%import syslib psg { ; $1F9C0 - $1F9FF 16 blocks of 4 PSG registers (16 voices) ; 00 frequency word LSB ; 01 frequency word MSB. freqword = HERZ / 0.3725290298461914 ; 02 bit 7 =right, bit 6 = left, bits 5-0 = volume 0-63 levels ; 03 bit 7,6 = waveform, bits 5-0 = Pulse width 0-63 ; waveform: 0=pulse, 1=sawtooth, 2=triangle, 3=noise const ubyte PULSE = %00000000 const ubyte SAWTOOTH = %01000000 const ubyte TRIANGLE = %10000000 const ubyte NOISE = %11000000 const ubyte LEFT = %01000000 const ubyte RIGHT = %10000000 sub voice(ubyte voice_num, ubyte channel, ubyte volume, ubyte waveform, ubyte pulsewidth) { cx16.vpoke(1, $f9c2 + voice_num * 4, channel | volume) cx16.vpoke(1, $f9c3 + voice_num * 4, waveform | pulsewidth) } ; sub freq_hz(ubyte voice_num, float hertz) { ; ; this would rely on floating point math to convert hertz to vera frequency ; ; TODO should be replaced by integer math maybe with a lookup table? ; uword vera_freq = (hertz / 0.3725290298461914) as uword ; freq(voice_num, vera_freq) ; } sub freq(ubyte voice_num, uword vera_freq) { cx16.vpoke(1, $f9c1 + voice_num*4, msb(vera_freq)) cx16.vpoke(1, $f9c0 + voice_num*4, lsb(vera_freq)) } sub volume(ubyte voice_num, ubyte vol) { uword reg = $f9c2 + voice_num * 4 cx16.vpoke(1, reg, cx16.vpeek(1, reg) & %11000000 | vol) } sub pulse_width(ubyte voice_num, ubyte pw) { uword reg = $f9c3 + voice_num * 4 cx16.vpoke(1, reg, cx16.vpeek(1, reg) & %11000000 | pw) } sub envelope(ubyte voice_num, ubyte attack, ubyte release) { envelope_states[voice_num] = 255 envelope_attacks[voice_num] = attack * $0040 envelope_releases[voice_num] = release * $0040 if attack attack = 0 else attack = 63 ; max volume when no attack is set envelope_volumes[voice_num] = mkword(attack, 0) envelope_states[voice_num] = 0 } sub silent() { for cx16.r15L in 0 to 15 { envelope_states[cx16.r15L] = 255 envelope_volumes[cx16.r15L] = 0 volume(cx16.r15L, 0) } } sub envelopes_irq() { ; cx16.r0 = the volume word (volume scaled by 256) ; cx16.r15L = the voice number ; the other virtual registers are used to backup vera registers. ; calculate new volumes for cx16.r15L in 0 to 15 { when envelope_states[cx16.r15L] { 0 -> { ; attack cx16.r0 = envelope_volumes[cx16.r15L] + envelope_attacks[cx16.r15L] if msb(cx16.r0) & %11000000 or envelope_attacks[cx16.r15L]==0 { cx16.r0 = mkword(63, 0) envelope_attacks[cx16.r15L] = 0 envelope_states[cx16.r15L] = 1 ; start release } envelope_volumes[cx16.r15L] = cx16.r0 } 1 -> { ; release cx16.r0 = envelope_volumes[cx16.r15L] - envelope_releases[cx16.r15L] if msb(cx16.r0) & %11000000 { cx16.r0 = 0 envelope_releases[cx16.r15L] = 0 } envelope_volumes[cx16.r15L] = cx16.r0 } } } ; set new volumes using vera stride of 4 cx16.push_vera_context() cx16.VERA_CTRL = 0 cx16.VERA_ADDR_L = $c2 cx16.VERA_ADDR_M = $f9 cx16.VERA_ADDR_H = 1 | %00110000 cx16.VERA_CTRL = 1 cx16.VERA_ADDR_L = $c2 cx16.VERA_ADDR_M = $f9 cx16.VERA_ADDR_H = 1 | %00110000 for cx16.r15L in 0 to 15 { cx16.VERA_DATA0 = cx16.VERA_DATA1 & %11000000 | msb(envelope_volumes[cx16.r15L]) } cx16.pop_vera_context() } ubyte[16] envelope_states uword[16] envelope_volumes uword[16] envelope_attacks uword[16] envelope_releases }