adpcm { ; IMA ADPCM decoder. Supports mono and stereo streams. ; https://wiki.multimedia.cx/index.php/IMA_ADPCM ; https://wiki.multimedia.cx/index.php/Microsoft_IMA_ADPCM ; IMA ADPCM encodes two 16-bit PCM audio samples in 1 byte (1 word per nibble) ; thus compressing the audio data by a factor of 4. ; The encoding precision is about 13 bits per sample so it's a lossy compression scheme. ; ; HOW TO CREATE IMA-ADPCM ENCODED AUDIO? Use sox or ffmpeg like so (example): ; $ sox --guard source.mp3 -r 8000 -c 1 -e ima-adpcm out.wav trim 01:27.50 00:09 ; $ ffmpeg -i source.mp3 -ss 00:01:27.50 -to 00:01:36.50 -ar 8000 -ac 1 -c:a adpcm_ima_wav -block_size 256 -map_metadata -1 -bitexact out.wav ; And/or use a tool such as https://github.com/dbry/adpcm-xq (make sure to set the correct block size, -b8) ; ; NOTE: for speed reasons this implementation doesn't guard against clipping errors. ; if the output sounds distorted, lower the volume of the source waveform to 80% and try again etc. ; IMA-ADPCM file data stream format: ; If the IMA data is mono, an individual chunk of data begins with the following preamble: ; bytes 0-1: initial predictor (in little-endian format) ; byte 2: initial index ; byte 3: unknown, usually 0 and is probably reserved ; If the IMA data is stereo, a chunk begins with two preambles, one for the left audio channel and one for the right channel. ; (so we have 8 bytes of preamble). ; The remaining bytes in the chunk are the IMA nibbles. The first 4 bytes, or 8 nibbles, ; belong to the left channel and -if it's stereo- the next 4 bytes belong to the right channel. ubyte[] t_index = [ -1, -1, -1, -1, 2, 4, 6, 8, -1, -1, -1, -1, 2, 4, 6, 8] uword[] @split t_step = [ 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 19, 21, 23, 25, 28, 31, 34, 37, 41, 45, 50, 55, 60, 66, 73, 80, 88, 97, 107, 118, 130, 143, 157, 173, 190, 209, 230, 253, 279, 307, 337, 371, 408, 449, 494, 544, 598, 658, 724, 796, 876, 963, 1060, 1166, 1282, 1411, 1552, 1707, 1878, 2066, 2272, 2499, 2749, 3024, 3327, 3660, 4026, 4428, 4871, 5358, 5894, 6484, 7132, 7845, 8630, 9493, 10442, 11487, 12635, 13899, 15289, 16818, 18500, 20350, 22385, 24623, 27086, 29794, 32767] uword @requirezp predict ; decoded 16 bit pcm sample for first channel. uword @requirezp predict_2 ; decoded 16 bit pcm sample for second channel. ubyte @requirezp index ubyte @requirezp index_2 uword @requirezp pstep uword @requirezp pstep_2 sub init(uword startPredict, ubyte startIndex) { ; initialize first decoding channel. predict = startPredict index = startIndex pstep = t_step[index] } sub init_second(uword startPredict_2, ubyte startIndex_2) { ; initialize second decoding channel. predict_2 = startPredict_2 index_2 = startIndex_2 pstep_2 = t_step[index_2] } sub decode_nibble(ubyte nibble) { ; Decoder for nibbles for the first channel. ; this is the hotspot of the decoder algorithm! ; Note that the generated assembly from this is pretty efficient, ; rewriting it by hand in asm seems to improve it only 5-10% cx16.r0s = 0 ; difference if nibble & %0100 !=0 cx16.r0s += pstep pstep >>= 1 if nibble & %0010 !=0 cx16.r0s += pstep pstep >>= 1 if nibble & %0001 !=0 cx16.r0s += pstep pstep >>= 1 cx16.r0s += pstep if nibble & %1000 !=0 predict -= cx16.r0 else predict += cx16.r0 ; NOTE: the original C/Python code uses a 32 bits prediction value and clips it to a 16 bit word ; but for speed reasons we only work with 16 bit words here all the time (with possible clipping error) ; if predicted > 32767: ; predicted = 32767 ; elif predicted < -32767: ; predicted = - 32767 index += t_index[nibble] if_neg index = 0 else if index >= len(t_step)-1 index = len(t_step)-1 pstep = t_step[index] } sub decode_nibble_second(ubyte nibble) { ; Decoder for nibbles for the second channel. ; this is the hotspot of the decoder algorithm! ; Note that the generated assembly from this is pretty efficient, ; rewriting it by hand in asm seems to improve it only 5-10% cx16.r0s = 0 ; difference if nibble & %0100 !=0 cx16.r0s += pstep_2 pstep_2 >>= 1 if nibble & %0010 !=0 cx16.r0s += pstep_2 pstep_2 >>= 1 if nibble & %0001 !=0 cx16.r0s += pstep_2 pstep_2 >>= 1 cx16.r0s += pstep_2 if nibble & %1000 !=0 predict_2 -= cx16.r0 else predict_2 += cx16.r0 ; NOTE: the original C/Python code uses a 32 bits prediction value and clips it to a 16 bit word ; but for speed reasons we only work with 16 bit words here all the time (with possible clipping error) ; if predicted > 32767: ; predicted = 32767 ; elif predicted < -32767: ; predicted = - 32767 index_2 += t_index[nibble] if_neg index_2 = 0 else if index_2 >= len(t_step)-1 index_2 = len(t_step)-1 pstep_2 = t_step[index_2] } }