- IR: reduce the number of branch instructions such as BEQ, BEQR, etc (gradually), replace with CMP(I) + status branch instruction
- IR: reduce amount of CMP/CMPI after instructions that set the status bits correctly (LOADs? INC? etc), but only after setting the status bits is verified!
- ir: idea: (but LLVM IR simply keeps the variables, so not a good idea then?...): replace all scalar variables by an allocated register. Keep a table of the variable to register mapping (including the datatype)
- ir: the @split arrays are currently also split in _lsb/_msb arrays in the IR, and operations take multiple (byte) instructions that may lead to verbose and slow operation and machine code generation down the line.
- ir: for expressions with array indexes that occur multiple times, can we avoid loading them into new virtualregs everytime and just reuse a single virtualreg as indexer? (simple form of common subexpression elimination)
- PtAst/IR: more complex common subexpression eliminations
- can we get rid of pieces of asmgen.AssignmentAsmGen by just reusing the AugmentableAssignment ? generated code should not suffer
Perhaps replace all uses of .proc/.pend/.endproc by .block/.bend will fix that with a compiler flag?
But all library code written in asm uses .proc already..... (textual search/replace when writing the actual asm?)
Once new codegen is written that is based on the IR, this point is mostly moot anyway as that will have its own dead code removal on the IR level.
- Zig-like try-based error handling where the V flag could indicate error condition? and/or BRK to jump into monitor on failure? (has to set BRK vector for that) But the V flag is also set on certain normal instructions
- Once the evalstack-free expression codegen is in place, the Eval Stack can be removed from the compiler.
Machinedefinition, .p8 and .asm library files, all routines operationg on estack, and everything saving/restoring the X register related to this stack.
- no arrays of struct -- because too slow on 6502 to access those, rather use struct of arrays instead.
can we make this a compiler/codegen only issue? i.e. syntax is just as if it was an array of structs?
or make it explicit in the syntax so that it is clear what the memory layout of it is.
- ability to assign struct variable to another? this is slow but can be quite handy sometimes.
however how to handle this in a function that gets the struct passed as reference? Don't allow it there? (there's no pointer dereferencing concept in prog8)
- ability to be passed as argument to a function (by reference)?
however there is no typed pointer in prog8 at the moment so this can't be implemented in a meaningful way yet,
because there is no way to reference it as the struct type again. (current ast gets the by-reference parameter
type replaced by uword)
So-- maybe don't replace the parameter type in the ast? Should fix that for str and array types as well then