prog8/compiler/res/prog8lib/shared_floats_functions.p8

274 lines
5.4 KiB
Plaintext
Raw Normal View History

floats {
; the floating point functions shared across compiler targets
%option merge, no_symbol_prefixing, ignore_unused
const float π = 3.141592653589793
const float PI = π
const float TWOPI = 2*π
asmsub print(float value @FAC1) clobbers(A,X,Y) {
; ---- prints the floating point value (without a newline). No leading space (unlike BASIC)!
%asm {{
jsr tostr
ldy #0
- lda (P8ZP_SCRATCH_W1),y
beq +
jsr cbm.CHROUT
iny
bne -
+ rts
}}
}
asmsub tostr(float value @FAC1) clobbers(X) -> str @AY {
; ---- converts the floating point value to a string. No leading space!
%asm {{
jsr FOUT
sta P8ZP_SCRATCH_W1
sty P8ZP_SCRATCH_W1+1
ldy #0
lda (P8ZP_SCRATCH_W1),y
cmp #' '
bne +
inc P8ZP_SCRATCH_W1
bne +
inc P8ZP_SCRATCH_W1+1
+ lda P8ZP_SCRATCH_W1
ldy P8ZP_SCRATCH_W1+1
rts
}}
}
sub pow(float value, float power) -> float {
%asm {{
stx P8ZP_SCRATCH_W1
sty P8ZP_SCRATCH_W1+1
lda #<value
ldy #>value
jsr floats.CONUPK
lda #<power
ldy #>power
jsr floats.FPWR
ldx P8ZP_SCRATCH_W1
ldy P8ZP_SCRATCH_W1+1
rts
}}
}
sub sin(float angle) -> float {
%asm {{
lda #<angle
ldy #>angle
jsr MOVFM
jmp SIN
}}
}
sub cos(float angle) -> float {
%asm {{
lda #<angle
ldy #>angle
jsr MOVFM
jmp COS
rts
}}
}
sub tan(float value) -> float {
%asm {{
lda #<value
ldy #>value
jsr MOVFM
jmp TAN
}}
}
sub atan(float value) -> float {
%asm {{
lda #<value
ldy #>value
jsr MOVFM
jmp ATN
}}
}
; two-argument arctangent that returns an angle in the correct quadrant
; for the signs of x and y, normalized to the range [0, 2π]
sub atan2(float y, float x) -> float {
float atn
if x == 0 {
atn = π/2
if y == 0 return 0
if y < 0 {
atn += π
}
} else {
atn = atan(y / x)
}
if x < 0 atn += π
if atn < 0 atn += 2*π
return atn
}
; reciprocal functions
sub secant(float value) -> float { return 1.0 / cos(value) }
sub csc(float value) -> float { return 1.0 / sin(value) }
sub cot(float value) -> float { return 1.0 / tan(value) }
sub ln(float value) -> float {
%asm {{
lda #<value
ldy #>value
jsr MOVFM
jmp LOG
}}
}
sub log2(float value) -> float {
%asm {{
lda #<value
ldy #>value
jsr MOVFM
jsr LOG
jsr MOVEF
lda #<FL_LOG2_const
ldy #>FL_LOG2_const
jsr MOVFM
jmp FDIVT
}}
}
sub rad(float angle) -> float {
; -- convert degrees to radians (d * pi / 180)
%asm {{
lda #<angle
ldy #>angle
jsr MOVFM
lda #<_pi_div_180
ldy #>_pi_div_180
jmp FMULT
_pi_div_180 .byte 123, 14, 250, 53, 18 ; pi / 180
}}
}
sub deg(float angle) -> float {
; -- convert radians to degrees (d * (1/ pi * 180))
%asm {{
lda #<angle
ldy #>angle
jsr MOVFM
lda #<_one_over_pi_div_180
ldy #>_one_over_pi_div_180
jmp FMULT
rts
_one_over_pi_div_180 .byte 134, 101, 46, 224, 211 ; 1 / (pi * 180)
}}
}
sub round(float value) -> float {
%asm {{
lda #<value
ldy #>value
jsr MOVFM
jsr FADDH
jmp INT
}}
}
sub floor(float value) -> float {
%asm {{
lda #<value
ldy #>value
jsr MOVFM
jmp INT
}}
}
sub ceil(float value) -> float {
; -- ceil: tr = int(f); if tr==f -> return else return tr+1
%asm {{
lda #<value
ldy #>value
jsr MOVFM
ldx #<fmath_float1
ldy #>fmath_float1
jsr MOVMF
jsr INT
lda #<fmath_float1
ldy #>fmath_float1
jsr FCOMP
cmp #0
beq +
lda #<FL_ONE_const
ldy #>FL_ONE_const
jsr FADD
+ rts
}}
}
sub rndseed(float seed) {
if seed>0
seed = -seed ; make sure fp seed is always negative
%asm {{
lda #<seed
ldy #>seed
jsr MOVFM ; load float into fac1
lda #-1
jmp floats.RND
}}
}
sub minf(float f1, float f2) -> float {
if f1<f2
return f1
return f2
}
sub maxf(float f1, float f2) -> float {
if f1>f2
return f1
return f2
}
sub clampf(float value, float minimum, float maximum) -> float {
if value>maximum
value=maximum
if value>minimum
return value
return minimum
}
inline asmsub push(float value @FAC1) {
%asm {{
jsr floats.pushFAC1
}}
}
inline asmsub pop() -> float @FAC1 {
%asm {{
clc
jsr floats.popFAC
}}
}
sub lerp(float v0, float v1, float t) -> float {
; Linear interpolation (LERP)
; Precise method, which guarantees v = v1 when t = 1.
; returns an interpolation between two inputs (v0, v1) for a parameter t in the closed unit interval [0, 1]
return (1 - t) * v0 + t * v1
}
sub lerp_fast(float v0, float v1, float t) -> float {
; Linear interpolation (LERP)
; Imprecise (but slightly faster) method, which does not guarantee v = v1 when t = 1
; returns an interpolation between two inputs (v0, v1) for a parameter t in the closed unit interval [0, 1]
return v0 + t * (v1 - v0)
}
}