prog8/prog8lib/c64lib.p8

237 lines
14 KiB
Plaintext
Raw Normal View History

2018-09-15 14:21:05 +00:00
; Prog8 definitions for the Commodore-64
; Including memory registers, I/O registers, Basic and Kernal subroutines.
2017-12-21 13:52:30 +00:00
;
2018-01-08 02:31:23 +00:00
; Written by Irmen de Jong (irmen@razorvine.net) - license: GNU GPL 3.0
;
2017-12-26 01:15:25 +00:00
; indent format: TABS, size=8
2017-12-21 13:52:30 +00:00
~ c64 {
2018-08-06 01:35:43 +00:00
memory byte SCRATCH_ZP1 = $02 ; scratch register #1 in ZP
memory byte SCRATCH_ZP2 = $03 ; scratch register #2 in ZP
memory word SCRATCH_ZPWORD1 = $fb ; scratch word in ZP ($fb/$fc)
memory word SCRATCH_ZPWORD2 = $fd ; scratch word in ZP ($fd/$fe)
2017-12-21 13:52:30 +00:00
2017-12-31 02:19:06 +00:00
2018-08-06 01:35:43 +00:00
memory byte TIME_HI = $a0 ; software jiffy clock, hi byte
memory byte TIME_MID = $a1 ; .. mid byte
memory byte TIME_LO = $a2 ; .. lo byte. Updated by IRQ every 1/60 sec
memory byte STKEY = $91 ; various keyboard statuses (updated by IRQ)
memory byte SFDX = $cb ; current key pressed (matrix value) (updated by IRQ)
2017-12-31 02:19:06 +00:00
2018-08-06 01:35:43 +00:00
memory byte COLOR = $0286 ; cursor color
memory byte HIBASE = $0288 ; screen base address / 256 (hi-byte of screen memory address)
memory word CINV = $0314 ; IRQ vector
memory word NMI_VEC = $FFFA ; 6502 nmi vector, determined by the kernal if banked in
memory word RESET_VEC = $FFFC ; 6502 reset vector, determined by the kernal if banked in
memory word IRQ_VEC = $FFFE ; 6502 interrupt vector, determined by the kernal if banked in
2018-08-12 23:30:33 +00:00
memory byte[40, 25] Screen = $0400 ; default character screen matrix
memory byte[40, 25] Colors = $d800 ; character screen colors
2018-01-01 15:41:08 +00:00
2017-12-21 13:52:30 +00:00
; ---- VIC-II registers ----
2018-08-12 23:30:33 +00:00
memory byte SP0X = $d000
memory byte SP0Y = $d001
memory byte SP1X = $d002
memory byte SP1Y = $d003
memory byte SP2X = $d004
memory byte SP2Y = $d005
memory byte SP3X = $d006
memory byte SP3Y = $d007
memory byte SP4X = $d008
memory byte SP4Y = $d009
memory byte SP5X = $d00a
memory byte SP5Y = $d00b
memory byte SP6X = $d00c
memory byte SP6Y = $d00d
memory byte SP7X = $d00e
memory byte SP7Y = $d00f
memory byte MSIGX = $d010
memory byte SCROLY = $d011
memory byte RASTER = $d012
memory byte LPENX = $d013
memory byte LPENY = $d014
memory byte SPENA = $d015
memory byte SCROLX = $d016
memory byte YXPAND = $d017
memory byte VMCSB = $d018
memory byte VICIRQ = $d019
memory byte IREQMASK = $d01a
memory byte SPBGPR = $d01b
memory byte SPMC = $d01c
memory byte XXPAND = $d01d
memory byte SPSPCL = $d01e
memory byte SPBGCL = $d01f
memory byte EXTCOL = $d020 ; border color
memory byte BGCOL0 = $d021 ; screen color
memory byte BGCOL1 = $d022
memory byte BGCOL2 = $d023
memory byte BGCOL4 = $d024
memory byte SPMC0 = $d025
memory byte SPMC1 = $d026
memory byte SP0COL = $d027
memory byte SP1COL = $d028
memory byte SP2COL = $d029
memory byte SP3COL = $d02a
memory byte SP4COL = $d02b
memory byte SP5COL = $d02c
memory byte SP6COL = $d02d
memory byte SP7COL = $d02e
2017-12-21 13:52:30 +00:00
; ---- end of VIC-II registers ----
; ---- C64 basic and kernal ROM float constants and functions ----
; note: the fac1 and fac2 are working registers and take 6 bytes each,
2017-12-26 01:15:25 +00:00
; floats in memory (and rom) are stored in 5-byte MFLPT packed format.
2017-12-21 13:52:30 +00:00
; constants in five-byte "mflpt" format in the BASIC ROM
2018-08-06 01:35:43 +00:00
memory float FL_PIVAL = $aea8 ; 3.1415926...
memory float FL_N32768 = $b1a5 ; -32768
memory float FL_FONE = $b9bc ; 1
memory float FL_SQRHLF = $b9d6 ; SQR(2) / 2
memory float FL_SQRTWO = $b9db ; SQR(2)
memory float FL_NEGHLF = $b9e0 ; -.5
memory float FL_LOG2 = $b9e5 ; LOG(2)
memory float FL_TENC = $baf9 ; 10
memory float FL_NZMIL = $bdbd ; 1e9 (1 billion)
memory float FL_FHALF = $bf11 ; .5
memory float FL_LOGEB2 = $bfbf ; 1 / LOG(2)
memory float FL_PIHALF = $e2e0 ; PI / 2
memory float FL_TWOPI = $e2e5 ; 2 * PI
memory float FL_FR4 = $e2ea ; .25
2017-12-21 13:52:30 +00:00
; note: fac1/2 might get clobbered even if not mentioned in the function's name.
; note: for subtraction and division, the left operand is in fac2, the right operand in fac1.
; checked functions below:
asmsub MOVFM (mflpt: word @ AY) -> clobbers(A,Y) -> () = $bba2 ; load mflpt value from memory in A/Y into fac1
asmsub FREADMEM () -> clobbers(A,Y) -> () = $bba6 ; load mflpt value from memory in $22/$23 into fac1
asmsub CONUPK (mflpt: word @ AY) -> clobbers(A,Y) -> () = $ba8c ; load mflpt value from memory in A/Y into fac2
asmsub FAREADMEM () -> clobbers(A,Y) -> () = $ba90 ; load mflpt value from memory in $22/$23 into fac2
asmsub MOVFA () -> clobbers(A,X) -> () = $bbfc ; copy fac2 to fac1
asmsub MOVAF () -> clobbers(A,X) -> () = $bc0c ; copy fac1 to fac2 (rounded)
asmsub MOVEF () -> clobbers(A,X) -> () = $bc0f ; copy fac1 to fac2
asmsub FTOMEMXY (mflpt: word @ XY) -> clobbers(A,Y) -> () = $bbd4 ; store fac1 to memory X/Y as 5-byte mflpt
2018-08-06 01:35:43 +00:00
; fac1-> signed word in Y/A (might throw ILLEGAL QUANTITY)
; (use c64flt.FTOSWRDAY to get A/Y output; lo/hi switched to normal order)
asmsub FTOSWORDYA () -> clobbers(X) -> (byte @ Y, byte @ A) = $b1aa
2018-08-06 01:35:43 +00:00
; fac1 -> unsigned word in Y/A (might throw ILLEGAL QUANTITY) (result also in $14/15)
; (use c64flt.GETADRAY to get A/Y output; lo/hi switched to normal order)
asmsub GETADR () -> clobbers(X) -> (byte @ Y, byte @ A) = $b7f7
2018-08-06 01:35:43 +00:00
asmsub QINT () -> clobbers(A,X,Y) -> () = $bc9b ; fac1 -> 4-byte signed integer in 98-101 ($62-$65), with the MSB FIRST.
asmsub AYINT () -> clobbers(A,X,Y) -> () = $b1bf ; fac1-> signed word in 100-101 ($64-$65) MSB FIRST. (might throw ILLEGAL QUANTITY)
2018-08-06 01:35:43 +00:00
; signed word in Y/A -> float in fac1
; (use c64flt.GIVAYFAY to use A/Y input; lo/hi switched to normal order)
2018-01-01 16:56:55 +00:00
; there is also c64flt.GIVUAYF - unsigned word in A/Y (lo/hi) to fac1
; there is also c64flt.FREADS32 that reads from 98-101 ($62-$65) MSB FIRST
; there is also c64flt.FREADUS32 that reads from 98-101 ($62-$65) MSB FIRST
; there is also c64flt.FREADS24AXY that reads signed int24 into fac1 from A/X/Y (lo/mid/hi bytes)
asmsub GIVAYF (lo: byte @ Y, hi: byte @ A) -> clobbers(A,X,Y) -> () = $b391
asmsub FREADUY (ubyte: byte @ Y) -> clobbers(A,X,Y) -> () = $b3a2 ; 8 bit unsigned Y -> float in fac1
asmsub FREADSA (sbyte: byte @ A) -> clobbers(A,X,Y) -> () = $bc3c ; 8 bit signed A -> float in fac1
asmsub FREADSTR (length: byte @ A) -> clobbers(A,X,Y) -> () = $b7b5 ; str -> fac1, $22/23 must point to string, A=string length
asmsub FPRINTLN () -> clobbers(A,X,Y) -> () = $aabc ; print string of fac1, on one line (= with newline)
asmsub FOUT () -> clobbers(X) -> (word @ AY) = $bddd ; fac1 -> string, address returned in AY ($0100)
asmsub FADDH () -> clobbers(A,X,Y) -> () = $b849 ; fac1 += 0.5, for rounding- call this before INT
asmsub MUL10 () -> clobbers(A,X,Y) -> () = $bae2 ; fac1 *= 10
asmsub DIV10 () -> clobbers(A,X,Y) -> () = $bafe ; fac1 /= 10 , CAUTION: result is always positive!
asmsub FCOMP (mflpt: word @ AY) -> clobbers(X,Y) -> (byte @ A) = $bc5b ; A = compare fac1 to mflpt in A/Y, 0=equal 1=fac1 is greater, 255=fac1 is less than
asmsub FADDT () -> clobbers(A,X,Y) -> () = $b86a ; fac1 += fac2
asmsub FADD (mflpt: word @ AY) -> clobbers(A,X,Y) -> () = $b867 ; fac1 += mflpt value from A/Y
asmsub FSUBT () -> clobbers(A,X,Y) -> () = $b853 ; fac1 = fac2-fac1 mind the order of the operands
asmsub FSUB (mflpt: word @ AY) -> clobbers(A,X,Y) -> () = $b850 ; fac1 = mflpt from A/Y - fac1
asmsub FMULTT () -> clobbers(A,X,Y) -> () = $ba2b ; fac1 *= fac2
asmsub FMULT (mflpt: word @ AY) -> clobbers(A,X,Y) -> () = $ba28 ; fac1 *= mflpt value from A/Y
asmsub FDIVT () -> clobbers(A,X,Y) -> () = $bb12 ; fac1 = fac2/fac1 mind the order of the operands
asmsub FDIV (mflpt: word @ AY) -> clobbers(A,X,Y) -> () = $bb0f ; fac1 = mflpt in A/Y / fac1
asmsub FPWRT () -> clobbers(A,X,Y) -> () = $bf7b ; fac1 = fac2 ** fac1
asmsub FPWR (mflpt: word @ AY) -> clobbers(A,X,Y) -> () = $bf78 ; fac1 = fac2 ** mflpt from A/Y
asmsub NOTOP () -> clobbers(A,X,Y) -> () = $aed4 ; fac1 = NOT(fac1)
asmsub INT () -> clobbers(A,X,Y) -> () = $bccc ; INT() truncates, use FADDH first to round instead of trunc
asmsub LOG () -> clobbers(A,X,Y) -> () = $b9ea ; fac1 = LN(fac1) (natural log)
asmsub SGN () -> clobbers(A,X,Y) -> () = $bc39 ; fac1 = SGN(fac1), result of SIGN (-1, 0 or 1)
asmsub SIGN () -> clobbers() -> (byte @ A) = $bc2b ; SIGN(fac1) to A, $ff, $0, $1 for negative, zero, positive
asmsub ABS () -> clobbers() -> () = $bc58 ; fac1 = ABS(fac1)
asmsub SQR () -> clobbers(A,X,Y) -> () = $bf71 ; fac1 = SQRT(fac1)
asmsub EXP () -> clobbers(A,X,Y) -> () = $bfed ; fac1 = EXP(fac1) (e ** fac1)
asmsub NEGOP () -> clobbers(A) -> () = $bfb4 ; switch the sign of fac1
asmsub RND () -> clobbers(A,X,Y) -> () = $e097 ; fac1 = RND() (use RNDA instead)
asmsub RNDA (acc: byte @ A) -> clobbers(A,X,Y) -> () = $e09a ; fac1 = RND(A)
asmsub COS () -> clobbers(A,X,Y) -> () = $e264 ; fac1 = COS(fac1)
asmsub SIN () -> clobbers(A,X,Y) -> () = $e26b ; fac1 = SIN(fac1)
asmsub TAN () -> clobbers(A,X,Y) -> () = $e2b4 ; fac1 = TAN(fac1)
asmsub ATN () -> clobbers(A,X,Y) -> () = $e30e ; fac1 = ATN(fac1)
2017-12-21 13:52:30 +00:00
; ---- C64 basic routines ----
asmsub CLEARSCR () -> clobbers(A,X,Y) -> () = $E544 ; clear the screen
asmsub HOMECRSR () -> clobbers(A,X,Y) -> () = $E566 ; cursor to top left of screen
2017-12-21 13:52:30 +00:00
; ---- end of C64 basic routines ----
; ---- C64 kernal routines ----
asmsub IRQDFRT () -> clobbers(A,X,Y) -> () = $EA31 ; default IRQ routine
asmsub IRQDFEND () -> clobbers(A,X,Y) -> () = $EA81 ; default IRQ end/cleanup
asmsub CINT () -> clobbers(A,X,Y) -> () = $FF81 ; (alias: SCINIT) initialize screen editor and video chip
asmsub IOINIT () -> clobbers(A, X) -> () = $FF84 ; initialize I/O devices (CIA, SID, IRQ)
asmsub RAMTAS () -> clobbers(A,X,Y) -> () = $FF87 ; initialize RAM, tape buffer, screen
asmsub RESTOR () -> clobbers(A,X,Y) -> () = $FF8A ; restore default I/O vectors
asmsub VECTOR (dir: byte @ Pc, userptr: word @ XY) -> clobbers(A,Y) -> () = $FF8D ; read/set I/O vector table
asmsub SETMSG (value: byte @ A) -> clobbers() -> () = $FF90 ; set Kernal message control flag
asmsub SECOND (address: byte @ A) -> clobbers(A) -> () = $FF93 ; (alias: LSTNSA) send secondary address after LISTEN
asmsub TKSA (address: byte @ A) -> clobbers(A) -> () = $FF96 ; (alias: TALKSA) send secondary address after TALK
asmsub MEMTOP (dir: byte @ Pc, address: word @ XY) -> clobbers() -> (word @ XY) = $FF99 ; read/set top of memory pointer
asmsub MEMBOT (dir: byte @ Pc, address: word @ XY) -> clobbers() -> (word @ XY) = $FF9C ; read/set bottom of memory pointer
asmsub SCNKEY () -> clobbers(A,X,Y) -> () = $FF9F ; scan the keyboard
asmsub SETTMO (timeout: byte @ A) -> clobbers() -> () = $FFA2 ; set time-out flag for IEEE bus
asmsub ACPTR () -> clobbers() -> (byte @ A) = $FFA5 ; (alias: IECIN) input byte from serial bus
asmsub CIOUT (databyte: byte @ A) -> clobbers() -> () = $FFA8 ; (alias: IECOUT) output byte to serial bus
asmsub UNTLK () -> clobbers(A) -> () = $FFAB ; command serial bus device to UNTALK
asmsub UNLSN () -> clobbers(A) -> () = $FFAE ; command serial bus device to UNLISTEN
asmsub LISTEN (device: byte @ A) -> clobbers(A) -> () = $FFB1 ; command serial bus device to LISTEN
asmsub TALK (device: byte @ A) -> clobbers(A) -> () = $FFB4 ; command serial bus device to TALK
asmsub READST () -> clobbers() -> (byte @ A) = $FFB7 ; read I/O status word
asmsub SETLFS (logical: byte @ A, device: byte @ X, address: byte @ Y) -> clobbers() -> () = $FFBA ; set logical file parameters
asmsub SETNAM (namelen: byte @ A, filename: word @ XY) -> clobbers() -> () = $FFBD ; set filename parameters
asmsub OPEN () -> clobbers(A,X,Y) -> () = $FFC0 ; (via 794 ($31A)) open a logical file
asmsub CLOSE (logical: byte @ A) -> clobbers(A,X,Y) -> () = $FFC3 ; (via 796 ($31C)) close a logical file
asmsub CHKIN (logical: byte @ X) -> clobbers(A,X) -> () = $FFC6 ; (via 798 ($31E)) define an input channel
asmsub CHKOUT (logical: byte @ X) -> clobbers(A,X) -> () = $FFC9 ; (via 800 ($320)) define an output channel
asmsub CLRCHN () -> clobbers(A,X) -> () = $FFCC ; (via 802 ($322)) restore default devices
asmsub CHRIN () -> clobbers(Y) -> (byte @ A) = $FFCF ; (via 804 ($324)) input a character (for keyboard, read a whole line from the screen) A=byte read.
asmsub CHROUT (char: byte @ A) -> clobbers() -> () = $FFD2 ; (via 806 ($326)) output a character
asmsub LOAD (verify: byte @ A, address: word @ XY) -> clobbers() -> (byte @Pc, byte @ A, byte @ X, byte @ Y) = $FFD5 ; (via 816 ($330)) load from device
asmsub SAVE (zp_startaddr: byte @ A, endaddr: word @ XY) -> clobbers() -> (byte @ Pc, byte @ A) = $FFD8 ; (via 818 ($332)) save to a device
asmsub SETTIM (low: byte @ A, middle: byte @ X, high: byte @ Y) -> clobbers() -> () = $FFDB ; set the software clock
asmsub RDTIM () -> clobbers() -> (byte @ A, byte @ X, byte @ Y) = $FFDE ; read the software clock
asmsub STOP () -> clobbers(A,X) -> (byte @ Pz, byte @ Pc) = $FFE1 ; (via 808 ($328)) check the STOP key
asmsub GETIN () -> clobbers(X,Y) -> (byte @ A) = $FFE4 ; (via 810 ($32A)) get a character
asmsub CLALL () -> clobbers(A,X) -> () = $FFE7 ; (via 812 ($32C)) close all files
asmsub UDTIM () -> clobbers(A,X) -> () = $FFEA ; update the software clock
asmsub SCREEN () -> clobbers() -> (byte @ X, byte @ Y) = $FFED ; read number of screen rows and columns
asmsub PLOT (dir: byte @ Pc, col: byte @ Y, row: byte @ X) -> clobbers() -> (byte @ X, byte @ Y) = $FFF0 ; read/set position of cursor on screen
asmsub IOBASE () -> clobbers() -> (byte @ X, byte @ Y) = $FFF3 ; read base address of I/O devices
2017-12-21 13:52:30 +00:00
; ---- end of C64 kernal routines ----
2017-12-27 15:22:12 +00:00
}