prog8/prog8lib/c64utils.p8

883 lines
18 KiB
Plaintext
Raw Normal View History

; Prog8 definitions for the Commodore-64
; These are the utility subroutines.
;
; Written by Irmen de Jong (irmen@razorvine.net) - license: GNU GPL 3.0
;
; indent format: TABS, size=8
%import c64lib
~ c64utils {
2018-12-18 00:43:04 +00:00
const uword ESTACK_LO = $ce00
const uword ESTACK_HI = $cf00
; ----- utility functions ----
asmsub init_system () -> clobbers(A,X,Y) -> () {
; ---- initializes the machine to a sane starting state
; This means that the BASIC, KERNAL and CHARGEN ROMs are banked in,
; the VIC, SID and CIA chips are reset, screen is cleared, and the default IRQ is set.
; Also a different color scheme is chosen to identify ourselves a little.
; Uppercase charset is activated, and all three registers set to 0, status flags cleared.
%asm {{
sei
cld
lda #%00101111
sta $00
lda #%00100111
sta $01
jsr c64.IOINIT
jsr c64.RESTOR
jsr c64.CINT
lda #6
sta c64.EXTCOL
lda #7
sta c64.COLOR
lda #0
sta c64.BGCOL0
tax
tay
clc
clv
cli
rts
}}
}
asmsub ubyte2decimal (ubyte value @ A) -> clobbers() -> (ubyte @ Y, ubyte @ X, ubyte @ A) {
; ---- A to decimal string in Y/X/A (100s in Y, 10s in X, 1s in A)
%asm {{
ldy #$2f
ldx #$3a
sec
- iny
sbc #100
bcs -
- dex
adc #10
bmi -
adc #$2f
rts
}}
}
asmsub byte2decimal (ubyte value @ A) -> clobbers() -> (ubyte @ Y, ubyte @ X, ubyte @ A) {
2018-12-14 22:15:44 +00:00
; ---- A (signed byte) to decimal string in Y/X/A (100s in Y, 10s in X, 1s in A)
; note: the '-' is not part of the conversion here if it's a negative number
%asm {{
cmp #0
bpl +
eor #255
clc
adc #1
+ jmp ubyte2decimal
}}
}
asmsub ubyte2hex (ubyte value @ A) -> clobbers(X) -> (ubyte @ A, ubyte @ Y) {
2018-12-14 22:15:44 +00:00
; ---- A to hex string in AY (first hex char in A, second hex char in Y)
%asm {{
pha
and #$0f
tax
ldy hex_digits,x
pla
lsr a
lsr a
lsr a
lsr a
tax
lda hex_digits,x
rts
2018-10-16 00:26:35 +00:00
hex_digits .text "0123456789abcdef" ; can probably be reused for other stuff as well
}}
}
str word2hex_output = "1234" ; 0-terminated, to make printing easier
asmsub uword2hex (uword value @ AY) -> clobbers(A,X,Y) -> () {
2018-12-14 22:15:44 +00:00
; ---- convert 16 bit uword in A/Y into 4-character hexadecimal string into memory 'word2hex_output'
%asm {{
2018-12-14 22:15:44 +00:00
sta c64.SCRATCH_ZPREG
tya
2018-12-14 22:15:44 +00:00
jsr ubyte2hex
stx word2hex_output
sty word2hex_output+1
2018-12-06 23:08:22 +00:00
lda c64.SCRATCH_ZPREG
2018-12-14 22:15:44 +00:00
jsr ubyte2hex
sta word2hex_output+2
sty word2hex_output+3
rts
}}
}
2018-10-16 00:26:35 +00:00
ubyte[3] word2bcd_bcdbuff = [0, 0, 0]
asmsub uword2bcd (uword value @ AY) -> clobbers(A,X) -> () {
; Convert an 16 bit binary value to BCD
;
2018-12-14 22:15:44 +00:00
; This function converts a 16 bit binary value in A/Y into a 24 bit BCD. It
; works by transferring one bit a time from the source and adding it
; into a BCD value that is being doubled on each iteration. As all the
; arithmetic is being done in BCD the result is a binary to decimal
; conversion.
%asm {{
2018-12-14 22:15:44 +00:00
sta c64.SCRATCH_ZPB1
2018-12-06 23:08:22 +00:00
sty c64.SCRATCH_ZPREG
sed ; switch to decimal mode
lda #0 ; ensure the result is clear
sta word2bcd_bcdbuff+0
sta word2bcd_bcdbuff+1
sta word2bcd_bcdbuff+2
ldx #16 ; the number of source bits
2018-12-06 23:08:22 +00:00
- asl c64.SCRATCH_ZPB1 ; shift out one bit
rol c64.SCRATCH_ZPREG
lda word2bcd_bcdbuff+0 ; and add into result
adc word2bcd_bcdbuff+0
sta word2bcd_bcdbuff+0
lda word2bcd_bcdbuff+1 ; propagating any carry
adc word2bcd_bcdbuff+1
sta word2bcd_bcdbuff+1
lda word2bcd_bcdbuff+2 ; ... thru whole result
adc word2bcd_bcdbuff+2
sta word2bcd_bcdbuff+2
dex ; and repeat for next bit
bne -
cld ; back to binary
rts
}}
}
2018-10-16 00:26:35 +00:00
ubyte[5] word2decimal_output = 0
asmsub uword2decimal (uword value @ AY) -> clobbers(A,X,Y) -> () {
2018-12-14 22:15:44 +00:00
; ---- convert 16 bit uword in A/Y into decimal string into memory 'word2decimal_output'
%asm {{
2018-12-14 22:15:44 +00:00
jsr uword2bcd
lda word2bcd_bcdbuff+2
clc
adc #'0'
sta word2decimal_output
ldy #1
lda word2bcd_bcdbuff+1
jsr +
lda word2bcd_bcdbuff+0
+ pha
lsr a
lsr a
lsr a
lsr a
clc
adc #'0'
sta word2decimal_output,y
iny
pla
and #$0f
adc #'0'
sta word2decimal_output,y
iny
rts
}}
2018-12-10 08:25:38 +00:00
}
; @todo string to 32 bit unsigned integer http://www.6502.org/source/strings/ascii-to-32bit.html
} ; ------ end of block c64utils
~ c64flt {
; ---- this block contains C-64 floating point related functions ----
asmsub FREADS32 () -> clobbers(A,X,Y) -> () {
; ---- fac1 = signed int32 from $62-$65 big endian (MSB FIRST)
%asm {{
lda $62
eor #$ff
asl a
lda #0
ldx #$a0
jmp $bc4f ; internal BASIC routine
}}
}
asmsub FREADUS32 () -> clobbers(A,X,Y) -> () {
; ---- fac1 = uint32 from $62-$65 big endian (MSB FIRST)
%asm {{
sec
lda #0
ldx #$a0
jmp $bc4f ; internal BASIC routine
}}
}
asmsub FREADS24AXY (ubyte lo @ A, ubyte mid @ X, ubyte hi @ Y) -> clobbers(A,X,Y) -> () {
; ---- fac1 = signed int24 (A/X/Y contain lo/mid/hi bytes)
; note: there is no FREADU24AXY (unsigned), use FREADUS32 instead.
%asm {{
sty $62
stx $63
sta $64
lda $62
eor #$FF
asl a
lda #0
sta $65
ldx #$98
jmp $bc4f ; internal BASIC routine
}}
}
asmsub GIVUAYFAY (uword value @ AY) -> clobbers(A,X,Y) -> () {
; ---- unsigned 16 bit word in A/Y (lo/hi) to fac1
%asm {{
sty $62
sta $63
ldx #$90
sec
jmp $bc49 ; internal BASIC routine
}}
}
asmsub GIVAYFAY (uword value @ AY) -> clobbers(A,X,Y) -> () {
; ---- signed 16 bit word in A/Y (lo/hi) to float in fac1
%asm {{
2018-12-12 00:13:13 +00:00
sta c64.SCRATCH_ZPREG
tya
2018-12-12 00:13:13 +00:00
ldy c64.SCRATCH_ZPREG
jmp c64.GIVAYF ; this uses the inverse order, Y/A
}}
}
2018-10-16 00:26:35 +00:00
asmsub FTOSWRDAY () -> clobbers(X) -> (uword @ AY) {
; ---- fac1 to signed word in A/Y
%asm {{
jsr c64.FTOSWORDYA ; note the inverse Y/A order
2018-12-12 00:13:13 +00:00
sta c64.SCRATCH_ZPREG
tya
2018-12-12 00:13:13 +00:00
ldy c64.SCRATCH_ZPREG
rts
}}
}
2018-10-16 00:26:35 +00:00
asmsub GETADRAY () -> clobbers(X) -> (uword @ AY) {
; ---- fac1 to unsigned word in A/Y
%asm {{
jsr c64.GETADR ; this uses the inverse order, Y/A
2018-12-06 23:08:22 +00:00
sta c64.SCRATCH_ZPB1
tya
2018-12-06 23:08:22 +00:00
ldy c64.SCRATCH_ZPB1
rts
}}
}
sub print_float (float value) {
2018-12-06 00:26:38 +00:00
; ---- prints the floating point value (without a newline) using basic rom routines.
; clobbers no registers.
2018-12-14 22:15:44 +00:00
; @todo version that takes A/Y pointer to float instead
2018-12-06 00:26:38 +00:00
%asm {{
pha
tya
pha
txa
pha
lda #<print_float_value
ldy #>print_float_value
jsr c64.MOVFM ; load float into fac1
jsr c64.FOUT ; fac1 to string in A/Y
jsr c64.STROUT ; print string in A/Y
pla
tax
pla
tay
pla
rts
}}
}
sub print_float_ln (float value) {
2018-12-06 00:26:38 +00:00
; ---- prints the floating point value (with a newline at the end) using basic rom routines
; clobbers no registers.
2018-12-14 22:15:44 +00:00
; @todo version that takes A/Y pointer to float instead
2018-12-06 00:26:38 +00:00
%asm {{
pha
tya
pha
txa
pha
lda #<print_float_ln_value
ldy #>print_float_ln_value
jsr c64.MOVFM ; load float into fac1
jsr c64.FPRINTLN ; print fac1 with newline
pla
tax
pla
tay
pla
rts
}}
}
} ; ------ end of block c64flt
~ c64scr {
; ---- this block contains (character) Screen and text I/O related functions ----
asmsub clear_screen (ubyte char @ A, ubyte color @ Y) -> clobbers(A,X) -> () {
; ---- clear the character screen with the given fill character and character color.
; (assumes screen is at $0400, could be altered in the future with self-modifying code)
; @todo some byte var to set the SCREEN ADDR HI BYTE
%asm {{
sta _loop + 1 ; self-modifying
2018-12-06 23:08:22 +00:00
stx c64.SCRATCH_ZPB1
ldx #0
_loop lda #0
sta c64.Screen,x
sta c64.Screen+$0100,x
sta c64.Screen+$0200,x
sta c64.Screen+$02e8,x
tya
sta c64.Colors,x
sta c64.Colors+$0100,x
sta c64.Colors+$0200,x
sta c64.Colors+$02e8,x
inx
bne _loop
lda _loop+1 ; restore A and X
2018-12-06 23:08:22 +00:00
ldx c64.SCRATCH_ZPB1
rts
}}
}
asmsub scroll_left_full (ubyte alsocolors @ Pc) -> clobbers(A, X, Y) -> () {
; ---- scroll the whole screen 1 character to the left
; contents of the rightmost column are unchanged, you should clear/refill this yourself
; Carry flag determines if screen color data must be scrolled too
%asm {{
bcs +
jmp _scroll_screen
+ ; scroll the color memory
ldx #0
ldy #38
-
.for row=0, row<=12, row+=1
lda c64.Colors + 40*row + 1,x
sta c64.Colors + 40*row,x
.next
inx
dey
bpl -
ldx #0
ldy #38
-
.for row=13, row<=24, row+=1
lda c64.Colors + 40*row + 1,x
sta c64.Colors + 40*row,x
.next
inx
dey
bpl -
_scroll_screen ; scroll the screen memory
ldx #0
ldy #38
-
.for row=0, row<=12, row+=1
lda c64.Screen + 40*row + 1,x
sta c64.Screen + 40*row,x
.next
inx
dey
bpl -
ldx #0
ldy #38
-
.for row=13, row<=24, row+=1
lda c64.Screen + 40*row + 1,x
sta c64.Screen + 40*row,x
.next
inx
dey
bpl -
rts
}}
}
asmsub scroll_right_full (ubyte alsocolors @ Pc) -> clobbers(A,X) -> () {
; ---- scroll the whole screen 1 character to the right
; contents of the leftmost column are unchanged, you should clear/refill this yourself
; Carry flag determines if screen color data must be scrolled too
%asm {{
bcs +
jmp _scroll_screen
+ ; scroll the color memory
ldx #38
-
.for row=0, row<=12, row+=1
lda c64.Colors + 40*row + 0,x
sta c64.Colors + 40*row + 1,x
.next
dex
bpl -
ldx #38
-
.for row=13, row<=24, row+=1
lda c64.Colors + 40*row,x
sta c64.Colors + 40*row + 1,x
.next
dex
bpl -
_scroll_screen ; scroll the screen memory
ldx #38
-
.for row=0, row<=12, row+=1
lda c64.Screen + 40*row + 0,x
sta c64.Screen + 40*row + 1,x
.next
dex
bpl -
ldx #38
-
.for row=13, row<=24, row+=1
lda c64.Screen + 40*row,x
sta c64.Screen + 40*row + 1,x
.next
dex
bpl -
rts
}}
}
asmsub scroll_up_full (ubyte alsocolors @ Pc) -> clobbers(A,X) -> () {
; ---- scroll the whole screen 1 character up
; contents of the bottom row are unchanged, you should refill/clear this yourself
; Carry flag determines if screen color data must be scrolled too
%asm {{
bcs +
jmp _scroll_screen
+ ; scroll the color memory
ldx #39
-
.for row=1, row<=11, row+=1
lda c64.Colors + 40*row,x
sta c64.Colors + 40*(row-1),x
.next
dex
bpl -
ldx #39
-
.for row=12, row<=24, row+=1
lda c64.Colors + 40*row,x
sta c64.Colors + 40*(row-1),x
.next
dex
bpl -
_scroll_screen ; scroll the screen memory
ldx #39
-
.for row=1, row<=11, row+=1
lda c64.Screen + 40*row,x
sta c64.Screen + 40*(row-1),x
.next
dex
bpl -
ldx #39
-
.for row=12, row<=24, row+=1
lda c64.Screen + 40*row,x
sta c64.Screen + 40*(row-1),x
.next
dex
bpl -
rts
}}
}
asmsub scroll_down_full (ubyte alsocolors @ Pc) -> clobbers(A,X) -> () {
; ---- scroll the whole screen 1 character down
; contents of the top row are unchanged, you should refill/clear this yourself
; Carry flag determines if screen color data must be scrolled too
%asm {{
bcs +
jmp _scroll_screen
+ ; scroll the color memory
ldx #39
-
.for row=23, row>=12, row-=1
lda c64.Colors + 40*row,x
sta c64.Colors + 40*(row+1),x
.next
dex
bpl -
ldx #39
-
.for row=11, row>=0, row-=1
lda c64.Colors + 40*row,x
sta c64.Colors + 40*(row+1),x
.next
dex
bpl -
_scroll_screen ; scroll the screen memory
ldx #39
-
.for row=23, row>=12, row-=1
lda c64.Screen + 40*row,x
sta c64.Screen + 40*(row+1),x
.next
dex
bpl -
ldx #39
-
.for row=11, row>=0, row-=1
lda c64.Screen + 40*row,x
sta c64.Screen + 40*(row+1),x
.next
dex
bpl -
rts
}}
}
asmsub print_string (str text @ AY) -> clobbers(A,Y) -> () {
2018-12-14 22:15:44 +00:00
; ---- print null terminated string from A/Y
; note: the compiler contains an optimization that will replace
; a call to this subroutine with a string argument of just one char,
; by just one call to c64.CHROUT of that single char. @todo do this
%asm {{
2018-12-14 22:15:44 +00:00
sta c64.SCRATCH_ZPB1
2018-12-06 23:08:22 +00:00
sty c64.SCRATCH_ZPREG
ldy #0
2018-12-06 23:08:22 +00:00
- lda (c64.SCRATCH_ZPB1),y
beq +
jsr c64.CHROUT
iny
bne -
+ rts
}}
}
asmsub print_pstring (str_p text @ AY) -> clobbers(A,X) -> (ubyte @ Y) {
2018-12-14 22:15:44 +00:00
; ---- print pstring (length as first byte) from A/Y, returns str len in Y
%asm {{
2018-12-14 22:15:44 +00:00
sta c64.SCRATCH_ZPB1
2018-12-06 23:08:22 +00:00
sty c64.SCRATCH_ZPREG
ldy #0
2018-12-06 23:08:22 +00:00
lda (c64.SCRATCH_ZPB1),y
beq +
tax
- iny
2018-12-06 23:08:22 +00:00
lda (c64.SCRATCH_ZPB1),y
jsr c64.CHROUT
dex
bne -
+ rts ; output string length is in Y
}}
}
asmsub print_ubyte0 (ubyte value @ A) -> clobbers(A,X,Y) -> () {
2018-12-14 22:15:44 +00:00
; ---- print the ubyte in A in decimal form, with left padding 0s (3 positions total)
%asm {{
2018-12-14 22:15:44 +00:00
jsr c64utils.ubyte2decimal
pha
tya
jsr c64.CHROUT
txa
jsr c64.CHROUT
pla
jmp c64.CHROUT
}}
}
asmsub print_ubyte (ubyte value @ A) -> clobbers(A,X,Y) -> () {
2018-12-14 22:15:44 +00:00
; ---- print the ubyte in A in decimal form, without left padding 0s
%asm {{
2018-12-14 22:15:44 +00:00
jsr c64utils.ubyte2decimal
_print_byte_digits
pha
cpy #'0'
bne _print_hundreds
cpx #'0'
bne _print_tens
pla
jmp c64.CHROUT
_print_hundreds tya
jsr c64.CHROUT
_print_tens txa
jsr c64.CHROUT
pla
jmp c64.CHROUT
}}
}
2018-12-14 22:15:44 +00:00
asmsub print_byte (byte value @ A) -> clobbers(A,X,Y) -> () {
2018-12-14 22:15:44 +00:00
; ---- print the byte in A in decimal form, without left padding 0s
%asm {{
pha
cmp #0
bpl +
lda #'-'
jsr c64.CHROUT
+ pla
jsr c64utils.byte2decimal
2018-12-18 00:43:04 +00:00
jmp print_ubyte._print_byte_digits
2018-12-14 22:15:44 +00:00
}}
}
asmsub print_ubyte_hex (ubyte prefix @ Pc, ubyte value @ A) -> clobbers(A,X,Y) -> () {
2018-12-14 22:15:44 +00:00
; ---- print the ubyte in A in hex form (if Carry is set, a radix prefix '$' is printed as well)
%asm {{
bcc +
pha
lda #'$'
jsr c64.CHROUT
pla
2018-12-14 22:15:44 +00:00
+ jsr c64utils.ubyte2hex
jsr c64.CHROUT
tya
jmp c64.CHROUT
}}
}
asmsub print_uword_hex (ubyte prefix @ Pc, uword value @ AY) -> clobbers(A,X,Y) -> () {
2018-12-14 22:15:44 +00:00
; ---- print the uword in A/Y in hexadecimal form (4 digits)
; (if Carry is set, a radix prefix '$' is printed as well)
%asm {{
2018-12-14 22:15:44 +00:00
pha
tya
2018-12-14 22:15:44 +00:00
jsr print_ubyte_hex
pla
clc
2018-12-14 22:15:44 +00:00
jmp print_ubyte_hex
}}
}
asmsub print_uword0 (uword value @ AY) -> clobbers(A,X,Y) -> () {
2018-12-14 22:15:44 +00:00
; ---- print the uword in A/Y in decimal form, with left padding 0s (5 positions total)
2018-10-16 00:26:35 +00:00
; @todo shorter in loop form?
%asm {{
2018-12-14 22:15:44 +00:00
jsr c64utils.uword2decimal
lda c64utils.word2decimal_output
jsr c64.CHROUT
lda c64utils.word2decimal_output+1
jsr c64.CHROUT
lda c64utils.word2decimal_output+2
jsr c64.CHROUT
lda c64utils.word2decimal_output+3
jsr c64.CHROUT
lda c64utils.word2decimal_output+4
jmp c64.CHROUT
}}
}
asmsub print_uword (uword value @ AY) -> clobbers(A,X,Y) -> () {
2018-12-14 22:15:44 +00:00
; ---- print the uword in A/Y in decimal form, without left padding 0s
%asm {{
2018-12-14 22:15:44 +00:00
jsr c64utils.uword2decimal
ldy #0
lda c64utils.word2decimal_output
cmp #'0'
bne _pr_decimal
iny
lda c64utils.word2decimal_output+1
cmp #'0'
bne _pr_decimal
iny
lda c64utils.word2decimal_output+2
cmp #'0'
bne _pr_decimal
iny
lda c64utils.word2decimal_output+3
cmp #'0'
bne _pr_decimal
iny
_pr_decimal
lda c64utils.word2decimal_output,y
jsr c64.CHROUT
iny
cpy #5
bcc _pr_decimal
rts
}}
}
asmsub print_word (word value @ AY) -> clobbers(A,X,Y) -> () {
2018-12-14 22:15:44 +00:00
; ---- print the (signed) word in A/Y in decimal form, without left padding 0s
%asm {{
cpy #0
bpl +
pha
lda #'-'
jsr c64.CHROUT
tya
eor #255
tay
pla
eor #255
clc
adc #1
bcc +
iny
2018-12-18 00:43:04 +00:00
+ jmp print_uword
2018-12-14 22:15:44 +00:00
}}
}
asmsub input_chars (uword buffer @ AY) -> clobbers(A, X) -> (ubyte @ Y) {
2018-12-10 08:25:38 +00:00
; ---- Input a string (max. 80 chars) from the keyboard. Returns length in Y.
; It assumes the keyboard is selected as I/O channel!
%asm {{
2018-12-10 08:25:38 +00:00
sta c64.SCRATCH_ZPWORD1
sty c64.SCRATCH_ZPWORD1+1
ldy #0 ; char counter = 0
- jsr c64.CHRIN
cmp #$0d ; return (ascii 13) pressed?
beq + ; yes, end.
2018-12-10 08:25:38 +00:00
sta (c64.SCRATCH_ZPWORD1),y ; else store char in buffer
iny
bne -
+ lda #0
2018-12-10 08:25:38 +00:00
sta (c64.SCRATCH_ZPWORD1),y ; finish string with 0 byte
rts
}}
}
asmsub setchr (ubyte col @Y, ubyte row @A) -> clobbers(A) -> () {
2018-12-18 00:43:04 +00:00
; ---- set the character in SCRATCH_ZPB1 on the screen matrix at the given position
%asm {{
sty c64.SCRATCH_ZPREG
asl a
tay
lda _screenrows+1,y
sta _mod+2
lda _screenrows,y
clc
adc c64.SCRATCH_ZPREG
sta _mod+1
bcc +
inc _mod+2
+ lda c64.SCRATCH_ZPB1
_mod sta $ffff ; modified
rts
_screenrows .word $0400 + range(0, 1000, 40)
}}
}
asmsub setclr (ubyte col @Y, ubyte row @A) -> clobbers(A) -> () {
2018-12-18 00:43:04 +00:00
; ---- set the color in SCRATCH_ZPB1 on the screen matrix at the given position
%asm {{
sty c64.SCRATCH_ZPREG
asl a
tay
lda _colorrows+1,y
sta _mod+2
lda _colorrows,y
clc
adc c64.SCRATCH_ZPREG
sta _mod+1
bcc +
inc _mod+2
+ lda c64.SCRATCH_ZPB1
_mod sta $ffff ; modified
rts
_colorrows .word $d800 + range(0, 1000, 40)
}}
}
sub setchrclr (ubyte column, ubyte row, ubyte char, ubyte color) {
2018-12-18 00:43:04 +00:00
; ---- set char+color at the given position on the screen
%asm {{
lda setchrclr_row
asl a
tay
lda setchr._screenrows+1,y
sta _charmod+2
adc #$d4
sta _colormod+2
lda setchr._screenrows,y
clc
adc setchrclr_column
sta _charmod+1
sta _colormod+1
bcc +
inc _charmod+2
inc _colormod+2
+ lda setchrclr_char
_charmod sta $ffff ; modified
lda setchrclr_color
_colormod sta $ffff ; modified
inx
inx
inx
inx
rts
}}
}
asmsub PLOT (ubyte col @ Y, ubyte row @ A) -> clobbers(A) -> () {
; ---- safe wrapper around PLOT kernel routine, to save the X register.
%asm {{
stx c64.SCRATCH_ZPREGX
tax
clc
jsr c64.PLOT
ldx c64.SCRATCH_ZPREGX
rts
}}
}
2018-12-18 00:43:04 +00:00
} ; ---- end block c64scr