
|
# noticeable as visual noise.
|
2019-03-14 22:32:52 +00:00
|
|
|
error_substitute_costs = np.ones((128, 128), dtype=np.float64)
|
|
|
|
|
|
|
|
# Penalty for turning on/off a black bit
|
|
|
|
for c in "01GVWOB":
|
|
|
|
substitute_costs[(ord('K'), ord(c))] = 1
|
|
|
|
substitute_costs[(ord(c), ord('K'))] = 1
|
|
|
|
error_substitute_costs[(ord('K'), ord(c))] = 5
|
|
|
|
error_substitute_costs[(ord(c), ord('K'))] = 5
|
|
|
|
|
|
|
|
# Penalty for changing colour
|
|
|
|
for c in "01GVWOB":
|
|
|
|
for d in "01GVWOB":
|
|
|
|
substitute_costs[(ord(c), ord(d))] = 1
|
|
|
|
substitute_costs[(ord(d), ord(c))] = 1
|
|
|
|
error_substitute_costs[(ord(c), ord(d))] = 5
|
|
|
|
error_substitute_costs[(ord(d), ord(c))] = 5
|
|
|
|
|
|
|
|
insert_costs = np.ones(128, dtype=np.float64) * 1000
|
|
|
|
delete_costs = np.ones(128, dtype=np.float64) * 1000
|
|
|
|
|
|
|
|
|
|
|
|
def _edit_weight(a: int, b: int, is_odd_offset: bool, error: bool):
|
2019-03-21 22:56:45 +00:00
|
|
|
"""
|
|
|
|
|
|
|
|
:param a:
|
|
|
|
:param b:
|
|
|
|
:param is_odd_offset:
|
|
|
|
:param error:
|
|
|
|
:return:
|
|
|
|
"""
|
2019-03-21 15:59:56 +00:00
|
|
|
a_pixels = byte_to_colour_string_with_white_coalescing(a, is_odd_offset)
|
|
|
|
b_pixels = byte_to_colour_string_with_white_coalescing(b, is_odd_offset)
|
2019-03-14 22:32:52 +00:00
|
|
|
|
|
|
|
dist = weighted_levenshtein.dam_lev(
|
|
|
|
a_pixels, b_pixels,
|
|
|
|
insert_costs=insert_costs,
|
|
|
|
delete_costs=delete_costs,
|
|
|
|
substitute_costs=error_substitute_costs if error else substitute_costs,
|
|
|
|
)
|
|
|
|
return np.int64(dist)
|
|
|
|
|
|
|
|
|
2019-03-21 22:56:45 +00:00
|
|
|
@functools.lru_cache(None)
|
|
|
|
def _edit_weight_matrices(error: bool) -> np.array:
|
|
|
|
"""
|
|
|
|
|
|
|
|
:param error:
|
|
|
|
:return:
|
|
|
|
"""
|
2019-03-14 22:32:52 +00:00
|
|
|
ewm = np.zeros(shape=(256, 256, 2), dtype=np.int64)
|
|
|
|
for a in range(256):
|
|
|
|
for b in range(256):
|
|
|
|
for is_odd_offset in (False, True):
|
|
|
|
ewm[a, b, int(is_odd_offset)] = _edit_weight(
|
|
|
|
a, b, is_odd_offset, error)
|
|
|
|
|
|
|
|
return ewm
|
|
|
|
|
|
|
|
|
|
|
|
@functools.lru_cache(None)
|
|
|
|
def edit_weight(a: int, b: int, is_odd_offset: bool, error: bool):
|
2019-03-21 22:56:45 +00:00
|
|
|
"""
|
|
|
|
|
|
|
|
:param a: first content value
|
|
|
|
:param b: second content value
|
|
|
|
:param is_odd_offset: whether this content byte is at an odd screen
|
|
|
|
byte offset
|
|
|
|
:param error: whether to compute error distance or edit distance
|
|
|
|
:return: the corresponding distance value
|
|
|
|
"""
|
|
|
|
return _edit_weight_matrices(error)[a, b, int(is_odd_offset)]
|
2019-03-14 22:32:52 +00:00
|
|
|
|
2019-03-21 16:02:18 +00:00
|
|
|
|
2019-03-14 22:32:52 +00:00
|
|
|
_even_ewm = {}
|
|
|
|
_odd_ewm = {}
|
|
|
|
_even_error_ewm = {}
|
|
|
|
_odd_error_ewm = {}
|
|
|
|
for a in range(256):
|
|
|
|
for b in range(256):
|
|
|
|
_even_ewm[(a << 8) + b] = edit_weight(a, b, False, False)
|
|
|
|
_odd_ewm[(a << 8) + b] = edit_weight(a, b, True, False)
|
|
|
|
|
|
|
|
_even_error_ewm[(a << 8) + b] = edit_weight(a, b, False, True)
|
|
|
|
_odd_error_ewm[(a << 8) + b] = edit_weight(a, b, True, True)
|
|
|
|
|
|
|
|
|
|
|
|
@functools.lru_cache(None)
|
2019-03-21 22:56:45 +00:00
|
|
|
def _constant_array(content: int, shape) -> np.array:
|
|
|
|
"""
|
|
|
|
|
|
|
|
:param content:
|
|
|
|
:param shape:
|
|
|
|
:return:
|
|
|
|
"""
|
|
|
|
return np.ones(shape, dtype=np.uint16) * content
|
2019-03-14 22:32:52 +00:00
|
|
|
|
|
|
|
|
2019-03-21 22:56:45 +00:00
|
|
|
def byte_screen_error_distance(content: int, b: np.array) -> np.array:
|
|
|
|
"""
|
|
|
|
|
|
|
|
:param content: byte for which to compute error distance
|
|
|
|
:param b: np.array of size (32, 256) representing existing screen memory.
|
|
|
|
:return: np.array of size (32, 256) representing error distance from
|
|
|
|
content byte to each byte of b
|
|
|
|
"""
|
2019-03-14 22:32:52 +00:00
|
|
|
assert b.shape == (32, 256), b.shape
|
|
|
|
|
|
|
|
# Extract even and off column offsets (128,)
|
|
|
|
even_b = b[:, ::2]
|
|
|
|
odd_b = b[:, 1::2]
|
|
|
|
|
2019-03-21 22:56:45 +00:00
|
|
|
a = _constant_array(content << 8, even_b.shape)
|
2019-03-14 22:32:52 +00:00
|
|
|
|
|
|
|
even = a + even_b
|
|
|
|
odd = a + odd_b
|
|
|
|
|
|
|
|
even_weights = np.vectorize(_even_error_ewm.__getitem__)(even)
|
|
|
|
odd_weights = np.vectorize(_odd_error_ewm.__getitem__)(odd)
|
|
|
|
|
|
|
|
res = np.ndarray(shape=b.shape, dtype=np.int64)
|
|
|
|
res[:, ::2] = even_weights
|
|
|
|
res[:, 1::2] = odd_weights
|
|
|
|
|
|
|
|
return res
|
|
|
|
|
|
|
|
|
2019-03-21 22:56:45 +00:00
|
|
|
def screen_edit_distance(a: np.array, b: np.array) -> np.array:
|
|
|
|
"""
|
|
|
|
|
|
|
|
:param a:
|
|
|
|
:param b:
|
|
|
|
:return:
|
|
|
|
"""
|
2019-03-14 22:32:52 +00:00
|
|
|
# Extract even and off column offsets (32, 128)
|
|
|
|
even_a = a[:, ::2]
|
|
|
|
odd_a = a[:, 1::2]
|
|
|
|
|
|
|
|
even_b = b[:, ::2]
|
|
|
|
odd_b = b[:, 1::2]
|
|
|
|
|
|
|
|
even = (even_a.astype(np.uint16) << 8) + even_b
|
|
|
|
odd = (odd_a.astype(np.uint16) << 8) + odd_b
|
|
|
|
|
|
|
|
even_weights = np.vectorize(_even_ewm.__getitem__)(even)
|
|
|
|
odd_weights = np.vectorize(_odd_ewm.__getitem__)(odd)
|
|
|
|
|
|
|
|
res = np.ndarray(shape=a.shape, dtype=np.int64)
|
|
|
|
res[:, ::2] = even_weights
|
|
|
|
res[:, 1::2] = odd_weights
|
|
|
|
|
|
|
|
return res
|