; Prog8 definitions for floating point handling on the Commodore-64 ; ; Written by Irmen de Jong (irmen@razorvine.net) - license: GNU GPL 3.0 ; ; indent format: TABS, size=8 %option enable_floats ~ c64flt { ; ---- this block contains C-64 floating point related functions ---- const float PI = 3.141592653589793 const float TWOPI = 6.283185307179586 ; ---- C64 basic and kernal ROM float constants and functions ---- ; note: the fac1 and fac2 are working registers and take 6 bytes each, ; floats in memory (and rom) are stored in 5-byte MFLPT packed format. ; constants in five-byte "mflpt" format in the BASIC ROM memory float FL_PIVAL = $aea8 ; 3.1415926... memory float FL_N32768 = $b1a5 ; -32768 memory float FL_FONE = $b9bc ; 1 memory float FL_SQRHLF = $b9d6 ; SQR(2) / 2 memory float FL_SQRTWO = $b9db ; SQR(2) memory float FL_NEGHLF = $b9e0 ; -.5 memory float FL_LOG2 = $b9e5 ; LOG(2) memory float FL_TENC = $baf9 ; 10 memory float FL_NZMIL = $bdbd ; 1e9 (1 billion) memory float FL_FHALF = $bf11 ; .5 memory float FL_LOGEB2 = $bfbf ; 1 / LOG(2) memory float FL_PIHALF = $e2e0 ; PI / 2 memory float FL_TWOPI = $e2e5 ; 2 * PI memory float FL_FR4 = $e2ea ; .25 ; note: fac1/2 might get clobbered even if not mentioned in the function's name. ; note: for subtraction and division, the left operand is in fac2, the right operand in fac1. ; checked functions below: asmsub MOVFM (uword mflpt @ AY) -> clobbers(A,Y) -> () = $bba2 ; load mflpt value from memory in A/Y into fac1 asmsub FREADMEM () -> clobbers(A,Y) -> () = $bba6 ; load mflpt value from memory in $22/$23 into fac1 asmsub CONUPK (uword mflpt @ AY) -> clobbers(A,Y) -> () = $ba8c ; load mflpt value from memory in A/Y into fac2 asmsub FAREADMEM () -> clobbers(A,Y) -> () = $ba90 ; load mflpt value from memory in $22/$23 into fac2 asmsub MOVFA () -> clobbers(A,X) -> () = $bbfc ; copy fac2 to fac1 asmsub MOVAF () -> clobbers(A,X) -> () = $bc0c ; copy fac1 to fac2 (rounded) asmsub MOVEF () -> clobbers(A,X) -> () = $bc0f ; copy fac1 to fac2 asmsub MOVMF (uword mflpt @ XY) -> clobbers(A,Y) -> () = $bbd4 ; store fac1 to memory X/Y as 5-byte mflpt ; fac1-> signed word in Y/A (might throw ILLEGAL QUANTITY) ; (tip: use c64flt.FTOSWRDAY to get A/Y output; lo/hi switched to normal little endian order) asmsub FTOSWORDYA () -> clobbers(X) -> (ubyte @ Y, ubyte @ A) = $b1aa ; fac1 -> unsigned word in Y/A (might throw ILLEGAL QUANTITY) (result also in $14/15) ; (tip: use c64flt.GETADRAY to get A/Y output; lo/hi switched to normal little endian order) asmsub GETADR () -> clobbers(X) -> (ubyte @ Y, ubyte @ A) = $b7f7 asmsub QINT () -> clobbers(A,X,Y) -> () = $bc9b ; fac1 -> 4-byte signed integer in 98-101 ($62-$65), with the MSB FIRST. asmsub AYINT () -> clobbers(A,X,Y) -> () = $b1bf ; fac1-> signed word in 100-101 ($64-$65) MSB FIRST. (might throw ILLEGAL QUANTITY) ; GIVAYF: signed word in Y/A (note different lsb/msb order) -> float in fac1 ; (tip: use c64flt.GIVAYFAY to use A/Y input; lo/hi switched to normal order) ; there is also c64flt.GIVUAYFAY - unsigned word in A/Y (lo/hi) to fac1 ; there is also c64flt.FREADS32 that reads from 98-101 ($62-$65) MSB FIRST ; there is also c64flt.FREADUS32 that reads from 98-101 ($62-$65) MSB FIRST ; there is also c64flt.FREADS24AXY that reads signed int24 into fac1 from A/X/Y (lo/mid/hi bytes) asmsub GIVAYF (ubyte lo @ Y, ubyte hi @ A) -> clobbers(A,X,Y) -> () = $b391 asmsub FREADUY (ubyte value @ Y) -> clobbers(A,X,Y) -> () = $b3a2 ; 8 bit unsigned Y -> float in fac1 asmsub FREADSA (byte value @ A) -> clobbers(A,X,Y) -> () = $bc3c ; 8 bit signed A -> float in fac1 asmsub FREADSTR (ubyte length @ A) -> clobbers(A,X,Y) -> () = $b7b5 ; str -> fac1, $22/23 must point to string, A=string length asmsub FPRINTLN () -> clobbers(A,X,Y) -> () = $aabc ; print string of fac1, on one line (= with newline) destroys fac1. (consider FOUT + STROUT as well) asmsub FOUT () -> clobbers(X) -> (uword @ AY) = $bddd ; fac1 -> string, address returned in AY ($0100) asmsub FADDH () -> clobbers(A,X,Y) -> () = $b849 ; fac1 += 0.5, for rounding- call this before INT asmsub MUL10 () -> clobbers(A,X,Y) -> () = $bae2 ; fac1 *= 10 asmsub DIV10 () -> clobbers(A,X,Y) -> () = $bafe ; fac1 /= 10 , CAUTION: result is always positive! asmsub FCOMP (uword mflpt @ AY) -> clobbers(X,Y) -> (ubyte @ A) = $bc5b ; A = compare fac1 to mflpt in A/Y, 0=equal 1=fac1 is greater, 255=fac1 is less than asmsub FADDT () -> clobbers(A,X,Y) -> () = $b86a ; fac1 += fac2 asmsub FADD (uword mflpt @ AY) -> clobbers(A,X,Y) -> () = $b867 ; fac1 += mflpt value from A/Y asmsub FSUBT () -> clobbers(A,X,Y) -> () = $b853 ; fac1 = fac2-fac1 mind the order of the operands asmsub FSUB (uword mflpt @ AY) -> clobbers(A,X,Y) -> () = $b850 ; fac1 = mflpt from A/Y - fac1 asmsub FMULTT () -> clobbers(A,X,Y) -> () = $ba2b ; fac1 *= fac2 asmsub FMULT (uword mflpt @ AY) -> clobbers(A,X,Y) -> () = $ba28 ; fac1 *= mflpt value from A/Y asmsub FDIVT () -> clobbers(A,X,Y) -> () = $bb12 ; fac1 = fac2/fac1 (remainder in fac2) mind the order of the operands asmsub FDIV (uword mflpt @ AY) -> clobbers(A,X,Y) -> () = $bb0f ; fac1 = mflpt in A/Y / fac1 (remainder in fac2) asmsub FPWRT () -> clobbers(A,X,Y) -> () = $bf7b ; fac1 = fac2 ** fac1 asmsub FPWR (uword mflpt @ AY) -> clobbers(A,X,Y) -> () = $bf78 ; fac1 = fac2 ** mflpt from A/Y asmsub NOTOP () -> clobbers(A,X,Y) -> () = $aed4 ; fac1 = NOT(fac1) asmsub INT () -> clobbers(A,X,Y) -> () = $bccc ; INT() truncates, use FADDH first to round instead of trunc asmsub LOG () -> clobbers(A,X,Y) -> () = $b9ea ; fac1 = LN(fac1) (natural log) asmsub SGN () -> clobbers(A,X,Y) -> () = $bc39 ; fac1 = SGN(fac1), result of SIGN (-1, 0 or 1) asmsub SIGN () -> clobbers() -> (ubyte @ A) = $bc2b ; SIGN(fac1) to A, $ff, $0, $1 for negative, zero, positive asmsub ABS () -> clobbers() -> () = $bc58 ; fac1 = ABS(fac1) asmsub SQR () -> clobbers(A,X,Y) -> () = $bf71 ; fac1 = SQRT(fac1) asmsub SQRA () -> clobbers(A,X,Y) -> () = $bf74 ; fac1 = SQRT(fac2) asmsub EXP () -> clobbers(A,X,Y) -> () = $bfed ; fac1 = EXP(fac1) (e ** fac1) asmsub NEGOP () -> clobbers(A) -> () = $bfb4 ; switch the sign of fac1 asmsub RND () -> clobbers(A,X,Y) -> () = $e097 ; fac1 = RND(fac1) float random number generator asmsub COS () -> clobbers(A,X,Y) -> () = $e264 ; fac1 = COS(fac1) asmsub SIN () -> clobbers(A,X,Y) -> () = $e26b ; fac1 = SIN(fac1) asmsub TAN () -> clobbers(A,X,Y) -> () = $e2b4 ; fac1 = TAN(fac1) asmsub ATN () -> clobbers(A,X,Y) -> () = $e30e ; fac1 = ATN(fac1) asmsub FREADS32 () -> clobbers(A,X,Y) -> () { ; ---- fac1 = signed int32 from $62-$65 big endian (MSB FIRST) %asm {{ lda $62 eor #$ff asl a lda #0 ldx #$a0 jmp $bc4f ; internal BASIC routine }} } asmsub FREADUS32 () -> clobbers(A,X,Y) -> () { ; ---- fac1 = uint32 from $62-$65 big endian (MSB FIRST) %asm {{ sec lda #0 ldx #$a0 jmp $bc4f ; internal BASIC routine }} } asmsub FREADS24AXY (ubyte lo @ A, ubyte mid @ X, ubyte hi @ Y) -> clobbers(A,X,Y) -> () { ; ---- fac1 = signed int24 (A/X/Y contain lo/mid/hi bytes) ; note: there is no FREADU24AXY (unsigned), use FREADUS32 instead. %asm {{ sty $62 stx $63 sta $64 lda $62 eor #$FF asl a lda #0 sta $65 ldx #$98 jmp $bc4f ; internal BASIC routine }} } asmsub GIVUAYFAY (uword value @ AY) -> clobbers(A,X,Y) -> () { ; ---- unsigned 16 bit word in A/Y (lo/hi) to fac1 %asm {{ sty $62 sta $63 ldx #$90 sec jmp $bc49 ; internal BASIC routine }} } asmsub GIVAYFAY (uword value @ AY) -> clobbers(A,X,Y) -> () { ; ---- signed 16 bit word in A/Y (lo/hi) to float in fac1 %asm {{ sta c64.SCRATCH_ZPREG tya ldy c64.SCRATCH_ZPREG jmp c64flt.GIVAYF ; this uses the inverse order, Y/A }} } asmsub FTOSWRDAY () -> clobbers(X) -> (uword @ AY) { ; ---- fac1 to signed word in A/Y %asm {{ jsr c64flt.FTOSWORDYA ; note the inverse Y/A order sta c64.SCRATCH_ZPREG tya ldy c64.SCRATCH_ZPREG rts }} } asmsub GETADRAY () -> clobbers(X) -> (uword @ AY) { ; ---- fac1 to unsigned word in A/Y %asm {{ jsr c64flt.GETADR ; this uses the inverse order, Y/A sta c64.SCRATCH_ZPB1 tya ldy c64.SCRATCH_ZPB1 rts }} } sub print_f (float value) { ; ---- prints the floating point value (without a newline) using basic rom routines. %asm {{ stx c64.SCRATCH_ZPREGX lda #print_f_value jsr c64flt.MOVFM ; load float into fac1 jsr c64flt.FOUT ; fac1 to string in A/Y jsr c64.STROUT ; print string in A/Y ldx c64.SCRATCH_ZPREGX rts }} } sub print_fln (float value) { ; ---- prints the floating point value (with a newline at the end) using basic rom routines %asm {{ stx c64.SCRATCH_ZPREGX lda #print_fln_value jsr c64flt.MOVFM ; load float into fac1 jsr c64flt.FPRINTLN ; print fac1 with newline ldx c64.SCRATCH_ZPREGX rts }} } ; --- low level floating point assembly routines %asm {{ ub2float .proc ; -- convert ubyte in SCRATCH_ZPB1 to float at address A/Y ; clobbers A, Y stx c64.SCRATCH_ZPREGX sta c64.SCRATCH_ZPWORD2 sty c64.SCRATCH_ZPWORD1+1 ldy c64.SCRATCH_ZPB1 jsr c64flt.FREADUY _fac_to_mem ldx c64.SCRATCH_ZPWORD2 ldy c64.SCRATCH_ZPWORD2+1 jsr c64flt.MOVMF ldx c64.SCRATCH_ZPREGX rts .pend b2float .proc ; -- convert byte in SCRATCH_ZPB1 to float at address A/Y ; clobbers A, Y stx c64.SCRATCH_ZPREGX sta c64.SCRATCH_ZPWORD2 sty c64.SCRATCH_ZPWORD2+1 lda c64.SCRATCH_ZPB1 jsr c64flt.FREADSA jmp ub2float._fac_to_mem .pend uw2float .proc ; -- convert uword in SCRATCH_ZPWORD1 to float at address A/Y stx c64.SCRATCH_ZPREGX sta c64.SCRATCH_ZPWORD2 sty c64.SCRATCH_ZPWORD2+1 lda c64.SCRATCH_ZPWORD1 ldy c64.SCRATCH_ZPWORD1+1 jsr c64flt.GIVUAYFAY jmp ub2float._fac_to_mem .pend w2float .proc ; -- convert word in SCRATCH_ZPWORD1 to float at address A/Y stx c64.SCRATCH_ZPREGX sta c64.SCRATCH_ZPWORD2 sty c64.SCRATCH_ZPWORD2+1 ldy c64.SCRATCH_ZPWORD1 lda c64.SCRATCH_ZPWORD1+1 jsr c64flt.GIVAYF jmp ub2float._fac_to_mem .pend stack_b2float .proc ; -- b2float operating on the stack inx lda c64.ESTACK_LO,x stx c64.SCRATCH_ZPREGX jsr c64flt.FREADSA jmp push_fac1_as_result .pend stack_w2float .proc ; -- w2float operating on the stack inx ldy c64.ESTACK_LO,x lda c64.ESTACK_HI,x stx c64.SCRATCH_ZPREGX jsr c64flt.GIVAYF jmp push_fac1_as_result .pend stack_ub2float .proc ; -- ub2float operating on the stack inx lda c64.ESTACK_LO,x stx c64.SCRATCH_ZPREGX tay jsr c64flt.FREADUY jmp push_fac1_as_result .pend stack_uw2float .proc ; -- uw2float operating on the stack inx lda c64.ESTACK_LO,x ldy c64.ESTACK_HI,x stx c64.SCRATCH_ZPREGX jsr c64flt.GIVUAYFAY jmp push_fac1_as_result .pend stack_float2w .proc jsr pop_float_fac1 stx c64.SCRATCH_ZPREGX jsr c64flt.AYINT ldx c64.SCRATCH_ZPREGX lda $64 sta c64.ESTACK_HI,x lda $65 sta c64.ESTACK_LO,x dex rts .pend stack_float2uw .proc jsr pop_float_fac1 stx c64.SCRATCH_ZPREGX jsr c64flt.GETADR ldx c64.SCRATCH_ZPREGX sta c64.ESTACK_HI,x tya sta c64.ESTACK_LO,x dex rts .pend push_float .proc ; ---- push mflpt5 in A/Y onto stack ; (taking 3 stack positions = 6 bytes of which 1 is padding) sta c64.SCRATCH_ZPWORD1 sty c64.SCRATCH_ZPWORD1+1 ldy #0 lda (c64.SCRATCH_ZPWORD1),y sta c64.ESTACK_LO,x iny lda (c64.SCRATCH_ZPWORD1),y sta c64.ESTACK_HI,x dex iny lda (c64.SCRATCH_ZPWORD1),y sta c64.ESTACK_LO,x iny lda (c64.SCRATCH_ZPWORD1),y sta c64.ESTACK_HI,x dex iny lda (c64.SCRATCH_ZPWORD1),y sta c64.ESTACK_LO,x dex rts .pend func_rndf .proc ; -- put a random floating point value on the stack stx c64.SCRATCH_ZPREG lda #1 jsr c64flt.FREADSA jsr c64flt.RND ; rng into fac1 ldx #<_rndf_rnum5 ldy #>_rndf_rnum5 jsr c64flt.MOVMF ; fac1 to mem X/Y ldx c64.SCRATCH_ZPREG lda #<_rndf_rnum5 ldy #>_rndf_rnum5 jmp push_float _rndf_rnum5 .byte 0,0,0,0,0 .pend push_float_from_indexed_var .proc ; -- push the float from the array at A/Y with index on stack, onto the stack. sta c64.SCRATCH_ZPWORD1 sty c64.SCRATCH_ZPWORD1+1 jsr prog8_lib.pop_index_times_5 jsr prog8_lib.add_a_to_zpword lda c64.SCRATCH_ZPWORD1 ldy c64.SCRATCH_ZPWORD1+1 jmp push_float .pend pop_float .proc ; ---- pops mflpt5 from stack to memory A/Y ; (frees 3 stack positions = 6 bytes of which 1 is padding) sta c64.SCRATCH_ZPWORD1 sty c64.SCRATCH_ZPWORD1+1 ldy #4 inx lda c64.ESTACK_LO,x sta (c64.SCRATCH_ZPWORD1),y dey inx lda c64.ESTACK_HI,x sta (c64.SCRATCH_ZPWORD1),y dey lda c64.ESTACK_LO,x sta (c64.SCRATCH_ZPWORD1),y dey inx lda c64.ESTACK_HI,x sta (c64.SCRATCH_ZPWORD1),y dey lda c64.ESTACK_LO,x sta (c64.SCRATCH_ZPWORD1),y rts .pend pop_float_fac1 .proc ; -- pops float from stack into FAC1 lda #fmath_float1 jsr pop_float lda #fmath_float1 jmp c64flt.MOVFM .pend pop_float_to_indexed_var .proc ; -- pop the float on the stack, to the memory in the array at A/Y indexed by the byte on stack sta c64.SCRATCH_ZPWORD1 sty c64.SCRATCH_ZPWORD1+1 jsr prog8_lib.pop_index_times_5 jsr prog8_lib.add_a_to_zpword lda c64.SCRATCH_ZPWORD1 ldy c64.SCRATCH_ZPWORD1+1 jmp pop_float .pend copy_float .proc ; -- copies the 5 bytes of the mflt value pointed to by SCRATCH_ZPWORD1, ; into the 5 bytes pointed to by A/Y. Clobbers A,Y. sta c64.SCRATCH_ZPWORD2 sty c64.SCRATCH_ZPWORD2+1 ldy #0 lda (c64.SCRATCH_ZPWORD1),y sta (c64.SCRATCH_ZPWORD2),y iny lda (c64.SCRATCH_ZPWORD1),y sta (c64.SCRATCH_ZPWORD2),y iny lda (c64.SCRATCH_ZPWORD1),y sta (c64.SCRATCH_ZPWORD2),y iny lda (c64.SCRATCH_ZPWORD1),y sta (c64.SCRATCH_ZPWORD2),y iny lda (c64.SCRATCH_ZPWORD1),y sta (c64.SCRATCH_ZPWORD2),y rts .pend inc_var_f .proc ; -- add 1 to float pointed to by A/Y sta c64.SCRATCH_ZPWORD1 sty c64.SCRATCH_ZPWORD1+1 stx c64.SCRATCH_ZPREGX jsr c64flt.MOVFM lda #FL_FONE jsr c64flt.FADD ldx c64.SCRATCH_ZPWORD1 ldy c64.SCRATCH_ZPWORD1+1 jsr c64flt.MOVMF ldx c64.SCRATCH_ZPREGX rts .pend dec_var_f .proc ; -- subtract 1 from float pointed to by A/Y sta c64.SCRATCH_ZPWORD1 sty c64.SCRATCH_ZPWORD1+1 stx c64.SCRATCH_ZPREGX lda #FL_FONE jsr c64flt.MOVFM lda c64.SCRATCH_ZPWORD1 ldy c64.SCRATCH_ZPWORD1+1 jsr c64flt.FSUB ldx c64.SCRATCH_ZPWORD1 ldy c64.SCRATCH_ZPWORD1+1 jsr c64flt.MOVMF ldx c64.SCRATCH_ZPREGX rts .pend pop_2_floats_f2_in_fac1 .proc ; -- pop 2 floats from stack, load the second one in FAC1 as well lda #fmath_float2 jsr pop_float lda #fmath_float1 jsr pop_float lda #fmath_float2 jmp c64flt.MOVFM .pend fmath_float1 .byte 0,0,0,0,0 ; storage for a mflpt5 value fmath_float2 .byte 0,0,0,0,0 ; storage for a mflpt5 value push_fac1_as_result .proc ; -- push the float in FAC1 onto the stack, and return from calculation ldx #fmath_float1 jsr c64flt.MOVMF lda #fmath_float1 ldx c64.SCRATCH_ZPREGX jmp push_float .pend div_f .proc ; -- push f1/f2 on stack jsr pop_2_floats_f2_in_fac1 stx c64.SCRATCH_ZPREGX lda #fmath_float1 jsr c64flt.FDIV jmp push_fac1_as_result .pend add_f .proc ; -- push f1+f2 on stack jsr pop_2_floats_f2_in_fac1 stx c64.SCRATCH_ZPREGX lda #fmath_float1 jsr c64flt.FADD jmp push_fac1_as_result .pend sub_f .proc ; -- push f1-f2 on stack jsr pop_2_floats_f2_in_fac1 stx c64.SCRATCH_ZPREGX lda #fmath_float1 jsr c64flt.FSUB jmp push_fac1_as_result .pend mul_f .proc ; -- push f1*f2 on stack jsr pop_2_floats_f2_in_fac1 stx c64.SCRATCH_ZPREGX lda #fmath_float1 jsr c64flt.FMULT jmp push_fac1_as_result .pend neg_f .proc ; -- push -flt back on stack jsr pop_float_fac1 stx c64.SCRATCH_ZPREGX jsr c64flt.NEGOP jmp push_fac1_as_result .pend abs_f .proc ; -- push abs(float) on stack (as float) jsr pop_float_fac1 stx c64.SCRATCH_ZPREGX jsr c64flt.ABS jmp push_fac1_as_result .pend equal_f .proc ; -- are the two mflpt5 numbers on the stack identical? inx inx inx inx lda c64.ESTACK_LO-3,x cmp c64.ESTACK_LO,x bne _equals_false lda c64.ESTACK_LO-2,x cmp c64.ESTACK_LO+1,x bne _equals_false lda c64.ESTACK_LO-1,x cmp c64.ESTACK_LO+2,x bne _equals_false lda c64.ESTACK_HI-2,x cmp c64.ESTACK_HI+1,x bne _equals_false lda c64.ESTACK_HI-1,x cmp c64.ESTACK_HI+2,x bne _equals_false _equals_true lda #1 _equals_store inx sta c64.ESTACK_LO+1,x rts _equals_false lda #0 beq _equals_store .pend notequal_f .proc ; -- are the two mflpt5 numbers on the stack different? jsr equal_f eor #1 ; invert the result sta c64.ESTACK_LO+1,x rts .pend less_f .proc ; -- is f1 < f2? jsr compare_floats cmp #255 beq compare_floats._return_true bne compare_floats._return_false .pend lesseq_f .proc ; -- is f1 <= f2? jsr compare_floats cmp #255 beq compare_floats._return_true cmp #0 beq compare_floats._return_true bne compare_floats._return_false .pend greater_f .proc ; -- is f1 > f2? jsr compare_floats cmp #1 beq compare_floats._return_true bne compare_floats._return_false .pend greatereq_f .proc ; -- is f1 >= f2? jsr compare_floats cmp #1 beq compare_floats._return_true cmp #0 beq compare_floats._return_true bne compare_floats._return_false .pend compare_floats .proc lda #fmath_float2 jsr pop_float lda #fmath_float1 jsr pop_float lda #fmath_float1 jsr c64flt.MOVFM ; fac1 = flt1 lda #fmath_float2 stx c64.SCRATCH_ZPREG jsr c64flt.FCOMP ; A = flt1 compared with flt2 (0=equal, 1=flt1>flt2, 255=flt1c64.FL_LOG2 jsr c64flt.MOVFM jsr c64flt.FDIVT jmp push_fac1_as_result .pend func_sqrt .proc jsr pop_float_fac1 stx c64.SCRATCH_ZPREGX jsr c64flt.SQR jmp push_fac1_as_result .pend func_rad .proc ; -- convert degrees to radians (d * pi / 180) jsr pop_float_fac1 stx c64.SCRATCH_ZPREGX lda #<_pi_div_180 ldy #>_pi_div_180 jsr c64flt.FMULT jmp push_fac1_as_result _pi_div_180 .byte 123, 14, 250, 53, 18 ; pi / 180 .pend func_deg .proc ; -- convert radians to degrees (d * (1/ pi * 180)) jsr pop_float_fac1 stx c64.SCRATCH_ZPREGX lda #<_one_over_pi_div_180 ldy #>_one_over_pi_div_180 jsr c64flt.FMULT jmp push_fac1_as_result _one_over_pi_div_180 .byte 134, 101, 46, 224, 211 ; 1 / (pi * 180) .pend func_round .proc jsr pop_float_fac1 stx c64.SCRATCH_ZPREGX jsr c64flt.FADDH jsr c64flt.INT jmp push_fac1_as_result .pend func_floor .proc jsr pop_float_fac1 stx c64.SCRATCH_ZPREGX jsr c64flt.INT jmp push_fac1_as_result .pend func_ceil .proc ; -- ceil: tr = int(f); if tr==f -> return else return tr+1 jsr pop_float_fac1 stx c64.SCRATCH_ZPREGX lda #fmath_float1 jsr c64flt.MOVMF jsr c64flt.INT lda #fmath_float1 jsr c64flt.FCOMP cmp #0 beq + lda #FL_FONE jsr c64flt.FADD + jmp push_fac1_as_result .pend func_any_f .proc inx lda c64.ESTACK_LO,x ; array size sta c64.SCRATCH_ZPB1 asl a asl a clc adc c64.SCRATCH_ZPB1 ; times 5 because of float jmp func_any_b._entry .pend func_all_f .proc inx lda c64.ESTACK_LO,x ; array size sta c64.SCRATCH_ZPB1 asl a asl a clc adc c64.SCRATCH_ZPB1 ; times 5 because of float sta _cmp_mod+1 ; self-modifying code jsr peek_address ldy #0 - lda (c64.SCRATCH_ZPWORD1),y bne + iny lda (c64.SCRATCH_ZPWORD1),y bne + iny lda (c64.SCRATCH_ZPWORD1),y bne + iny lda (c64.SCRATCH_ZPWORD1),y bne + iny lda (c64.SCRATCH_ZPWORD1),y bne + lda #0 sta c64.ESTACK_LO+1,x rts + iny _cmp_mod cpy #255 ; modified bne - lda #1 sta c64.ESTACK_LO+1,x rts .pend func_max_f .proc lda #<_min_float ldy #>_min_float jsr c64flt.MOVFM ; fac1=min(float) lda #255 sta _cmp_mod+1 ; compare using 255 so we keep larger values _minmax_entry jsr pop_array_and_lengthmin1Y stx c64.SCRATCH_ZPREGX - sty c64.SCRATCH_ZPREG lda c64.SCRATCH_ZPWORD1 ldy c64.SCRATCH_ZPWORD1+1 jsr c64flt.FCOMP _cmp_mod cmp #255 ; will be modified bne + ; fac1 is smaller/larger, so store the new value instead lda c64.SCRATCH_ZPWORD1 ldy c64.SCRATCH_ZPWORD1+1 jsr c64flt.MOVFM ldy c64.SCRATCH_ZPREG dey cmp #255 beq + lda c64.SCRATCH_ZPWORD1 clc adc #5 sta c64.SCRATCH_ZPWORD1 bcc - inc c64.SCRATCH_ZPWORD1+1 bne - + jmp push_fac1_as_result _min_float .byte 255,255,255,255,255 ; -1.7014118345e+38 .pend func_min_f .proc lda #<_max_float ldy #>_max_float jsr c64flt.MOVFM ; fac1=max(float) lda #1 sta func_max_f._cmp_mod+1 ; compare using 1 so we keep smaller values jmp func_max_f._minmax_entry _max_float .byte 255,127,255,255,255 ; 1.7014118345e+38 .pend func_sum_f .proc lda #c64.FL_NEGHLF jsr c64flt.MOVFM jsr pop_array_and_lengthmin1Y stx c64.SCRATCH_ZPREGX - sty c64.SCRATCH_ZPREG lda c64.SCRATCH_ZPWORD1 ldy c64.SCRATCH_ZPWORD1+1 jsr c64flt.FADD ldy c64.SCRATCH_ZPREG dey cpy #255 beq + lda c64.SCRATCH_ZPWORD1 clc adc #5 sta c64.SCRATCH_ZPWORD1 bcc - inc c64.SCRATCH_ZPWORD1+1 bne - + jsr c64flt.FADDH jmp push_fac1_as_result .pend }} } ; ------ end of block c64flt