""" Tools to convert bitmap images to an appropriate format for the Commander X16. This means: indexed colors (palette), 12 bits color space (4 bits per channel, for a total of 4096 possible colors) There are no restrictions on the size of the image. Written by Irmen de Jong (irmen@razorvine.net) - Code is in the Public Domain. Requirements: Pillow (pip install pillow) """ from PIL import Image, PyAccess from typing import TypeAlias, Tuple, Optional RGBList: TypeAlias = list[tuple[int, int, int]] # the 256 default colors of the Commander X16's color palette in (r,g,b) format default_colors = [] _colors="""000,fff,800,afe,c4c,0c5,00a,ee7,d85,640,f77,333,777,af6,08f,bbb 000,111,222,333,444,555,666,777,888,999,aaa,bbb,ccc,ddd,eee,fff 211,433,644,866,a88,c99,fbb,211,422,633,844,a55,c66,f77,200,411 611,822,a22,c33,f33,200,400,600,800,a00,c00,f00,221,443,664,886 aa8,cc9,feb,211,432,653,874,a95,cb6,fd7,210,431,651,862,a82,ca3 fc3,210,430,640,860,a80,c90,fb0,121,343,564,786,9a8,bc9,dfb,121 342,463,684,8a5,9c6,bf7,120,241,461,582,6a2,8c3,9f3,120,240,360 480,5a0,6c0,7f0,121,343,465,686,8a8,9ca,bfc,121,242,364,485,5a6 6c8,7f9,020,141,162,283,2a4,3c5,3f6,020,041,061,082,0a2,0c3,0f3 122,344,466,688,8aa,9cc,bff,122,244,366,488,5aa,6cc,7ff,022,144 166,288,2aa,3cc,3ff,022,044,066,088,0aa,0cc,0ff,112,334,456,668 88a,9ac,bcf,112,224,346,458,56a,68c,79f,002,114,126,238,24a,35c 36f,002,014,016,028,02a,03c,03f,112,334,546,768,98a,b9c,dbf,112 324,436,648,85a,96c,b7f,102,214,416,528,62a,83c,93f,102,204,306 408,50a,60c,70f,212,434,646,868,a8a,c9c,fbe,211,423,635,847,a59 c6b,f7d,201,413,615,826,a28,c3a,f3c,201,403,604,806,a08,c09,f0b""" for line in _colors.splitlines(): for rgb in line.split(","): r = int(rgb[0], 16) g = int(rgb[1], 16) b = int(rgb[2], 16) default_colors.append((r, g, b)) class BitmapImage: def __init__(self, filename: str, image: Image = None) -> None: """Just load the given bitmap image file (any format allowed).""" if image is not None: self.img = image else: self.img = Image.open(filename) self.size = self.img.size self.width, self.height = self.size def save(self, filename: str) -> None: """Save the image to a new file, format based on the file extension.""" self.img.save(filename) def get_image(self) -> Image: """Gets access to a copy of the Pillow Image class that holds the loaded image""" return self.img.copy() def crop(self, x, y, width, height) -> "BitmapImage": """Returns a rectangle cropped from the original image""" cropped = self.img.crop((x, y, x + width, y + height)) return BitmapImage("", cropped) def has_palette(self) -> bool: """Is it an indexed colors image?""" return self.img.mode == "P" def get_palette(self) -> RGBList: """Return the image's palette as a list of (r,g,b) tuples""" return flat_palette_to_rgb(self.img.getpalette()) def get_vera_palette(self) -> bytes: """ Returns the image's palette as GB0R words (RGB in little-endian), suitable for the Vera palette registers. The palette must be in 12 bit color space already! Because this routine just takes the upper 4 bits of every channel value. """ return rgb_palette_to_vera(self.get_palette()) def show(self) -> None: """Shows the image on the screen""" if self.img.mode == "P": self.img.convert("RGB").convert("P").show() else: self.img.show() def get_pixels_8bpp(self, x: int, y: int, width: int, height: int) -> bytearray: """ For 8 bpp (256 color) images: Get a rectangle of pixel values from the image, returns the bytes as a flat array """ assert self.has_palette() try: access = PyAccess.new(self.img, readonly=True) except AttributeError: access = self.img data = bytearray(width * height) index = 0 for py in range(y, y + height): for px in range(x, x + width): data[index] = access.getpixel((px, py)) index += 1 return data def get_all_pixels_8bpp(self) -> bytes: """ For 8 bpp (256 color) images: Get all pixel values from the image, returns the bytes as a flat array """ assert self.has_palette() return self.img.tobytes() # try: # access = PyAccess.new(self.img, readonly=True) # except AttributeError: # access = self.img # data = bytearray(self.width * self.height) # index = 0 # for py in range(self.height): # for px in range(self.width): # data[index] = access.getpixel((px, py)) # index += 1 # return data def get_pixels_4bpp(self, x: int, y: int, width: int, height: int) -> bytearray: """ For 4 bpp (16 color) images: Get a rectangle of pixel values from the image, returns the bytes as a flat array. Every byte encodes 2 pixels (4+4 bits). """ assert self.has_palette() try: access = PyAccess.new(self.img, readonly=True) except AttributeError: access = self.img data = bytearray(width // 2 * height) index = 0 for py in range(y, y + height): for px in range(x, x + width, 2): pix1 = access.getpixel((px, py)) pix2 = access.getpixel((px + 1, py)) data[index] = pix1 << 4 | pix2 index += 1 return data def get_all_pixels_4bpp(self) -> bytearray: """ For 4 bpp (16 color) images: Get all pixel values from the image, returns the bytes as a flat array. Every byte encodes 2 pixels (4+4 bits). """ assert self.has_palette() try: access = PyAccess.new(self.img, readonly=True) except AttributeError: access = self.img data = bytearray(self.width // 2 * self.height) index = 0 for py in range(self.height): for px in range(0, self.width, 2): pix1 = access.getpixel((px, py)) pix2 = access.getpixel((px + 1, py)) data[index] = pix1 << 4 | pix2 index += 1 return data def quantize_to(self, palette_rgb12: RGBList, dither: Image.Dither = Image.Dither.FLOYDSTEINBERG) -> None: """ Convert the image to one with the supplied palette. This palette must be in 12 bits colorspace (4 bits so 0-15 per channel) The resulting image will have its palette extended to 8 bits per channel again. If you want to display the image on the actual Commander X16, simply take the lower (or upper) 4 bits of every color channel. Dithering is applied as given (default is Floyd-Steinberg). """ palette_image = Image.new("P", (1, 1)) palette = [] for r, g, b in palette_rgb12: palette.append(r << 4 | r) palette.append(g << 4 | g) palette.append(b << 4 | b) palette_image.putpalette(palette) self.img = self.img.quantize(dither=dither, palette=palette_image) def quantize(self, bits_per_pixel: int, preserve_first_16_colors: bool = False, fixed_color_zero: Optional[Tuple[int, int, int]] = None, dither: Image.Dither = Image.Dither.FLOYDSTEINBERG) -> None: """ Convert the image to one with indexed colors (12 bits colorspace palette extended back into 8 bits per channel). If you want to display the image on the actual Commander X16, simply take the lower (or upper) 4 bits of every color channel. There is support for either 8 or 4 bits per pixel (256 or 16 color modes). Dithering is applied as given (default is Floyd-Steinberg). preserve_first_16_colors: set to True to keep the first 16 colors in the palette the same as the X16's default palette. fixed_color_zero: set to tuple (R,G,B) to keep the first color entry in the palette to the given fixed color (4 bit per color channel color space). """ assert not(preserve_first_16_colors and fixed_color_zero), "preserve 16 and fixed color 0 are mutually exclusive" if bits_per_pixel == 8: num_colors = 240 if preserve_first_16_colors else (255 if fixed_color_zero else 256) elif bits_per_pixel == 4: num_colors = 15 if fixed_color_zero else 16 if num_colors==16 and preserve_first_16_colors: return self.quantize_to(default_colors[:16]) elif bits_per_pixel == 2: assert preserve_first_16_colors==False, "bpp is too small for 16 default colors" num_colors = 3 if fixed_color_zero else 4 elif bits_per_pixel == 1: assert preserve_first_16_colors==False, "bpp is too small for 16 default colors" num_colors = 1 if fixed_color_zero else 2 else: raise ValueError("only 8,4,2,1 bpp supported") image = self.img.convert("RGB") palette_image = image.quantize(colors=num_colors, dither=Image.Dither.NONE, method=Image.Quantize.MAXCOVERAGE) if len(palette_image.getpalette()) // 3 > num_colors: palette_image = image.quantize(colors=num_colors - 1, dither=Image.Dither.NONE, method=Image.Quantize.MAXCOVERAGE) palette_rgb = flat_palette_to_rgb(palette_image.getpalette()) palette_rgb = list(reversed(sorted(set(palette_8to4(palette_rgb))))) if preserve_first_16_colors: palette_rgb = default_colors[:16] + palette_rgb elif fixed_color_zero: assert fixed_color_zero[0]<16 and fixed_color_zero[1]<16 and fixed_color_zero[2]<16, "fixed color 0 must to be 4 bits per channel" palette_rgb = [fixed_color_zero] + palette_rgb self.img = image self.quantize_to(palette_rgb, dither) def constrain_size(self, hires: bool = False) -> None: """ If the image is larger than the lores or hires screen size, scale it down so that it fits. If the image already fits, doesn't do anything. """ w, h = self.img.size if hires and (w > 640 or h > 480): self.img.thumbnail((640, 480)) elif w > 320 or h > 240: self.img.thumbnail((320, 240)) self.size = self.img.size self.width, self.height = self.size # utility functions def channel_8to4(color: int) -> int: """Accurate conversion of a single 8 bit color channel value to 4 bits""" return (color * 15 + 135) >> 8 # see https://threadlocalmutex.com/?p=48 def palette_8to4(palette_rgb: RGBList) -> RGBList: """Accurate conversion of a 24 bits palette (8 bits per channel) to a 12 bits palette (4 bits per channel)""" converted = [] for ci in range(len(palette_rgb)): r, g, b = palette_rgb[ci] converted.append((channel_8to4(r), channel_8to4(g), channel_8to4(b))) return converted def reduce_colorspace(palette_rgb: RGBList) -> RGBList: """ Convert 24 bits color space (8 bits per channel) to 12 bits color space (4 bits per channel). The resulting color values are still full 8 bits but their precision is reduced. You can take either the upper or lower 4 bits of each channel byte to get the actual 4 bits precision. """ converted = [] for r, g, b in palette_rgb: r = channel_8to4(r) g = channel_8to4(g) b = channel_8to4(b) converted.append((r << 4 | r, g << 4 | g, b << 4 | b)) return converted def flat_palette_to_rgb(palette: list[int]) -> RGBList: """Converts the flat palette list usually obtained from Pillow images to a list of (r,g,b) tuples""" return [(palette[i], palette[i + 1], palette[i + 2]) for i in range(0, len(palette), 3)] def rgb_palette_to_flat(palette: RGBList) -> list[int]: """Convert a palette of (r,g,b) tuples to a flat list that is usually used by Pillow images""" result = [] for r, g, b in palette: result.append(r) result.append(g) result.append(b) return result def flat_palette_to_vera(palette: list[int]) -> bytearray: """ Convert a flat palette list usually obtained from Pillow images, to GB0R words (RGB in little-endian), suitable for Vera palette registers. The palette must be in 12 bit color space already! Because this routine just takes the upper 4 bits of every channel value. """ return rgb_palette_to_vera(flat_palette_to_rgb(palette)) def rgb_palette_to_vera(palette_rgb: RGBList) -> bytearray: """ Convert a palette in (r,g,b) format to GB0R words (RGB in little-endian), suitable for Vera palette registers. The palette must be in 12 bit color space already! Because this routine just takes the upper 4 bits of every channel value. """ data = bytearray() for r, g, b in palette_rgb: r = r >> 4 g = g >> 4 b = b >> 4 data.append(g << 4 | b) data.append(r) return data