import functools import numpy as np import weighted_levenshtein @functools.lru_cache(None) def byte_to_nominal_colour_string(b: int, is_odd_offset: bool) -> str: """Compute nominal pixel colours for a byte. This ignores any fringing/colour combining effects, as well as half-ignoring what happens to the colour pixel that crosses the byte boundary. A better implementation of this might be to consider neighbouring (even, odd) column bytes together since this will allow correctly colouring the split pixel in the middle. There are also even weirder colour artifacts that happen when neighbouring bytes have mismatched colour palettes, which also cross the odd/even boundary. But these may not be worth worrying about. """ pixels = [] idx = 0 if is_odd_offset: pixels.append("01"[b & 0x01]) idx += 1 # K = black # G = green # V = violet # W = white palettes = ( ( "K", # 0x00 "V", # 0x01 "G", # 0x10 "W" # 0x11 ), ( "K", # 0x00 "B", # 0x01 "O", # 0x10 "W" # 0x11 ) ) palette = palettes[(b & 0x80) != 0] for _ in range(3): pixel = palette[(b >> idx) & 0b11] pixels.append(pixel) idx += 2 if not is_odd_offset: pixels.append("01"[(b & 0x40) != 0]) idx += 1 return "".join(pixels) @functools.lru_cache(None) def byte_to_colour_string_with_white_coalescing( b: int, is_odd_offset: bool) -> str: """Model the combining of neighbouring 1 bits to produce white. The output is a string of length 7 representing the 7 display dots that now have colour. Attempt to model the colour artifacting that consecutive runs of 1 bits are coerced to white. This isn't quite correct since: a) it doesn't operate across byte boundaries (see note on byte_to_nominal_colour_string) b) a sequence like WVV appears more like WWWVVV or WWVVVV rather than WWWKVV (at least on the //gs) It also ignores other colour fringing e.g. from NTSC artifacts. TODO: this needs more work. """ pixels = [] fringing = { "1V": "WWK", # 110 "1W": "WWW", # 111 "1B": "WWB", # 110 "WV": "WWWK", # 1110 "WB": "WWWK", # 1110 "GV": "KWWK", # 0110 "OB": "KWWK", # 0110 "GW": "KWWW", # 0111 "OW": "KWWW", # 0111 "W1": "WWW", # 111 "G1": "KWW", # 011 "O1": "KWW", # 011 } nominal = byte_to_nominal_colour_string(b, is_odd_offset) for idx in range(3): pair = nominal[idx:idx + 2] effective = fringing.get(pair) if not effective: e = [] if pair[0] in {"0", "1"}: e.append(pair[0]) else: e.extend([pair[0], pair[0]]) if pair[1] in {"0", "1"}: e.append(pair[1]) else: e.extend([pair[1], pair[1]]) effective = "".join(e) if pixels: pixels.append(effective[2:]) else: pixels.append(effective) return "".join(pixels) substitute_costs = np.ones((128, 128), dtype=np.float64) # Substitution costs to use when evaluating other potential offsets at which # to store a content byte. We penalize more harshly for introducing # errors that alter pixel colours, since these tend to be very # noticeable as visual noise. error_substitute_costs = np.ones((128, 128), dtype=np.float64) # Penalty for turning on/off a black bit for c in "01GVWOB": substitute_costs[(ord('K'), ord(c))] = 1 substitute_costs[(ord(c), ord('K'))] = 1 error_substitute_costs[(ord('K'), ord(c))] = 5 error_substitute_costs[(ord(c), ord('K'))] = 5 # Penalty for changing colour for c in "01GVWOB": for d in "01GVWOB": substitute_costs[(ord(c), ord(d))] = 1 substitute_costs[(ord(d), ord(c))] = 1 error_substitute_costs[(ord(c), ord(d))] = 5 error_substitute_costs[(ord(d), ord(c))] = 5 insert_costs = np.ones(128, dtype=np.float64) * 1000 delete_costs = np.ones(128, dtype=np.float64) * 1000 def _edit_weight(a: int, b: int, is_odd_offset: bool, error: bool): a_pixels = byte_to_colour_string_with_white_coalescing(a, is_odd_offset) b_pixels = byte_to_colour_string_with_white_coalescing(b, is_odd_offset) dist = weighted_levenshtein.dam_lev( a_pixels, b_pixels, insert_costs=insert_costs, delete_costs=delete_costs, substitute_costs=error_substitute_costs if error else substitute_costs, ) return np.int64(dist) def edit_weight_matrixes(error: bool) -> np.array: ewm = np.zeros(shape=(256, 256, 2), dtype=np.int64) for a in range(256): for b in range(256): for is_odd_offset in (False, True): ewm[a, b, int(is_odd_offset)] = _edit_weight( a, b, is_odd_offset, error) return ewm _ewm = edit_weight_matrixes(False) _error_ewm = edit_weight_matrixes(True) @functools.lru_cache(None) def edit_weight(a: int, b: int, is_odd_offset: bool, error: bool): e = _error_ewm if error else _ewm return e[a, b, int(is_odd_offset)] _even_ewm = {} _odd_ewm = {} _even_error_ewm = {} _odd_error_ewm = {} for a in range(256): for b in range(256): _even_ewm[(a << 8) + b] = edit_weight(a, b, False, False) _odd_ewm[(a << 8) + b] = edit_weight(a, b, True, False) _even_error_ewm[(a << 8) + b] = edit_weight(a, b, False, True) _odd_error_ewm[(a << 8) + b] = edit_weight(a, b, True, True) @functools.lru_cache(None) def _content_a_array(content: int, shape) -> np.array: return (np.ones(shape, dtype=np.uint16) * content) << 8 def content_edit_weight(content: int, b: np.array) -> np.array: assert b.shape == (32, 256), b.shape # Extract even and off column offsets (128,) even_b = b[:, ::2] odd_b = b[:, 1::2] a = _content_a_array(content, even_b.shape) even = a + even_b odd = a + odd_b even_weights = np.vectorize(_even_error_ewm.__getitem__)(even) odd_weights = np.vectorize(_odd_error_ewm.__getitem__)(odd) res = np.ndarray(shape=b.shape, dtype=np.int64) res[:, ::2] = even_weights res[:, 1::2] = odd_weights return res def array_edit_weight(a: np.array, b: np.array) -> np.array: # Extract even and off column offsets (32, 128) even_a = a[:, ::2] odd_a = a[:, 1::2] even_b = b[:, ::2] odd_b = b[:, 1::2] even = (even_a.astype(np.uint16) << 8) + even_b odd = (odd_a.astype(np.uint16) << 8) + odd_b even_weights = np.vectorize(_even_ewm.__getitem__)(even) odd_weights = np.vectorize(_odd_ewm.__getitem__)(odd) res = np.ndarray(shape=a.shape, dtype=np.int64) res[:, ::2] = even_weights res[:, 1::2] = odd_weights return res