In HeuristicPageFirstScheduler, don't use a deterministic ordering

of pages and content, since we may never get around to some of them
across many frames.  Instead weight by total xor weight for the page,
(page, content) tuple and offset list

Add some other scheduler variants
- prefer content first, then page.  This turns out to introduce a lot
  of colour fringing since we may not ever get back to fix up the
  hanging bit
This commit is contained in:
kris 2019-02-27 14:09:42 +00:00
parent 0ac905a7aa
commit 4840efc41e

View File

@ -1,5 +1,6 @@
"""Opcode schedulers.""" """Opcode schedulers."""
import collections
from typing import Iterator from typing import Iterator
import opcodes import opcodes
@ -10,8 +11,125 @@ class OpcodeScheduler:
raise NotImplementedError raise NotImplementedError
class HeuristicContentFirstScheduler(OpcodeScheduler):
"""Group by content first then page.
This has a fair bit of colour fringing because we aren't guaranteed to
get back to fixing up hanging bits within our frame window. In practise
this also does not deal well with fine detail at higher frame rates.
"""
def schedule(self, changes):
data = {}
content_weights = collections.defaultdict(int)
content_page_weights = {}
for ch in changes:
xor_weight, page, offset, content, run_length = ch
data.setdefault((page, content), list()).append(
(xor_weight, run_length, offset))
content_weights[content] += xor_weight
content_page_weights.setdefault(content, collections.defaultdict(
int))[page] += xor_weight
# Weight each page and content within page by total xor weight and
# traverse in this order
contents = sorted(
list(content_weights.keys()),
key=lambda p: content_weights[p], reverse=True)
for content in contents:
yield opcodes.SetContent(content)
page_weights = content_page_weights[content]
pages = sorted(
list(page_weights.keys()),
key=lambda c: page_weights[c],
reverse=True)
for page in pages:
yield opcodes.SetPage(page)
offsets = sorted(data[(page, content)], key=lambda x: x[0],
reverse=True)
# print("page %d content %d offsets %s" % (page, content,
# offsets))
for (_, run_length, offset) in offsets:
if run_length > 1:
# print("Offset %d run length %d" % (
# offset, run_length))
yield opcodes.RLE(offset, run_length)
else:
yield opcodes.Store(offset)
class HeuristicPageFirstScheduler(OpcodeScheduler): class HeuristicPageFirstScheduler(OpcodeScheduler):
"""Group by page first then content byte.""" """Group by page first then content byte.
Grouping by page (rather than content) means that we'll reduce the window
of time during which we have violated a colour invariant due to bits
hanging across byte boundaries.
"""
# Median similarity: 0.862798 @ 15 fps, 10M output
def schedule(self, changes):
data = {}
page_weights = collections.defaultdict(int)
page_content_weights = {}
for ch in changes:
xor_weight, page, offset, content, run_length = ch
data.setdefault((page, content), list()).append(
(xor_weight, run_length, offset))
page_weights[page] += xor_weight
page_content_weights.setdefault(page, collections.defaultdict(
int))[content] += xor_weight
# Weight each page and content within page by total xor weight and
# traverse in this order
pages = sorted(
list(page_weights.keys()),
key=lambda p: page_weights[p], reverse=True)
for page in pages:
yield opcodes.SetPage(page)
content_weights = page_content_weights[page]
contents = sorted(
list(content_weights.keys()),
key=lambda c: content_weights[c],
reverse=True)
for content in contents:
yield opcodes.SetContent(content)
offsets = sorted(
data[(page, content)],
key=lambda x: x[0],
reverse=True)
# print("page %d content %d offsets %s" % (page, content,
# offsets))
for (_, run_length, offset) in offsets:
if run_length > 1:
# print("Offset %d run length %d" % (
# offset, run_length))
yield opcodes.RLE(offset, run_length)
else:
yield opcodes.Store(offset)
class OldHeuristicPageFirstScheduler(OpcodeScheduler):
"""Group by page first then content byte.
This uses a deterministic order of pages and content bytes, and ignores
xor_weight altogether
"""
# Median similarity: 0.854613 ( @ 15 fps, 10M output)
# is almost as good as HeuristicPageFirstScheduler -- despite the fact
# that we consistently fail to update some pages. That means we should
# be measuring some notion of error persistence rather than just
# similarity
def schedule(self, changes): def schedule(self, changes):
data = {} data = {}