; Monochrome Bitmap pixel graphics routines for the CommanderX16 ; Using the full-screen 640x480 and 320x240 screen modes, in 1 bpp mode (black/white). ; ; No text layer is currently shown, but text can be drawn as part of the bitmap itself. ; For color bitmap graphics, see the gfx_lores or gfx_hires libraries. ; ; NOTE: For sake of speed, NO BOUNDS CHECKING is performed in most routines! ; You'll have to make sure yourself that you're not writing outside of bitmap boundaries! monogfx { %option ignore_unused ; read-only control variables: uword width = 0 uword height = 0 ubyte mode const ubyte MODE_NORMAL = %00000000 const ubyte MODE_STIPPLE = %00000001 const ubyte MODE_INVERT = %00000010 sub lores() { ; enable 320*240 bitmap mode cx16.VERA_CTRL=0 cx16.VERA_DC_VIDEO = (cx16.VERA_DC_VIDEO & %11001111) | %00100000 ; enable only layer 1 cx16.VERA_DC_HSCALE = 64 cx16.VERA_DC_VSCALE = 64 cx16.VERA_L1_CONFIG = %00000100 cx16.VERA_L1_MAPBASE = 0 cx16.VERA_L1_TILEBASE = 0 width = 320 height = 240 mode = MODE_NORMAL clear_screen(false) } sub hires() { ; enable 640*480 bitmap mode cx16.VERA_CTRL=0 cx16.VERA_DC_VIDEO = (cx16.VERA_DC_VIDEO & %11001111) | %00100000 ; enable only layer 1 cx16.VERA_DC_HSCALE = 128 cx16.VERA_DC_VSCALE = 128 cx16.VERA_L1_CONFIG = %00000100 cx16.VERA_L1_MAPBASE = 0 cx16.VERA_L1_TILEBASE = %00000001 width = 640 height = 480 mode = MODE_NORMAL clear_screen(false) } sub textmode() { ; back to normal text mode cx16.r15L = cx16.VERA_DC_VIDEO & %00000111 ; retain chroma + output mode cbm.CINT() cx16.VERA_DC_VIDEO = (cx16.VERA_DC_VIDEO & %11111000) | cx16.r15L } sub drawmode(ubyte dm) { mode = dm } sub clear_screen(bool draw) { position(0, 0) when width { 320 -> { repeat 240/2/8 cs_innerloop640(draw) } 640 -> { repeat 480/8 cs_innerloop640(draw) } } position(0, 0) } sub rect(uword xx, uword yy, uword rwidth, uword rheight, bool draw) { if rwidth==0 or rheight==0 return horizontal_line(xx, yy, rwidth, draw) if rheight==1 return horizontal_line(xx, yy+rheight-1, rwidth, draw) vertical_line(xx, yy+1, rheight-2, draw) if rwidth==1 return vertical_line(xx+rwidth-1, yy+1, rheight-2, draw) } sub fillrect(uword xx, uword yy, uword rwidth, uword rheight, bool draw) { ; Draw a filled rectangle of the given size. ; To fill the whole screen, use clear_screen(draw) instead - it is much faster. if rwidth==0 return repeat rheight { horizontal_line(xx, yy, rwidth, draw) yy++ } } sub horizontal_line(uword xx, uword yy, uword length, bool draw) { ubyte[9] masked_starts = [ 0, %00000001, %00000011, %00000111, %00001111, %00011111, %00111111, %01111111, %11111111] ubyte[9] masked_ends = [ 0, %10000000, %11000000, %11100000, %11110000, %11111000, %11111100, %11111110, %11111111] if length==0 return if length<=8 { ; just use 2 byte writes with shifted mask position2(xx,yy,true) %asm {{ ldy p8v_length lda p8v_masked_ends,y sta cx16.r0L ; save left byte stz P8ZP_SCRATCH_B1 lda p8v_xx and #7 beq + tay lda cx16.r0L - lsr a ror P8ZP_SCRATCH_B1 dey bne - sta cx16.r0L ; new left byte + lda p8v_mode lsr a bcc _dontstipple ; determine stipple pattern lda p8v_yy and #1 beq + lda #%10101010 bne ++ + lda #%01010101 + sta P8ZP_SCRATCH_REG lda cx16.r0L and P8ZP_SCRATCH_REG sta cx16.r0L lda P8ZP_SCRATCH_B1 and P8ZP_SCRATCH_REG sta P8ZP_SCRATCH_B1 _dontstipple lda p8v_draw beq _clear lda cx16.r0L ; left byte ora cx16.VERA_DATA1 sta cx16.VERA_DATA0 lda P8ZP_SCRATCH_B1 ; right byte ora cx16.VERA_DATA1 sta cx16.VERA_DATA0 rts _clear lda cx16.r0L ; left byte eor #255 and cx16.VERA_DATA1 sta cx16.VERA_DATA0 lda P8ZP_SCRATCH_B1 ; right byte eor #255 and cx16.VERA_DATA1 sta cx16.VERA_DATA0 rts }} } ubyte separate_pixels = (8-lsb(xx)) & 7 if separate_pixels!=0 { when mode { MODE_NORMAL -> { position(xx,yy) cx16.VERA_ADDR_H &= %00000111 ; vera auto-increment off if draw cx16.VERA_DATA0 |= masked_starts[separate_pixels] else cx16.VERA_DATA0 &= ~masked_starts[separate_pixels] xx += separate_pixels } MODE_STIPPLE -> { repeat separate_pixels { plot(xx, yy, draw) xx++ } } MODE_INVERT -> { position(xx,yy) cx16.VERA_ADDR_H &= %00000111 ; vera auto-increment off if draw cx16.VERA_DATA0 ^= masked_starts[separate_pixels] else cx16.VERA_DATA0 &= masked_starts[separate_pixels] xx += separate_pixels } } length -= separate_pixels } if length!=0 { position(xx, yy) separate_pixels = lsb(length) & 7 xx += length & $fff8 %asm {{ lsr p8v_length+1 ror p8v_length lsr p8v_length+1 ror p8v_length lsr p8v_length+1 ror p8v_length lda p8v_draw bne + ldy #0 ; black bra _loop + lda p8v_mode lsr a bcs _stipple lsr a bcs _inverted ldy #255 ; normal drawing mode bra _loop _inverted lda #0 jsr cx16.vaddr_clone _invertedloop lda p8v_length ora p8v_length+1 beq _done lda cx16.VERA_DATA1 eor #255 sta cx16.VERA_DATA0 lda p8v_length bne + dec p8v_length+1 + dec p8v_length bra _invertedloop _stipple lda p8v_yy and #1 ; determine stipple pattern to use bne + ldy #%01010101 bra _loop + ldy #%10101010 _loop lda p8v_length ora p8v_length+1 beq _done sty cx16.VERA_DATA0 lda p8v_length bne + dec p8v_length+1 + dec p8v_length bra _loop _done }} when mode { MODE_NORMAL -> { cx16.VERA_ADDR_H &= %00000111 ; vera auto-increment off if draw cx16.VERA_DATA0 |= masked_ends[separate_pixels] else cx16.VERA_DATA0 &= ~masked_ends[separate_pixels] } MODE_STIPPLE -> { repeat separate_pixels { plot(xx, yy, draw) xx++ } } MODE_INVERT -> { cx16.VERA_ADDR_H &= %00000111 ; vera auto-increment off if draw cx16.VERA_DATA0 ^= masked_ends[separate_pixels] else cx16.VERA_DATA0 &= masked_ends[separate_pixels] } } } cx16.VERA_ADDR_H &= %00000111 ; vera auto-increment off again } sub safe_horizontal_line(uword xx, uword yy, uword length, bool draw) { ; does bounds checking and clipping if msb(yy)&$80!=0 or yy>=height return if msb(xx)&$80!=0 { length += xx xx = 0 } if xx>=width return if xx+length>width length = width-xx if length>width return horizontal_line(xx, yy, length, draw) } sub vertical_line(uword xx, uword yy, uword lheight, bool draw) { cx16.r15L = monogfx.plot.maskbits[xx as ubyte & 7] ; bitmask if draw { %asm {{ lda p8v_mode and #p8c_MODE_INVERT beq + lda #$45 ; eor ZP modifying code bne ++ + lda #$05 ; ora ZP modifying code + sta drawmode }} if mode!=MODE_STIPPLE { ; draw continuous line. position2(xx,yy,true) if width==320 set_both_strides(11) ; 40 increment = 1 line in 320 px monochrome else set_both_strides(12) ; 80 increment = 1 line in 640 px monochrome repeat lheight { %asm {{ lda cx16.VERA_DATA0 drawmode: ora cx16.r15L sta cx16.VERA_DATA1 }} } } else { ; draw stippled line. if (xx ^ yy)&1==0 { yy++ lheight-- } lheight++ ; because it is divided by 2 later, don't round off the last pixel position2(xx,yy,true) if width==320 set_both_strides(12) ; 80 increment = 2 line in 320 px monochrome else set_both_strides(13) ; 160 increment = 2 line in 640 px monochrome repeat lheight/2 { %asm {{ lda cx16.VERA_DATA0 ora cx16.r15L sta cx16.VERA_DATA1 }} } } } else { position2(xx,yy,true) cx16.r15 = ~cx16.r15 ; erase pixels if width==320 set_both_strides(11) ; 40 increment = 1 line in 320 px monochrome else set_both_strides(12) ; 80 increment = 1 line in 640 px monochrome repeat lheight { %asm {{ lda cx16.VERA_DATA0 and cx16.r15L sta cx16.VERA_DATA1 }} } } sub set_both_strides(ubyte stride) { stride <<= 4 cx16.VERA_CTRL = 1 cx16.VERA_ADDR_H = cx16.VERA_ADDR_H & %00000111 | stride cx16.VERA_CTRL = 0 cx16.VERA_ADDR_H = cx16.VERA_ADDR_H & %00000111 | stride } } sub line(uword @zp x1, uword @zp y1, uword @zp x2, uword @zp y2, bool draw) { ; Bresenham algorithm. ; This code special-cases various quadrant loops to allow simple ++ and -- operations. if y1>y2 { ; make sure dy is always positive to have only 4 instead of 8 special cases cx16.r0 = x1 x1 = x2 x2 = cx16.r0 cx16.r0 = y1 y1 = y2 y2 = cx16.r0 } word @zp dx = (x2 as word)-x1 word @zp dy = (y2 as word)-y1 if dx==0 { vertical_line(x1, y1, abs(dy) as uword +1, draw) return } if dy==0 { if x1>x2 x1=x2 horizontal_line(x1, y1, abs(dx) as uword +1, draw) return } word @zp d = 0 cx16.r1L = 1 ;; true ; 'positive_ix' if dx < 0 { dx = -dx cx16.r1L = 0 ;; false } word @zp dx2 = dx*2 word @zp dy2 = dy*2 cx16.r14 = x1 ; internal plot X if dx >= dy { if cx16.r1L!=0 { repeat { plot(cx16.r14, y1, draw) if cx16.r14==x2 return cx16.r14++ d += dy2 if d > dx { y1++ d -= dx2 } } } else { repeat { plot(cx16.r14, y1, draw) if cx16.r14==x2 return cx16.r14-- d += dy2 if d > dx { y1++ d -= dx2 } } } } else { if cx16.r1L!=0 { repeat { plot(cx16.r14, y1, draw) if y1 == y2 return y1++ d += dx2 if d > dy { cx16.r14++ d -= dy2 } } } else { repeat { plot(cx16.r14, y1, draw) if y1 == y2 return y1++ d += dx2 if d > dy { cx16.r14-- d -= dy2 } } } } } sub circle(uword @zp xcenter, uword @zp ycenter, ubyte radius, bool draw) { ; Warning: NO BOUNDS CHECKS. Make sure circle fits in the screen. ; Midpoint algorithm. if radius==0 return ubyte @zp xx = radius ubyte @zp yy = 0 word @zp decisionOver2 = (1 as word)-xx ; R14 = internal plot X ; R15 = internal plot Y while xx>=yy { cx16.r14 = xcenter + xx cx16.r15 = ycenter + yy plotq() cx16.r14 = xcenter - xx plotq() cx16.r14 = xcenter + xx cx16.r15 = ycenter - yy plotq() cx16.r14 = xcenter - xx plotq() cx16.r14 = xcenter + yy cx16.r15 = ycenter + xx plotq() cx16.r14 = xcenter - yy plotq() cx16.r14 = xcenter + yy cx16.r15 = ycenter - xx plotq() cx16.r14 = xcenter - yy plotq() yy++ if decisionOver2>=0 { xx-- decisionOver2 -= xx*$0002 } decisionOver2 += yy*$0002 decisionOver2++ } sub plotq() { ; cx16.r14 = x, cx16.r15 = y, draw=draw plot(cx16.r14, cx16.r15, draw) } } sub safe_circle(uword @zp xcenter, uword @zp ycenter, ubyte radius, bool draw) { ; Does bounds checking and clipping. ; Midpoint algorithm. if radius==0 return ubyte @zp xx = radius ubyte @zp yy = 0 word @zp decisionOver2 = (1 as word)-xx ; R14 = internal plot X ; R15 = internal plot Y while xx>=yy { cx16.r14 = xcenter + xx cx16.r15 = ycenter + yy plotq() cx16.r14 = xcenter - xx plotq() cx16.r14 = xcenter + xx cx16.r15 = ycenter - yy plotq() cx16.r14 = xcenter - xx plotq() cx16.r14 = xcenter + yy cx16.r15 = ycenter + xx plotq() cx16.r14 = xcenter - yy plotq() cx16.r14 = xcenter + yy cx16.r15 = ycenter - xx plotq() cx16.r14 = xcenter - yy plotq() yy++ if decisionOver2>=0 { xx-- decisionOver2 -= xx*$0002 } decisionOver2 += yy*$0002 decisionOver2++ } sub plotq() { ; cx16.r14 = x, cx16.r15 = y, draw=draw safe_plot(cx16.r14, cx16.r15, draw) } } sub disc(uword @zp xcenter, uword @zp ycenter, ubyte @zp radius, bool draw) { ; Warning: NO BOUNDS CHECKS. Make sure circle fits in the screen. ; Midpoint algorithm, filled if radius==0 return ubyte @zp yy = 0 word @zp decisionOver2 = (1 as word)-radius uword last_y3 = ycenter+radius uword last_y4 = ycenter-radius uword new_y3, new_y4 while radius>=yy { horizontal_line(xcenter-radius, ycenter+yy, radius*$0002+1, draw) horizontal_line(xcenter-radius, ycenter-yy, radius*$0002+1, draw) new_y3 = ycenter+radius if new_y3 != last_y3 { horizontal_line(xcenter-yy, last_y3, yy*$0002+1, draw) last_y3 = new_y3 } new_y4 = ycenter-radius if new_y4 != last_y4 { horizontal_line(xcenter-yy, last_y4, yy*$0002+1, draw) last_y4 = new_y4 } yy++ if decisionOver2>=0 { radius-- decisionOver2 -= radius*$0002 } decisionOver2 += yy*$0002 decisionOver2++ } ; draw the final two spans yy-- horizontal_line(xcenter-yy, last_y3, yy*$0002+1, draw) horizontal_line(xcenter-yy, last_y4, yy*$0002+1, draw) } sub safe_disc(uword @zp xcenter, uword @zp ycenter, ubyte @zp radius, bool draw) { ; Does bounds checking and clipping. ; Midpoint algorithm, filled if radius==0 return ubyte @zp yy = 0 word @zp decisionOver2 = (1 as word)-radius uword last_y3 = ycenter+radius uword last_y4 = ycenter-radius uword new_y3, new_y4 while radius>=yy { safe_horizontal_line(xcenter-radius, ycenter+yy, radius*$0002+1, draw) safe_horizontal_line(xcenter-radius, ycenter-yy, radius*$0002+1, draw) new_y3 = ycenter+radius if new_y3 != last_y3 { safe_horizontal_line(xcenter-yy, last_y3, yy*$0002+1, draw) last_y3 = new_y3 } new_y4 = ycenter-radius if new_y4 != last_y4 { safe_horizontal_line(xcenter-yy, last_y4, yy*$0002+1, draw) last_y4 = new_y4 } yy++ if decisionOver2>=0 { radius-- decisionOver2 -= radius*$0002 } decisionOver2 += yy*$0002 decisionOver2++ } ; draw the final two spans yy-- safe_horizontal_line(xcenter-yy, last_y3, yy*$0002+1, draw) safe_horizontal_line(xcenter-yy, last_y4, yy*$0002+1, draw) } sub plot(uword @zp xx, uword @zp yy, bool @zp draw) { ubyte[8] @shared maskbits = [128, 64, 32, 16, 8, 4, 2, 1] if draw { ; solid color or perhaps stipple %asm {{ lda p8v_mode lsr a bcs + lsr a bcs p8l_invert bra p8l_nostipple + ; stipple mode lda p8v_xx eor p8v_yy and #1 }} if_nz { nostipple: prepare() %asm {{ tsb cx16.VERA_DATA0 }} } } else { ; only erase prepare() %asm {{ trb cx16.VERA_DATA0 }} } return invert: prepare() %asm {{ lda cx16.VERA_DATA0 eor p8v_maskbits,y sta cx16.VERA_DATA0 }} return sub prepare() { %asm {{ lda p8v_xx and #7 pha ; xbits }} xx /= 8 if width==320 xx += yy*(320/8) else xx += yy*(640/8) %asm {{ stz cx16.VERA_CTRL stz cx16.VERA_ADDR_H lda p8v_xx+1 sta cx16.VERA_ADDR_M lda p8v_xx sta cx16.VERA_ADDR_L ply ; xbits lda p8v_maskbits,y }} } } sub safe_plot(uword xx, uword yy, bool draw) { ; A plot that does bounds checks to see if the pixel is inside the screen. if msb(xx)&$80!=0 or msb(yy)&$80!=0 return if xx >= width or yy >= height return plot(xx, yy, draw) } sub pget(uword @zp xx, uword yy) -> bool { %asm {{ lda p8v_xx and #7 pha ; xbits }} xx /= 8 if width==320 xx += yy*(320/8) else xx += yy*(640/8) %asm {{ stz cx16.VERA_CTRL stz cx16.VERA_ADDR_H lda p8v_xx+1 sta cx16.VERA_ADDR_M lda p8v_xx sta cx16.VERA_ADDR_L ply ; xbits lda p8s_plot.p8v_maskbits,y and cx16.VERA_DATA0 beq + lda #1 + rts }} } sub fill(uword x, uword y, bool draw) { ; Non-recursive scanline flood fill. ; based loosely on code found here https://www.codeproject.com/Articles/6017/QuickFill-An-efficient-flood-fill-algorithm ; with the fixes applied to the seedfill_4 routine as mentioned in the comments. const ubyte MAXDEPTH = 100 word @zp xx = x as word word @zp yy = y as word word[MAXDEPTH] @split @shared stack_xl word[MAXDEPTH] @split @shared stack_xr word[MAXDEPTH] @split @shared stack_y byte[MAXDEPTH] @shared stack_dy cx16.r12L = 0 ; stack pointer word x1 word x2 byte dy cx16.r10L = draw as ubyte sub push_stack(word sxl, word sxr, word sy, byte sdy) { if cx16.r12L==MAXDEPTH return cx16.r0s = sy+sdy if cx16.r0s>=0 and cx16.r0s<=height-1 { ;; stack_xl[cx16.r12L] = sxl ;; stack_xr[cx16.r12L] = sxr ;; stack_y[cx16.r12L] = sy ;; stack_dy[cx16.r12L] = sdy ;; cx16.r12L++ %asm {{ ldy cx16.r12L lda p8v_sxl sta p8v_stack_xl_lsb,y lda p8v_sxl+1 sta p8v_stack_xl_msb,y lda p8v_sxr sta p8v_stack_xr_lsb,y lda p8v_sxr+1 sta p8v_stack_xr_msb,y lda p8v_sy sta p8v_stack_y_lsb,y lda p8v_sy+1 sta p8v_stack_y_msb,y ldy cx16.r12L lda p8v_sdy sta p8v_stack_dy,y inc cx16.r12L }} } } sub pop_stack() { ;; cx16.r12L-- ;; x1 = stack_xl[cx16.r12L] ;; x2 = stack_xr[cx16.r12L] ;; y = stack_y[cx16.r12L] ;; dy = stack_dy[cx16.r12L] %asm {{ dec cx16.r12L ldy cx16.r12L lda p8v_stack_xl_lsb,y sta p8v_x1 lda p8v_stack_xl_msb,y sta p8v_x1+1 lda p8v_stack_xr_lsb,y sta p8v_x2 lda p8v_stack_xr_msb,y sta p8v_x2+1 lda p8v_stack_y_lsb,y sta p8v_yy lda p8v_stack_y_msb,y sta p8v_yy+1 ldy cx16.r12L lda p8v_stack_dy,y sta p8v_dy }} yy+=dy } cx16.r11L = pget(xx as uword, yy as uword) as ubyte ; old_color if cx16.r11L == cx16.r10L return if xx<0 or xx>width-1 or yy<0 or yy>height-1 return push_stack(xx, xx, yy, 1) push_stack(xx, xx, yy + 1, -1) word left = 0 while cx16.r12L!=0 { pop_stack() xx = x1 if fill_scanline_left() goto skip left = xx + 1 if left < x1 push_stack(left, x1 - 1, yy, -dy) xx = x1 + 1 do { fill_scanline_right() push_stack(left, xx - 1, yy, dy) if xx > x2 + 1 push_stack(x2 + 1, xx - 1, yy, -dy) skip: xx++ while xx <= x2 { if pget(xx as uword, yy as uword) as ubyte == cx16.r11L break xx++ } left = xx } until xx>x2 } sub fill_scanline_left() -> bool { ; TODO maybe this could use vera auto decrement, but that would require some clever masking calculations cx16.r9s = xx while xx >= 0 { if pgetset() break xx-- } return xx==cx16.r9s } sub fill_scanline_right() { ; TODO maybe this could use vera auto increment, but that would require some clever masking calculations cx16.r9s = xx while xx <= width-1 { if pgetset() break xx++ } } sub pgetset() -> bool { ; test and optionally set a pixel word @zp xpos = xx %asm {{ lda p8v_xpos and #7 pha ; xbits }} xpos /= 8 if width==320 xpos += yy*(320/8) as uword else xpos += yy*(640/8) as uword %asm {{ stz cx16.VERA_CTRL stz cx16.VERA_ADDR_H lda p8v_xpos+1 sta cx16.VERA_ADDR_M lda p8v_xpos sta cx16.VERA_ADDR_L ply ; xbits lda p8s_plot.p8v_maskbits,y and cx16.VERA_DATA0 beq + lda #1 + ; cx16.r11L = seed color to check against eor cx16.r11L beq + rts + ; cx16.r10L = new color to set lda p8s_plot.p8v_maskbits,y ldx cx16.r10L beq + tsb cx16.VERA_DATA0 bra ++ + trb cx16.VERA_DATA0 + lda #0 rts }} } } sub position(uword @zp xx, uword yy) { if width==320 cx16.r0 = yy*(320/8) else cx16.r0 = yy*(640/8) cx16.vaddr(0, cx16.r0+(xx/8), 0, 1) } sub position2(uword @zp xx, uword yy, bool also_port_1) { position(xx, yy) if also_port_1 cx16.vaddr_clone(0) } const ubyte charset_bank = $1 const uword charset_addr = $f000 ; in bank 1, so $1f000 sub text_charset(ubyte charset) { ; -- select the text charset to use with the text() routine ; the charset number is the same as for the cx16.screen_set_charset() ROM function. ; 1 = ISO charset, 2 = PETSCII uppercase+graphs, 3= PETSCII uppercase+lowercase. cx16.screen_set_charset(charset, 0) } sub text(uword @zp xx, uword yy, bool draw, str sctextptr) { ; -- Write some text at the given pixel position. The text string must be in screencode encoding (not petscii!). ; You must also have called text_charset() first to select and prepare the character set to use. uword chardataptr ubyte[8] @shared char_bitmap_bytes_left ubyte[8] @shared char_bitmap_bytes_right cx16.r3 = sctextptr %asm {{ lda p8v_mode cmp #p8c_MODE_INVERT beq + lda #$0d ; ORA abs modifying code bne ++ + lda #$4d ; EOR abs modifying code + sta cdraw_mod1 sta cdraw_mod2 }} while @(cx16.r3)!=0 { chardataptr = charset_addr + @(cx16.r3) * $0008 ; copy the character bitmap into RAM cx16.vaddr_autoincr(charset_bank, chardataptr, 0, 1) %asm {{ ; pre-shift the bits lda p8s_text.p8v_xx and #7 sta P8ZP_SCRATCH_B1 ldy #0 - lda cx16.VERA_DATA0 stz P8ZP_SCRATCH_REG ldx P8ZP_SCRATCH_B1 cpx #0 beq + - lsr a ror P8ZP_SCRATCH_REG dex bne - + sta p8v_char_bitmap_bytes_left,y lda P8ZP_SCRATCH_REG sta p8v_char_bitmap_bytes_right,y iny cpy #8 bne -- }} ; left part of shifted char position2(xx, yy, true) set_autoincrs() if draw { %asm {{ ldy #0 - lda p8v_char_bitmap_bytes_left,y cdraw_mod1 ora cx16.VERA_DATA1 sta cx16.VERA_DATA0 iny cpy #8 bne - }} } else { %asm {{ ldy #0 - lda p8v_char_bitmap_bytes_left,y eor #255 and cx16.VERA_DATA1 sta cx16.VERA_DATA0 iny cpy #8 bne - }} } ; right part of shifted char if lsb(xx) & 7 !=0 { position2(xx+8, yy, true) set_autoincrs() if draw { %asm {{ ldy #0 - lda p8v_char_bitmap_bytes_right,y cdraw_mod2 ora cx16.VERA_DATA1 sta cx16.VERA_DATA0 iny cpy #8 bne - }} } else { %asm {{ ldy #0 - lda p8v_char_bitmap_bytes_right,y eor #255 and cx16.VERA_DATA1 sta cx16.VERA_DATA0 iny cpy #8 bne - }} } } cx16.r3++ xx += 8 } sub set_autoincrs() { ; set autoincrements to go to next pixel row (40 or 80 increment) if width==320 { cx16.VERA_CTRL = 1 cx16.VERA_ADDR_H = cx16.VERA_ADDR_H & $0f | (11<<4) cx16.VERA_CTRL = 0 cx16.VERA_ADDR_H = cx16.VERA_ADDR_H & $0f | (11<<4) } else { cx16.VERA_CTRL = 1 cx16.VERA_ADDR_H = cx16.VERA_ADDR_H & $0f | (12<<4) cx16.VERA_CTRL = 0 cx16.VERA_ADDR_H = cx16.VERA_ADDR_H & $0f | (12<<4) } } } asmsub cs_innerloop640(bool draw @A) clobbers(Y) { ; using verafx 32 bits writes here would make this faster but it's safer to ; use verafx only explicitly when you know what you're doing. %asm {{ cmp #0 beq + lda #255 + ldy #80 - sta cx16.VERA_DATA0 sta cx16.VERA_DATA0 sta cx16.VERA_DATA0 sta cx16.VERA_DATA0 sta cx16.VERA_DATA0 sta cx16.VERA_DATA0 sta cx16.VERA_DATA0 sta cx16.VERA_DATA0 dey bne - rts }} } }