ii-vision/player/main.s
kris 8ffc8efaac Install RESET handler that exits to ProDOS
Implement op_terminate which waits for a keypress and then exits.
2019-03-23 21:45:13 +00:00

1334 lines
31 KiB
ArmAsm

;
; ][Vision
;
; Created by Kris Kennaway on 07/01/2019.
; Copyright © 2019 Kris Kennaway. All rights reserved.
;
; W5100/Uthernet II code based on "TCP SOCKET DEMO FOR W5100/UTHERNET II" by D. Finnigan.
;
; Multiplexed audio/video decoder for 64K, 1MHz Apple II systems with Uthernet II,
; supporting:
; - 5 bit DAC audio at ~14KHz
; - 56 KB/sec video update bandwidth
;
; This is sufficient for ~7.5 full page redraws of the hires screen per second, although the
; effective frame rate is typically higher, when there are only partial changes between
; frames.
;
; Fitting this in 64K together with ProDOS is pretty tight. We make use of 3 memory
; segments:
;
; LOWCODE (0x800 - 0x1fff)
; HGR (0x2000 - 0x3fff): code needed only at startup, which will be erased as soon as we start playing a video
; CODE (0x4000 - 0xbaff): rest of main memory unused by ProDOS
.include "apple2.inc"
; Write symbol table to .dbg file, so that we can read opcode offsets in the video
; transcoder.
.DEBUGINFO
.proc main
.segment "HGR"
; TODO: make these configurable
SRCADDR: .byte $C0,$A8,$01,147 ; 192.168.1.147 W5100 IP
FADDR: .byte $C0,$A8,$01,15 ; 192.168.1.15 FOREIGN IP
FPORT: .byte $07,$b9 ; 1977 FOREIGN PORT
MAC: .byte $00,$08,$DC,$01,$02,$03 ; W5100 MAC ADDRESS
; SLOT 1 I/O ADDRESSES FOR THE W5100
; Change this to support the Uthernet II in another slot
;
; TODO: make slot I/O addresses customizable at runtime - would probably require somehow
; compiling a list of all of the binary offsets at which we reference $C09x and patching
; them in memory or on-disk.
WMODE = $C094
WADRH = $C095
WADRL = $C096
WDATA = $C097
;;;
; some dummy addresses in order to pad cycle counts
zpdummy = $00
dummy = $ffff
hgr = $f3e2
fullscr = $c052
tick = $c030 ; where the magic happens
prodos = $BF00 ; ProDOS MLI entry point
reset_vector = $3F2 ; Reset vector
; W5100 LOCATIONS
MACADDR = $0009 ; MAC ADDRESS
SRCIP = $000F ; SOURCE IP ADDRESS
RMSR = $001A ; RECEIVE BUFFER SIZE
; SOCKET 0 LOCATIONS
S0MR = $0400 ; SOCKET 0 MODE REGISTER
S0CR = $0401 ; COMMAND REGISTER
S0IR = $0402 ; INTERRUPT REGISTER
S0SR = $0403 ; STATUS REGISTER
S0LOCALPORT = $0404 ; LOCAL PORT
S0FORADDR = $040C ; FOREIGN ADDRESS
S0FORPORT = $0410 ; FOREIGN PORT
S0MSS = $0412 ; MAX SEGMENT SIZE
S0PROTO = $0414 ; IP PROTOCOL
S0TOS = $0415 ; DS/ECN (FORMER TOS)
S0TTL = $0416 ; IP TIME TO LIVE
S0TXFSR = $0420 ; TX FREE SIZE REGISTER
S0TXRR = $0422 ; TX READ POINTER REGISTER
S0TXWR = $0424 ; TX WRITE POINTER REGISTER
S0RXRSR = $0426 ; RX RECEIVED SIZE REGISTER
S0RXRD = $0428 ; RX READ POINTER REGISTER
; SOCKET 0 PARAMETERS
RXBASE = $6000 ; SOCKET 0 RX BASE ADDR
RXMASK = $1FFF ; SOCKET 0 8KB ADDRESS MASK
TXBASE = $4000 ; SOCKET 0 TX BASE ADDR
TXMASK = RXMASK ; SOCKET 0 TX MASK
; SOCKET COMMANDS
SCOPEN = $01 ; OPEN
SCLISTEN = $02 ; LISTEN
SCCONNECT = $04 ; CONNECT
SCDISCON = $08 ; DISCONNECT
SCCLOSE = $10 ; CLOSE
SCSEND = $20 ; SEND
SCSENDMAC = $21 ; SEND MAC
SCSENDKEEP = $22 ; SEND KEEP ALIVE
SCRECV = $40 ; RECV
; SOCKET STATUS
STCLOSED = $00
STINIT = $13
STLISTEN = $14
STESTABLISHED = $17
STCLOSEWAIT = $1C
STUDP = $22
STIPRAW = $32
STMAXRAW = $42
STPPOE = $5F
; MONITOR SUBROUTINES
KBD = $C000
KBDSTRB = $C010
COUT = $FDED
PRBYTE = $FDDA
PRNTAX = $F941
; ZERO-PAGE STORAGE
PTR = $06 ; TODO: we only use this for connection retry count
GETSIZE = $08 ; 2 BYTES FOR RX_RSR
GETOFFSET = $0A ; 2 BYTES FOR OFFSET ADDR
GETSTARTADR = $0C ; 2 BYTES FOR PHYSICAL ADDR
; this is the main binary entrypoint (it will be linked at 0x800)
.segment "LOWCODE"
JMP bootstrap
; Put code only needed at startup in the HGR page, we'll toast it when we're
; done starting up
.segment "HGR"
; RESET AND CONFIGURE W5100
bootstrap:
; install reset handler
LDA #<exit
STA reset_vector
LDA #>exit
STA reset_vector+1
EOR #$A5
STA reset_vector+2 ; checksum to ensure warm-start reset
LDA #6 ; 5 RETRIES TO GET CONNECTION
STA PTR ; NUMBER OF RETRIES
RESET_W5100:
LDA #$80 ; reset
STA WMODE
LDA #3 ; CONFIGURE WITH AUTO-INCREMENT
STA WMODE
; ASSIGN MAC ADDRESS
LDA #>MACADDR
STA WADRH
LDA #<MACADDR
STA WADRL
LDX #0
@L1:
LDA MAC,X
STA WDATA ; USING AUTO-INCREMENT
INX
CPX #6 ;COMPLETED?
BNE @L1
; ASSIGN A SOURCE IP ADDRESS
LDA #<SRCIP
STA WADRL
LDX #0
@L2:
LDA SRCADDR,X
STA WDATA
INX
CPX #4
BNE @L2
;CONFIGURE BUFFER SIZES
LDA #<RMSR
STA WADRL
LDA #3 ; 8KB TO SOCKET 0
STA WDATA ; SET RECEIVE BUFFER
STA WDATA ; SET TRANSMIT BUFFER
; CONFIGRE SOCKET 0 FOR TCP
LDA #>S0MR
STA WADRH
LDA #<S0MR
STA WADRL
LDA #$21 ; TCP MODE | !DELAYED_ACK
STA WDATA
; SET LOCAL PORT NUMBER
LDA #<S0LOCALPORT
STA WADRL
LDA #$C0 ; HIGH BYTE OF LOCAL PORT
STA WDATA
LDA #0 ; LOW BYTE
STA WDATA
; SET FOREIGN ADDRESS
LDA #<S0FORADDR
STA WADRL
LDX #0
@L3:
LDA FADDR,X
STA WDATA
INX
CPX #4
BNE @L3
; SET FOREIGN PORT
LDA FPORT ; HIGH BYTE OF FOREIGN PORT
STA WDATA ; ADDR PTR IS AT FOREIGN PORT
LDA FPORT+1 ; LOW BYTE OF PORT
STA WDATA
; OPEN SOCKET
LDA #<S0CR
STA WADRL
LDA #SCOPEN ;OPEN COMMAND
STA WDATA
; CHECK STATUS REGISTER TO SEE IF SUCCEEDED
LDA #<S0SR
STA WADRL
LDA WDATA
CMP #STINIT ; IS IT SOCK_INIT?
BEQ OPENED
LDY #0
@L4:
LDA @SOCKERR,Y
BEQ @LDONE
JSR COUT
INY
BNE @L4
@LDONE: BRK
@SOCKERR: .byte $d5,$d4,$c8,$c5,$d2,$ce,$c5,$d4,$a0,$c9,$c9,$ba,$a0,$c3,$cf,$d5,$cc,$c4,$a0,$ce,$cf,$d4,$a0,$cf,$d0,$c5,$ce,$a0,$d3,$cf,$c3,$cb,$c5,$d4,$a1
; "UTHERNET II: COULD NOT OPEN SOCKET!"
.byte $8D,$00 ; cr+null
; TCP SOCKET WAITING FOR NEXT COMMAND
OPENED:
LDA #<S0CR
STA WADRL
LDA #SCCONNECT
STA WDATA
; WAIT FOR TCP TO CONNECT AND BECOME ESTABLISHED
CHECKTEST:
LDA #<S0SR
STA WADRL
LDA WDATA ; GET SOCKET STATUS
BEQ FAILED ; 0 = SOCKET CLOSED, ERROR
CMP #STESTABLISHED
BEQ SETUP ; SUCCESS
BNE CHECKTEST
FAILED:
DEC PTR
BEQ ERRDONE ; TOO MANY FAILURES
LDA #$AE ; "."
JSR COUT
JMP RESET_W5100 ; TRY AGAIN
ERRDONE:
LDY #0
@L:
LDA ERRMSG,Y
BEQ @DONE
JSR COUT
INY
BNE @L
@DONE: BRK
ERRMSG: .byte $d3,$cf,$c3,$cb,$c5,$d4,$a0,$c3,$cf,$d5,$cc,$c4,$a0,$ce,$cf,$d4,$a0,$c3,$cf,$ce,$ce,$c5,$c3,$d4,$a0,$ad,$a0,$c3,$c8,$c5,$c3,$cb,$a0,$d2,$c5,$cd,$cf,$d4,$c5,$a0,$c8,$cf,$d3,$d4
; "SOCKET COULD NOT CONNECT - CHECK REMOTE HOST"
.byte $8D,$00
SETUP:
JMP init_mainloop
.segment "CODE"
; Quit to ProDOS
exit:
INC reset_vector+2 ; Invalidate power-up byte
JSR prodos ; Call the MLI ($BF00)
.BYTE $65 ; CALL TYPE = QUIT
.ADDR exit_parmtable ; Pointer to parameter table
exit_parmtable:
.BYTE 4 ; Number of parameters is 4
.BYTE 0 ; 0 is the only quit type
.WORD 0000 ; Pointer reserved for future use
.BYTE 0 ; Byte reserved for future use
.WORD 0000 ; Pointer reserved for future use
init_mainloop:
JSR hgr ; nukes the startup code we placed in HGR segment
STA fullscr
; establish invariant expected by decode loop
LDX #$00
; This is the main audio/video decode loop.
;
; The outer loop waits for the socket buffer to contain >2K of pending data before
; dispatching to the inner loop.
;
; The inner loop is structured in terms of "player opcodes", which receive any parameters
; from the TCP stream, and conclude with 2 bytes that are used as JMP address to the next
; opcode.
;
; Everything here has the following invariants:
; - opcodes are expected to take 73 cycles
; - (though the NOP and TERMINATE opcodes don't do this but they're only used at the start/
; end of the stream).
; - opcodes must maintain X=0 upon completion.
; - this is assumed in some of the tick opcodes as a trick to get an extra cycle
; via STA foo,X (5 cycles) instead of STA foo (4 cycles)
;
; During the ACK opcode and subsequent outer loop transit, we keep ticking the speaker
; every 36/37 cycles to maintain a multiple of 73 cycles. Because we guarantee that the ACK
; appears every 2048 bytes, this lets us simplify the accounting for the W5100 socket buffer
; management (moving the address pointer etc).
; Somewhat magically, the cycle timings all align on multiples of 73 (with tick intervals
; alternating 36 and 37 cycles, as in the "neutral" (i.e. 50% speaker duty cycle)
; op_tick_36_* opcodes), without much work needed to optimize this. I'm pretty sure there's
; still "unnecessary" work being done (e.g. low address bytes that are always 0) but there's
; need to work harder since we'd end up having to pad them back anyway.
;
; With a 73 cycle fundamental opcode (speaker) period and 1MHz clock speed, this gives a
; 14364 Hz "carrier" for the audio DAC, which is slightly audible (at least to my ageing
; ears) but quite acceptable.
;
; i.e. we get about 14364 player opcodes/second, with the ACK "slow path" costing 6 opcodes.
; Each of the "fat" audio/video opcodes results in storing 4 video bytes, so we store
; about 56KB of video data per second.
;
; With 192x40 = 7680 visible bytes on the hires screen, this means we can do about 7.5 full
; page redraws/sec; but the effective frame rate will usually be much higher than this
; since we only prioritize the parts of the screen that are changing between frames.
; Check for any received data
CHECKRECV:
BIT tick ; 4
LDA #<S0RXRSR ; 2 S0 RECEIVED SIZE REGISTER
STA WADRL ; 4
LDA WDATA ; 4 HIGH BYTE OF RECEIVED SIZE
ORA WDATA ; 4 LOW BYTE
BNE RECV ; 2 THERE IS DATA
; Not sure whether this delay is needed?
NOP ; Little delay ...
NOP
JMP CHECKRECV ; Check again
; THERE IS DATA TO READ - COMPUTE THE PHYSICAL ADDRESS
RECV:
LDA #<S0RXRSR ; 2 GET RECEIVED SIZE AGAIN
STA WADRL ; 4
LDA WDATA ; 4
; expect at least 2k more data present. The decoder does not do any implicit management
; of the TCP socket buffer, unless instructed to by the video byte stream. This
; opcode is scheduled every 2k bytes, so we'd better not fall off the end of the stream.
CMP #$08 ; 2 expect at least 2k
bcs @L ; 3 branch should mostly be taken, pads out the next tick to 36 cycles
BCC CHECKRECV ; not yet
@L:
BIT tick ; 4 (36 cycles)
STA GETSIZE+1 ; 4
LDA WDATA ; 4
STA GETSIZE ; 4 low byte (this should be 0 i.e. we could optimize this away, but we dont need to bother because the cycle timings work out anyway)
; reset address pointer to socket buffer
; CALCULATE OFFSET ADDRESS USING READ POINTER AND RX MASK
LDA #<S0RXRD ; 2
STA WADRL ; 4
LDA WDATA ; 4 HIGH BYTE
AND #>RXMASK ; 2
STA GETOFFSET+1,X ; 5 - using X=0 to get an extra cycle before next tick
LDA WDATA ; 4 LOW BYTE
BIT tick ; 4 (37 cycles)
AND #<RXMASK ; 2
STA GETOFFSET ; 4
; CALCULATE PHYSICAL ADDRESS WITHIN W5100 RX BUFFER
CLC ; 2
LDA GETOFFSET ; 4
ADC #<RXBASE ; 2
STA GETSTARTADR ; 4
LDA GETOFFSET+1 ; 4
ADC #>RXBASE ; 2
STA GETSTARTADR+1 ; 4
; SET BUFFER ADDRESS ON W5100
LDA GETSTARTADR+1 ; 4 HIGH BYTE FIRST
BIT tick ; 4 (36)
STA WADRH ;4
LDA GETSTARTADR ; 4
STA WADRL ; 4
; ensure invariant expected by inner loop
; it's probably already fine, but we have 2 cycles to spare anyway ;)
LDX #$00 ; 2
; fall through to op_nop
op_nop:
LDY WDATA ; 4
STY @D+2 ; 4
LDY WDATA ; 4
STY @D+1 ; 4
@D:
JMP op_nop ; 3 ; 37 with following tick
; Build macros for "fat" opcodes that do the following:
; - tick twice, N cycles apart (N = 4 .. 66 in steps of 2)
; - read a content byte from the stream
; - have an opcode-specific page offset configured (e.g. STA $2000,Y)
; - read 4 page offsets from the stream
; - store the content byte at these offsets
; - read 2 bytes from the stream as address of next opcode
;
; Each opcode has 6 cycles of padding, which is necessary to support reordering things to
; get the second "BIT tick" at the right cycle offset.
;
; Where possible we share code by JMPing to a common tail instruction sequence in one of the
; earlier opcodes. This is critical for reducing code size enough to fit.
.macro ticklabel page, cycles_left
.concat ("_op_tick_page_", .string(page), "_tail_", .string(cycles_left))
.endmacro
.macro tickident page, cycles_left
.ident (.concat ("_op_tick_page_", .string(page), "_tail_", .string(cycles_left))):
.endmacro
.macro op_tick_4 page
;4+(4)+2+4+4+4+5+4+5+4+5+4+5+4+4+4+4+3=73
.ident (.concat ("op_tick_4_page_", .string(page))):
BIT tick ; 4
BIT tick ; 4
STA zpdummy ; 3
STA zpdummy ; 3
; load content byte
tickident page, 59
LDA WDATA ; 4
; 4 x offset stores
tickident page, 55
LDY WDATA ; 4
tickident page, 51
STA page << 8,Y ; 5
tickident page, 46
LDY WDATA ; 4
tickident page, 42
STA page << 8,Y ; 5
tickident page, 37
LDY WDATA ; 4
tickident page, 33
STA page << 8,Y ; 5
tickident page, 28
LDY WDATA ; 4
tickident page, 24
STA page << 8,Y ; 5
; vector to next opcode
tickident page, 19
LDA WDATA ; 4
tickident page, 15
STA .ident(.concat ("_op_tick_4_page_", .string(page), "_jmp"))+2 ; 4
tickident page, 11
LDA WDATA ; 4
tickident page, 7
STA .ident(.concat ("_op_tick_4_page_", .string(page), "_jmp"))+1 ; 4
.ident(.concat ("_op_tick_4_page_", .string(page), "_jmp")):
JMP op_nop ; 3
.endmacro
.macro op_tick_6 page
;4+(2+4)+3+4+4+5+4+5+4+5+4+5+4+4+4+5+3
.ident (.concat ("op_tick_6_page_", .string(page))):
BIT tick ; 4
NOP ; 2
BIT tick ; 4
STA zpdummy ; 3
tickident page, 60
LDA WDATA ; 4
tickident page, 56
LDY WDATA ; 4
tickident page, 52
STA page << 8,Y ; 5
tickident page, 47
LDY WDATA ; 4
tickident page, 43
STA page << 8,Y ; 5
tickident page, 38
LDY WDATA ; 4
tickident page, 34
STA page << 8,Y ; 5
tickident page, 29
LDY WDATA ; 4
tickident page, 25
STA page << 8,Y ; 5
tickident page, 20
LDA WDATA ; 4
tickident page, 16
STA .ident(.concat ("_op_tick_6_page_", .string(page), "_jmp"))+2 ; 4
tickident page, 12
LDA WDATA ; 4
tickident page, 8
; NB: we use ,X indexing here to get an extra cycle. This requires us to
; maintain the invariant X=0 across opcode dispatch. Surprisingly this doesn't turn
; out to be a big deal.
STA .ident(.concat ("_op_tick_6_page_", .string(page), "_jmp"))+1,X ; 5
.ident (.concat ("_op_tick_6_page_", .string(page), "_jmp")):
JMP op_nop ; 3
.endmacro
.macro op_tick_8 page
;4+(4+4)+3+3+55
.ident (.concat ("op_tick_8_page_", .string(page))):
BIT tick ; 4
LDA WDATA ; 4
BIT tick ; 4
STA zpdummy ; 3
JMP .ident(.concat("_op_tick_page_", .string(page), "_tail_55")) ; 3 + 55
.endmacro
.macro op_tick_10 page
;4+(4+2+4)+3+56
.ident (.concat ("op_tick_10_page_", .string(page))):
BIT tick ; 4
LDA WDATA ; 4
NOP ; 2
BIT tick ; 4
JMP .ident(.concat("_op_tick_page_", .string(page), "_tail_56")) ; 3 + 56
.endmacro
.macro op_tick_12 page
;4+(4+4+4)+3+3+51
.ident (.concat ("op_tick_12_page_", .string(page))):
BIT tick ; 4
LDA WDATA ; 4
LDY WDATA ; 4
BIT tick ; 4
STA zpdummy ; 3
JMP .ident(.concat("_op_tick_page_", .string(page), "_tail_51")) ; 3 + 51
.endmacro
.macro op_tick_14 page
;4+(4+4+2+4)+3+52
.ident (.concat ("op_tick_14_page_", .string(page))):
BIT tick ; 4
LDA WDATA ; 4
LDY WDATA ; 4
NOP ; 2
BIT tick ; 4
JMP .ident(.concat("_op_tick_page_", .string(page), "_tail_52")) ; 3+52
.endmacro
.macro op_tick_16 page
; 4+(4+4+4+4)+5+2+3+43
.ident (.concat ("op_tick_16_page_", .string(page))):
BIT tick ; 4
LDA WDATA ; 4
; This temporarily violates X=0 invariant required by tick_6, but lets us share a
; common opcode tail; otherwise we need a dummy 4-cycle opcode between the ticks, which
; doesn't leave enough to JMP with.
LDX WDATA ; 4
LDY WDATA ; 4
BIT tick ; 4
STA page << 8,x ; 5
LDX #$00 ; 2 restore X=0 invariant
JMP .ident(.concat("_op_tick_page_", .string(page), "_tail_43")) ; 3 + 43
.endmacro
.macro op_tick_18 page
; 4 + (4+4+4+2+4)+5+5+2+2+4+5+4+5+4+4+4+4+3
.ident (.concat ("op_tick_18_page_", .string(page))):
BIT tick ; 4
LDA WDATA ; 4
LDY WDATA ; 4
; lets us reorder the 5-cycle STA page << 8,y outside of tick loop.
; This temporarily violates X=0 invariant required by tick_6
LDX WDATA ; 4
NOP ; 2
BIT tick ; 4
STA page << 8,Y ; 5
STA page << 8,X ; 5
LDX #$00 ; 2 restore X=0 invariant
; used >3 pad cycles already; can't branch to tail
NOP ; 2
LDY WDATA ; 4
STA page << 8,Y ; 5
LDY WDATA ; 4
STA page << 8,Y ; 5
; vector to next opcode
LDA WDATA ; 4
STA @D+2 ; 4
LDA WDATA ; 4
STA @D+1 ; 4
@D:
JMP op_nop ; 3
.endmacro
.macro op_tick_20 page
;4+(4+4+5+3+4)+3+46=73
.ident (.concat ("op_tick_20_page_", .string(page))):
BIT tick ; 4
LDA WDATA ; 4
LDY WDATA ; 4
STA page << 8,Y ; 5
STA zpdummy ; 3
BIT tick ; 4
JMP .ident(.concat("_op_tick_page_", .string(page), "_tail_46"))
.endmacro
; TODO: this one actually has 21 cycles between ticks, not 22
.macro op_tick_22 page
; 4+(4+4+5+4+4)+3+3+42
.ident (.concat ("op_tick_22_page_", .string(page))):
BIT tick ; 4
LDA WDATA ; 4
LDY WDATA ; 4
STA page << 8,Y ; 5
LDY WDATA ; 4
BIT tick ; 4
STA zpdummy ; 3
JMP .ident(.concat("_op_tick_page_", .string(page), "_tail_42")) ; 3 + 42
.endmacro
.macro op_tick_24 page
;4+(4+4+5+4+3+4)+3+42
.ident (.concat ("op_tick_24_page_", .string(page))):
BIT tick ; 4
LDA WDATA ; 4
LDY WDATA ; 4
STA page << 8,Y ; 5
LDY WDATA ; 4
STA zpdummy ; 3
BIT tick ; 4
JMP .ident(.concat("_op_tick_page_", .string(page), "_tail_42"))
.endmacro
.macro op_tick_26 page ; pattern repeats from op_tick_8
; 4+(4+4+5+4+5+4)+3+37
.ident (.concat ("op_tick_26_page_", .string(page))):
BIT tick ; 4
LDA WDATA ; 4
LDY WDATA ; 4
STA page << 8,Y ; 5
LDY WDATA ; 4
STA page << 8,Y ; 5
BIT tick; 4
STA zpdummy ; 3
JMP .ident(.concat("_op_tick_page_", .string(page), "_tail_37")) ; 3 + 37
.endmacro
.macro op_tick_28 page ; pattern repeats from op_tick_10
; 4+(4+2+4+5+4+5+4)+3+38
.ident (.concat ("op_tick_28_page_", .string(page))):
BIT tick ; 4
LDA WDATA ; 4
LDY WDATA ; 4
STA page << 8,Y ; 5
LDY WDATA ; 4
STA page << 8,Y ; 5
NOP ; 2
BIT tick ; 4
JMP .ident(.concat("_op_tick_page_", .string(page), "_tail_38"))
.endmacro
.macro op_tick_30 page ; pattern repeats from op_tick_12
;4+(4+4+5+4+5+4+4)+3+3+33
.ident (.concat ("op_tick_30_page_", .string(page))):
BIT tick ; 4
LDA WDATA ; 4
LDY WDATA ; 4
STA page << 8,Y ; 5
LDY WDATA ; 4
STA page << 8,Y ; 5
LDY WDATA ; 4
BIT tick ; 4
STA zpdummy ; 3
JMP .ident(.concat("_op_tick_page_", .string(page), "_tail_33")) ; 3 + 33
.endmacro
.macro op_tick_32 page ; pattern repeats from op_tick_14
;4+(4+4+5+4+5+4+2+4)+3+34
.ident (.concat ("op_tick_32_page_", .string(page))):
BIT tick ; 4
LDA WDATA ; 4
LDY WDATA ; 4
STA page << 8,Y ; 5
LDY WDATA ; 4
STA page << 8,Y ; 5
LDY WDATA ; 4
NOP ; 2
BIT tick ; 4
JMP .ident(.concat("_op_tick_page_", .string(page), "_tail_34"))
.endmacro
.macro op_tick_34 page ; pattern repeats from op_tick_16
; 4+(4+4+5+4+5+4+4+4)+2+5+5+3+20
.ident (.concat ("op_tick_34_page_", .string(page))):
BIT tick ; 4
LDA WDATA ; 4
LDY WDATA ; 4
STA page << 8,Y ; 5
LDY WDATA ; 4
STA page << 8,Y ; 5
LDY WDATA ; 4
LDX WDATA ; 4 ; allows reordering STA ...,X outside ticks
BIT tick ; 4
STA page << 8,Y ; 5
STA page << 8,X ; 5
LDX #$00 ; 2 restore X=0 invariant
JMP .ident(.concat("_op_tick_page_", .string(page), "_tail_20")) ; 3+20
.endmacro
.macro op_tick_36 page ; pattern repeats from op_tick_18
;4+(4+4+5+4+5+4+4+2+4)+5+5+2+2+4+4+4+4+3
.ident (.concat ("op_tick_36_page_", .string(page))):
BIT tick ; 4
LDA WDATA ; 4
LDY WDATA ; 4
STA page << 8,Y ; 5
LDY WDATA ; 4
STA page << 8,Y ; 5
LDY WDATA ; 4
LDX WDATA ; 4
NOP ; 2
BIT tick ; 4
STA page << 8,Y ; 5
STA page << 8,X ; 5
LDX #$00 ; 2
NOP ; 2
; used >3 pad cycles between tick pair and restoring invariant; can't branch to tail
LDA WDATA ; 4
STA @D+2 ; 4
LDA WDATA ; 4
STA @D+1 ; 4
@D:
JMP op_nop ; 3
.endmacro
.macro op_tick_38 page ; pattern repeats from op_tick_20
; 4 + (4+4+5+4+5+4+5+3+4)+3+28
.ident (.concat ("op_tick_38_page_", .string(page))):
BIT tick ; 4
LDA WDATA ; 4
LDY WDATA ; 4
STA page << 8,Y ; 5
LDY WDATA ; 4
STA page << 8,Y ; 5
LDY WDATA ; 4
STA page << 8,Y ; 5
STA zpdummy ; 3
BIT tick ; 4
JMP .ident(.concat("_op_tick_page_", .string(page), "_tail_28")) ; 3 + 28
.endmacro
; TODO: this one actually has 41 cycles between ticks, not 40
.macro op_tick_40 page ; pattern repeats from op_tick_22
;4+(4+4+5+4+5+4+5+4+4)+3+3+24
.ident (.concat ("op_tick_40_page_", .string(page))):
BIT tick ; 4
LDA WDATA ; 4
LDY WDATA ; 4
STA page << 8,Y ; 5
LDY WDATA ; 4
STA page << 8,Y ; 5
LDY WDATA ; 4
STA page << 8,Y ; 5
LDY WDATA ; 4
BIT tick ; 4
STA zpdummy
JMP .ident(.concat("_op_tick_page_", .string(page), "_tail_24"))
.endmacro
.macro op_tick_42 page ; pattern repeats from op_tick_24
;4+(4+4+5+4+5+4+5+4+3+4)+3+24
.ident (.concat ("op_tick_42_page_", .string(page))):
BIT tick ; 4
LDA WDATA ; 4
LDY WDATA ; 4
STA page << 8,Y ; 5
LDY WDATA ; 4
STA page << 8,Y ; 5
LDY WDATA ; 4
STA page << 8,Y ; 5
LDY WDATA ; 4
STA zpdummy ; 3
BIT tick ; 4
JMP .ident(.concat("_op_tick_page_", .string(page), "_tail_24")) ; 3 + 24
.endmacro
.macro op_tick_44 page ; pattern repeats from op_tick_26
; 4 + (4+4+5+4+5+4+5+4+5+4)+3+3+19
.ident (.concat ("op_tick_44_page_", .string(page))):
BIT tick ; 4
LDA WDATA ; 4
LDY WDATA ; 4
STA page << 8,Y ; 5
LDY WDATA ; 4
STA page << 8,Y ; 5
LDY WDATA ; 4
STA page << 8,Y ; 5
LDY WDATA ; 4
STA page << 8,Y ; 5
BIT tick; 4
STA zpdummy ; 3
JMP .ident(.concat("_op_tick_page_", .string(page), "_tail_19")) ; 3 + 19
.endmacro
.macro op_tick_46 page ; pattern repeats from op_tick_28
;4+(4+2+4+5+4+5+4+5+4+5+4)+3+20
.ident (.concat ("op_tick_46_page_", .string(page))):
BIT tick ; 4
LDA WDATA ; 4
LDY WDATA ; 4
STA page << 8,Y ; 5
LDY WDATA ; 4
STA page << 8,Y ; 5
LDY WDATA ; 4
STA page << 8,Y ; 5
LDY WDATA ; 4
STA page << 8,Y ; 5
NOP ; 2
BIT tick ; 4
JMP .ident(.concat("_op_tick_page_", .string(page), "_tail_20"))
.endmacro
.macro op_tick_48 page ; pattern repeats from op_tick_30
;4+(4+4+5+4+5+4+5+4+5+4+4)+3+3+15
.ident (.concat ("op_tick_48_page_", .string(page))):
BIT tick ; 4
LDA WDATA ; 4
LDY WDATA ; 4
STA page << 8,Y ; 5
LDY WDATA ; 4
STA page << 8,Y ; 5
LDY WDATA ; 4
STA page << 8,Y ; 5
LDY WDATA ; 4
STA page << 8,Y ; 5
LDA WDATA ; 4
BIT tick ; 4
STA zpdummy ; 3
JMP .ident(.concat("_op_tick_page_", .string(page), "_tail_15")) ; 3 + 15
.endmacro
.macro op_tick_50 page ; pattern repeats from op_tick_32
;4+(4+4+5+4+5+4+5+4+5+4+2+4)+3+16
.ident (.concat ("op_tick_50_page_", .string(page))):
BIT tick ; 4
LDA WDATA ; 4
LDY WDATA ; 4
STA page << 8,Y ; 5
LDY WDATA ; 4
STA page << 8,Y ; 5
LDY WDATA ; 4
STA page << 8,Y ; 5
LDY WDATA ; 4
STA page << 8,Y ; 5
LDA WDATA ; 4
NOP ; 2
BIT tick ; 4
JMP .ident(.concat("_op_tick_page_", .string(page), "_tail_16"))
.endmacro
.macro op_tick_52 page ; pattern repeats from op_tick_34
;4+(4+4+5+4+5+4+5+4+5+4+4+4)+2+3+12
.ident (.concat ("op_tick_52_page_", .string(page))):
BIT tick ; 4
LDA WDATA ; 4
LDY WDATA ; 4
STA page << 8,Y ; 5
LDY WDATA ; 4
STA page << 8,Y ; 5
LDY WDATA ; 4
STA page << 8,Y ; 5
LDY WDATA ; 4
STA page << 8,Y ; 5
LDA WDATA ; 4
STA .ident (.concat ("_op_tick_6_page_", .string(page), "_jmp"))+2 ; 4
BIT tick ; 4
NOP ; 2
JMP .ident(.concat("_op_tick_page_", .string(page), "_tail_12"))
.endmacro
.macro op_tick_54 page ; pattern repeats from op_tick_36
; 4 + (4+4+5+4+5+4+5+3+3+4+5+4+4)+4+4+4+3
.ident (.concat ("op_tick_54_page_", .string(page))):
BIT tick ; 4
LDA WDATA ; 4
LDY WDATA ; 4
STA page << 8,Y ; 5
LDY WDATA ; 4
STA page << 8,Y ; 5
LDY WDATA ; 4
STA page << 8,Y ; 5
LDY WDATA ; 4
STA page << 8,Y ; 5
LDA WDATA ; 4
STA zpdummy ; 3
STA zpdummy ; 3
BIT tick ; 4
; used >3 pad cycles between tick pair; can't branch to tail
STA @D+2 ; 4
LDA WDATA ; 4
STA @D+1 ; 4
@D:
JMP op_nop ; 3
.endmacro
.macro op_tick_56 page
; 4+(4+4+5+4+5+4+5+4+5+4+4+4+4)+2+4+4+3
.ident (.concat ("op_tick_56_page_", .string(page))):
BIT tick ; 4
LDA WDATA ; 4
LDY WDATA ; 4
STA page << 8,Y ; 5
LDY WDATA ; 4
STA page << 8,Y ; 5
LDY WDATA ; 4
STA page << 8,Y ; 5
LDY WDATA ; 4
STA page << 8,Y ; 5
LDA WDATA ; 4
STA @D+2 ; 4
STA dummy ; 4
BIT tick ; 4
; used >3 pad cycles between tick pair; can't branch to tail
NOP ; 2
LDA WDATA ; 4
STA @D+1 ; 4
@D:
JMP op_nop ; 3
.endmacro
.macro op_tick_58 page ; pattern repeats from op_tick_40
;4+(4+4+5+4+5+4+5+4+5+4+4+3+3+4)+4+4+3
.ident (.concat ("op_tick_58_page_", .string(page))):
BIT tick ; 4
LDA WDATA ; 4
LDY WDATA ; 4
STA page << 8,Y ; 5
LDY WDATA ; 4
STA page << 8,Y ; 5
LDY WDATA ; 4
STA page << 8,Y ; 5
LDY WDATA ; 4
STA page << 8,Y ; 5
LDA WDATA ; 4
STA @D+2 ; 4
STA zpdummy ; 3
STA zpdummy ; 3
BIT tick ; 4
; used >3 pad cycles between tick pair; can't branch to tail
LDA WDATA ; 4
STA @D+1 ; 4
@D:
JMP op_nop ; 3
.endmacro
.macro op_tick_60 page
; 4+(4+4+5+4+5+4+5+4+5+4+4+4+4+4)+2+4+3
.ident (.concat ("op_tick_60_page_", .string(page))):
BIT tick ; 4
LDA WDATA ; 4
LDY WDATA ; 4
STA page << 8,Y ; 5
LDY WDATA ; 4
STA page << 8,Y ; 5
LDY WDATA ; 4
STA page << 8,Y ; 5
LDY WDATA ; 4
STA page << 8,Y ; 5
LDA WDATA ; 4
STA @D+2 ; 4
LDA WDATA ; 4
STA dummy ; 4
BIT tick ; 4
; used >3 pad cycles between tick pair; can't branch to tail
NOP ; 2
STA @D+1 ; 4
@D:
JMP op_nop ; 3
.endmacro
.macro op_tick_62 page
;4+(4+4+5+4+5+4+5+4+5+4+4+4+3+3+4)+4+3
.ident (.concat ("op_tick_62_page_", .string(page))):
BIT tick ; 4
LDA WDATA ; 4
LDY WDATA ; 4
STA page << 8,Y ; 5
LDY WDATA ; 4
STA page << 8,Y ; 5
LDY WDATA ; 4
STA page << 8,Y ; 5
LDY WDATA ; 4
STA page << 8,Y ; 5
LDA WDATA ; 4
STA @D+2 ; 4
LDA WDATA ; 4
STA zpdummy ; 3
STA zpdummy ; 3
BIT tick ; 4
; used >3 pad cycles between tick pair; can't branch to tail
STA @D+1 ; 4
@D:
JMP op_nop ; 3
.endmacro
.macro op_tick_64 page
;4+(4+4+5+4+5+4+5+4+5+4+4+4+4+4+4)+2+3
.ident (.concat ("op_tick_64_page_", .string(page))):
BIT tick ; 4
LDA WDATA ; 4
LDY WDATA ; 4
STA page << 8,Y ; 5
LDY WDATA ; 4
STA page << 8,Y ; 5
LDY WDATA ; 4
STA page << 8,Y ; 5
LDY WDATA ; 4
STA page << 8,Y ; 5
LDA WDATA ; 4
STA @D+2 ; 4
LDA WDATA ; 4
STA @D+1 ; 4
STA dummy ; 4
BIT tick ; 4
NOP ; 2
@D:
JMP op_nop ; 3
.endmacro
.macro op_tick_66 page ; pattern repeats from op_tick_8
; 4+(4+4+5+4+5+4+5+4+5+4+4+4+3+4+3+4)+3
.ident (.concat ("op_tick_66_page_", .string(page))):
BIT tick ; 4
LDA WDATA ; 4
LDY WDATA ; 4
STA page << 8,Y ; 5
LDY WDATA ; 4
STA page << 8,Y ; 5
LDY WDATA ; 4
STA page << 8,Y ; 5
LDY WDATA ; 4
STA page << 8,Y ; 5
LDA WDATA ; 4
STA @D+2 ; 4
LDA WDATA ; 4
STA @D+1 ; 4
STA zpdummy ; 3
STA zpdummy ; 3
BIT tick ; 4
@D:
JMP op_nop ; 3
.endmacro
; convenience macro for enumerating all tick opcodes for a page
.macro op_tick page
op_tick_4 page
op_tick_6 page
op_tick_8 page
op_tick_10 page
op_tick_12 page
op_tick_14 page
op_tick_16 page
op_tick_18 page
op_tick_20 page
op_tick_22 page
op_tick_24 page
op_tick_26 page
op_tick_28 page
op_tick_30 page
op_tick_32 page
op_tick_34 page
op_tick_36 page
op_tick_38 page
op_tick_40 page
op_tick_42 page
op_tick_44 page
op_tick_46 page
op_tick_48 page
op_tick_50 page
op_tick_52 page
op_tick_54 page
op_tick_56 page
op_tick_58 page
op_tick_60 page
op_tick_62 page
op_tick_64 page
op_tick_66 page
.endmacro
; now pack the tick opcodes into memory
.segment "LOWCODE"
op_tick 32
op_tick 33
op_tick 34
op_tick 35
op_tick 36
op_tick_4 63
op_tick_6 63
op_tick_8 63
op_tick_10 63
op_tick_12 63
op_tick_14 63
op_tick_16 63
op_tick_18 63
op_tick_20 63
op_tick_22 63
op_tick_24 63
.segment "CODE"
op_tick 37
op_tick 38
op_tick 39
op_tick 40
op_tick 41
op_tick 42
op_tick 43
op_tick 44
op_tick 45
op_tick 46
op_tick 47
op_tick 48
op_tick 49
op_tick 50
op_tick 51
op_tick 52
op_tick 53
op_tick 54
op_tick 55
op_tick 56
op_tick 57
op_tick 58
op_tick 59
op_tick 60
op_tick 61
op_tick 62
op_tick_26 63
op_tick_28 63
op_tick_30 63
op_tick_32 63
op_tick_34 63
op_tick_36 63
op_tick_38 63
op_tick_40 63
op_tick_42 63
op_tick_44 63
op_tick_46 63
op_tick_48 63
op_tick_50 63
op_tick_52 63
op_tick_54 63
op_tick_56 63
op_tick_58 63
op_tick_60 63
op_tick_62 63
op_tick_64 63
op_tick_66 63
op_terminate:
; Wait for keypress
LDA KBD
BMI @1 ; key pressed
BPL op_terminate
@1: LDA KBDSTRB ; clear strobe
JMP exit
; Manage W5100 socket buffer and ACK TCP stream.
;
; In order to simplify the buffer management we expect this ACK opcode to consume
; the last 4 bytes in a 2K "TCP frame". i.e. we can assume that we need to consume
; exactly 2K from the W5100 socket buffer.
op_ack:
BIT tick ; 4
LDA WDATA ; 4 dummy read of second-last byte in TCP frame
LDA WDATA ; 4 dummy read of last byte in TCP frame
CLC ; 2
LDA #>S0RXRD ; 2 NEED HIGH BYTE HERE
STA WADRH ; 4
LDA #<S0RXRD ; 2
STA WADRL ; 4
LDA WDATA ; 4 HIGH BYTE
LDX WDATA ; 4 LOW BYTE ; not sure if needed -- but we have cycles to spare so who cares!
ADC #$08 ; 2 ADD HIGH BYTE OF RECEIVED SIZE
BIT tick ; 4 (36)
TAY ; 2 SAVE
LDA #<S0RXRD ; 2
STA WADRL ; 4 Might not be needed, but have cycles to spare
STY WDATA ; 4 SEND HIGH BYTE
STX WDATA ; 4 SEND LOW BYTE
; SEND THE RECV COMMAND
LDA #<S0CR ; 2
STA WADRL ; 4
LDA #SCRECV ; 2
STA WDATA ; 4
NOP ; 2 ; see, we even have cycles left over!
JMP CHECKRECV ; 3 (37 with following BIT tick)
; CLOSE TCP CONNECTION
CLOSECONN:
LDA #>S0CR ; HIGH BYTE NEEDED
STA WADRH
LDA #<S0CR
STA WADRL
LDA #SCDISCON ; DISCONNECT
STA WDATA ; SEND COMMAND
; CHECK FOR CLOSED STATUS
;CHECKCLOSED:
; LDX #0
;@L:
; LDA #<S0SR
; STA WADRL
; LDA WDATA
; BEQ ISCLOSED
; NOP
; NOP
; NOP
; INX
; BNE @L ; DON'T WAIT FOREVER
;ISCLOSED:
; RTS ; SOCKET IS CLOSED
.endproc