; Prog8 definitions for the Commodore-64 ; Including memory registers, I/O registers, Basic and Kernal subroutines. %option no_symbol_prefixing, ignore_unused cbm { ; Commodore (CBM) common variables, vectors and kernal routines &ubyte TIME_HI = $a0 ; software jiffy clock, hi byte &ubyte TIME_MID = $a1 ; .. mid byte &ubyte TIME_LO = $a2 ; .. lo byte. Updated by IRQ every 1/60 sec &ubyte STATUS = $90 ; kernal status variable for I/O &ubyte STKEY = $91 ; various keyboard statuses (updated by IRQ) &ubyte SFDX = $cb ; current key pressed (matrix value) (updated by IRQ) &ubyte SHFLAG = $028d ; various modifier key status (updated by IRQ) &ubyte COLOR = $0286 ; cursor color &ubyte HIBASE = $0288 ; screen base address / 256 (hi-byte of screen memory address) &uword IERROR = $0300 &uword IMAIN = $0302 &uword ICRNCH = $0304 &uword IQPLOP = $0306 &uword IGONE = $0308 &uword IEVAL = $030a &ubyte SAREG = $030c ; register storage for A for SYS calls &ubyte SXREG = $030d ; register storage for X for SYS calls &ubyte SYREG = $030e ; register storage for Y for SYS calls &ubyte SPREG = $030f ; register storage for P (status register) for SYS calls &uword USRADD = $0311 ; vector for the USR() basic command ; $0313 is unused. &uword CINV = $0314 ; IRQ vector (in ram) &uword CBINV = $0316 ; BRK vector (in ram) &uword NMINV = $0318 ; NMI vector (in ram) &uword IOPEN = $031a &uword ICLOSE = $031c &uword ICHKIN = $031e &uword ICKOUT = $0320 &uword ICLRCH = $0322 &uword IBASIN = $0324 &uword IBSOUT = $0326 &uword ISTOP = $0328 &uword IGETIN = $032a &uword ICLALL = $032c &uword USERCMD = $032e &uword ILOAD = $0330 &uword ISAVE = $0332 &uword NMI_VEC = $FFFA ; 6502 nmi vector, determined by the kernal if banked in &uword RESET_VEC = $FFFC ; 6502 reset vector, determined by the kernal if banked in &uword IRQ_VEC = $FFFE ; 6502 interrupt vector, determined by the kernal if banked in ; the default addresses for the character screen chars and colors const uword Screen = $0400 ; to have this as an array[40*25] the compiler would have to support array size > 255 const uword Colors = $d800 ; to have this as an array[40*25] the compiler would have to support array size > 255 ; ---- CBM ROM kernal routines (C64 addresses) ---- romsub $AB1E = STROUT(uword strptr @ AY) clobbers(A, X, Y) ; print null-terminated string (use txt.print instead) romsub $E544 = CLEARSCR() clobbers(A,X,Y) ; clear the screen romsub $E566 = HOMECRSR() clobbers(A,X,Y) ; cursor to top left of screen romsub $EA31 = IRQDFRT() clobbers(A,X,Y) ; default IRQ routine romsub $EA81 = IRQDFEND() clobbers(A,X,Y) ; default IRQ end/cleanup romsub $FF81 = CINT() clobbers(A,X,Y) ; (alias: SCINIT) initialize screen editor and video chip romsub $FF84 = IOINIT() clobbers(A, X) ; initialize I/O devices (CIA, SID, IRQ) romsub $FF87 = RAMTAS() clobbers(A,X,Y) ; initialize RAM, tape buffer, screen romsub $FF8A = RESTOR() clobbers(A,X,Y) ; restore default I/O vectors romsub $FF8D = VECTOR(uword userptr @ XY, bool dir @ Pc) clobbers(A,Y) ; read/set I/O vector table romsub $FF90 = SETMSG(ubyte value @ A) ; set Kernal message control flag romsub $FF93 = SECOND(ubyte address @ A) clobbers(A) ; (alias: LSTNSA) send secondary address after LISTEN romsub $FF96 = TKSA(ubyte address @ A) clobbers(A) ; (alias: TALKSA) send secondary address after TALK romsub $FF99 = MEMTOP(uword address @ XY, bool dir @ Pc) -> uword @ XY ; read/set top of memory pointer romsub $FF9C = MEMBOT(uword address @ XY, bool dir @ Pc) -> uword @ XY ; read/set bottom of memory pointer romsub $FF9F = SCNKEY() clobbers(A,X,Y) ; scan the keyboard romsub $FFA2 = SETTMO(ubyte timeout @ A) ; set time-out flag for IEEE bus romsub $FFA5 = ACPTR() -> ubyte @ A ; (alias: IECIN) input byte from serial bus romsub $FFA8 = CIOUT(ubyte databyte @ A) ; (alias: IECOUT) output byte to serial bus romsub $FFAB = UNTLK() clobbers(A) ; command serial bus device to UNTALK romsub $FFAE = UNLSN() clobbers(A) ; command serial bus device to UNLISTEN romsub $FFB1 = LISTEN(ubyte device @ A) clobbers(A) ; command serial bus device to LISTEN romsub $FFB4 = TALK(ubyte device @ A) clobbers(A) ; command serial bus device to TALK romsub $FFB7 = READST() -> ubyte @ A ; read I/O status word (use CLEARST to reset it to 0) romsub $FFBA = SETLFS(ubyte logical @ A, ubyte device @ X, ubyte secondary @ Y) ; set logical file parameters romsub $FFBD = SETNAM(ubyte namelen @ A, str filename @ XY) ; set filename parameters romsub $FFC0 = OPEN() clobbers(X,Y) -> bool @Pc, ubyte @A ; (via 794 ($31A)) open a logical file romsub $FFC3 = CLOSE(ubyte logical @ A) clobbers(A,X,Y) ; (via 796 ($31C)) close a logical file romsub $FFC6 = CHKIN(ubyte logical @ X) clobbers(A,X) -> bool @Pc ; (via 798 ($31E)) define an input channel romsub $FFC9 = CHKOUT(ubyte logical @ X) clobbers(A,X) ; (via 800 ($320)) define an output channel romsub $FFCC = CLRCHN() clobbers(A,X) ; (via 802 ($322)) restore default devices romsub $FFCF = CHRIN() clobbers(X, Y) -> ubyte @ A ; (via 804 ($324)) input a character (for keyboard, read a whole line from the screen) A=byte read. romsub $FFD2 = CHROUT(ubyte character @ A) ; (via 806 ($326)) output a character romsub $FFD5 = LOAD(ubyte verify @ A, uword address @ XY) -> bool @Pc, ubyte @ A, uword @ XY ; (via 816 ($330)) load from device romsub $FFD8 = SAVE(ubyte zp_startaddr @ A, uword endaddr @ XY) -> bool @ Pc, ubyte @ A ; (via 818 ($332)) save to a device romsub $FFDB = SETTIM(ubyte low @ A, ubyte middle @ X, ubyte high @ Y) ; set the software clock romsub $FFDE = RDTIM() -> ubyte @ A, ubyte @ X, ubyte @ Y ; read the software clock (A=lo,X=mid,Y=high) romsub $FFE1 = STOP() clobbers(X) -> bool @ Pz, ubyte @ A ; (via 808 ($328)) check the STOP key (and some others in A) romsub $FFE4 = GETIN() clobbers(X,Y) -> bool @Pc, ubyte @ A ; (via 810 ($32A)) get a character romsub $FFE7 = CLALL() clobbers(A,X) ; (via 812 ($32C)) close all files romsub $FFEA = UDTIM() clobbers(A,X) ; update the software clock romsub $FFED = SCREEN() -> ubyte @ X, ubyte @ Y ; read number of screen rows and columns romsub $FFF0 = PLOT(ubyte col @ Y, ubyte row @ X, bool dir @ Pc) -> ubyte @ X, ubyte @ Y ; read/set position of cursor on screen. Use txt.plot for a 'safe' wrapper that preserves X. romsub $FFF3 = IOBASE() -> uword @ XY ; read base address of I/O devices asmsub STOP2() clobbers(X) -> ubyte @A { ; -- check if STOP key was pressed, returns true if so. More convenient to use than STOP() because that only sets the carry status flag. %asm {{ jsr cbm.STOP beq + lda #0 rts + lda #1 rts }} } asmsub RDTIM16() clobbers(X) -> uword @AY { ; -- like RDTIM() but only returning the lower 16 bits in AY for convenience %asm {{ jsr cbm.RDTIM pha txa tay pla rts }} } sub CLEARST() { ; -- Set the ST status variable back to 0. (there's no direct kernal call for this) ; Note: a drive error state (blinking led) isn't cleared! You can use diskio.status() to clear that. SETNAM(0, $0000) SETLFS(15, 3, 15) void OPEN() CLOSE(15) } } c64 { ; C64 I/O registers (VIC, SID, CIA) ; the default locations of the 8 sprite pointers (store address of sprite / 64) ; (depending on the VIC bank and screen ram address selection these can be shifted around though, ; see the two routines after this for a dynamic way of determining the correct memory location) &ubyte SPRPTR0 = 2040 &ubyte SPRPTR1 = 2041 &ubyte SPRPTR2 = 2042 &ubyte SPRPTR3 = 2043 &ubyte SPRPTR4 = 2044 &ubyte SPRPTR5 = 2045 &ubyte SPRPTR6 = 2046 &ubyte SPRPTR7 = 2047 &ubyte[8] SPRPTR = 2040 ; the 8 sprite pointers as an array. ; ---- VIC-II 6567/6569/856x registers ---- &ubyte SP0X = $d000 &ubyte SP0Y = $d001 &ubyte SP1X = $d002 &ubyte SP1Y = $d003 &ubyte SP2X = $d004 &ubyte SP2Y = $d005 &ubyte SP3X = $d006 &ubyte SP3Y = $d007 &ubyte SP4X = $d008 &ubyte SP4Y = $d009 &ubyte SP5X = $d00a &ubyte SP5Y = $d00b &ubyte SP6X = $d00c &ubyte SP6Y = $d00d &ubyte SP7X = $d00e &ubyte SP7Y = $d00f &ubyte[16] SPXY = $d000 ; the 8 sprite X and Y registers as an array. &uword[8] SPXYW = $d000 ; the 8 sprite X and Y registers as a combined xy word array. &ubyte MSIGX = $d010 &ubyte SCROLY = $d011 &ubyte RASTER = $d012 &ubyte LPENX = $d013 &ubyte LPENY = $d014 &ubyte SPENA = $d015 &ubyte SCROLX = $d016 &ubyte YXPAND = $d017 &ubyte VMCSB = $d018 &ubyte VICIRQ = $d019 &ubyte IREQMASK = $d01a &ubyte SPBGPR = $d01b &ubyte SPMC = $d01c &ubyte XXPAND = $d01d &ubyte SPSPCL = $d01e &ubyte SPBGCL = $d01f &ubyte EXTCOL = $d020 ; border color &ubyte BGCOL0 = $d021 ; screen color &ubyte BGCOL1 = $d022 &ubyte BGCOL2 = $d023 &ubyte BGCOL4 = $d024 &ubyte SPMC0 = $d025 &ubyte SPMC1 = $d026 &ubyte SP0COL = $d027 &ubyte SP1COL = $d028 &ubyte SP2COL = $d029 &ubyte SP3COL = $d02a &ubyte SP4COL = $d02b &ubyte SP5COL = $d02c &ubyte SP6COL = $d02d &ubyte SP7COL = $d02e &ubyte[8] SPCOL = $d027 ; ---- end of VIC-II registers ---- ; ---- CIA 6526 1 & 2 registers ---- &ubyte CIA1PRA = $DC00 ; CIA 1 DRA, keyboard column drive (and joystick control port #2) &ubyte CIA1PRB = $DC01 ; CIA 1 DRB, keyboard row port (and joystick control port #1) &ubyte CIA1DDRA = $DC02 ; CIA 1 DDRA, keyboard column &ubyte CIA1DDRB = $DC03 ; CIA 1 DDRB, keyboard row &ubyte CIA1TAL = $DC04 ; CIA 1 timer A low byte &ubyte CIA1TAH = $DC05 ; CIA 1 timer A high byte &ubyte CIA1TBL = $DC06 ; CIA 1 timer B low byte &ubyte CIA1TBH = $DC07 ; CIA 1 timer B high byte &ubyte CIA1TOD10 = $DC08 ; time of day, 1/10 sec. &ubyte CIA1TODSEC = $DC09 ; time of day, seconds &ubyte CIA1TODMMIN = $DC0A ; time of day, minutes &ubyte CIA1TODHR = $DC0B ; time of day, hours &ubyte CIA1SDR = $DC0C ; Serial Data Register &ubyte CIA1ICR = $DC0D &ubyte CIA1CRA = $DC0E &ubyte CIA1CRB = $DC0F &ubyte CIA2PRA = $DD00 ; CIA 2 DRA, serial port and video address &ubyte CIA2PRB = $DD01 ; CIA 2 DRB, RS232 port / USERPORT &ubyte CIA2DDRA = $DD02 ; CIA 2 DDRA, serial port and video address &ubyte CIA2DDRB = $DD03 ; CIA 2 DDRB, RS232 port / USERPORT &ubyte CIA2TAL = $DD04 ; CIA 2 timer A low byte &ubyte CIA2TAH = $DD05 ; CIA 2 timer A high byte &ubyte CIA2TBL = $DD06 ; CIA 2 timer B low byte &ubyte CIA2TBH = $DD07 ; CIA 2 timer B high byte &ubyte CIA2TOD10 = $DD08 ; time of day, 1/10 sec. &ubyte CIA2TODSEC = $DD09 ; time of day, seconds &ubyte CIA2TODMIN = $DD0A ; time of day, minutes &ubyte CIA2TODHR = $DD0B ; time of day, hours &ubyte CIA2SDR = $DD0C ; Serial Data Register &ubyte CIA2ICR = $DD0D &ubyte CIA2CRA = $DD0E &ubyte CIA2CRB = $DD0F ; ---- end of CIA registers ---- ; ---- SID 6581/8580 registers ---- &ubyte FREQLO1 = $D400 ; channel 1 freq lo &ubyte FREQHI1 = $D401 ; channel 1 freq hi &uword FREQ1 = $D400 ; channel 1 freq (word) &ubyte PWLO1 = $D402 ; channel 1 pulse width lo (7-0) &ubyte PWHI1 = $D403 ; channel 1 pulse width hi (11-8) &uword PW1 = $D402 ; channel 1 pulse width (word) &ubyte CR1 = $D404 ; channel 1 voice control register &ubyte AD1 = $D405 ; channel 1 attack & decay &ubyte SR1 = $D406 ; channel 1 sustain & release &ubyte FREQLO2 = $D407 ; channel 2 freq lo &ubyte FREQHI2 = $D408 ; channel 2 freq hi &uword FREQ2 = $D407 ; channel 2 freq (word) &ubyte PWLO2 = $D409 ; channel 2 pulse width lo (7-0) &ubyte PWHI2 = $D40A ; channel 2 pulse width hi (11-8) &uword PW2 = $D409 ; channel 2 pulse width (word) &ubyte CR2 = $D40B ; channel 2 voice control register &ubyte AD2 = $D40C ; channel 2 attack & decay &ubyte SR2 = $D40D ; channel 2 sustain & release &ubyte FREQLO3 = $D40E ; channel 3 freq lo &ubyte FREQHI3 = $D40F ; channel 3 freq hi &uword FREQ3 = $D40E ; channel 3 freq (word) &ubyte PWLO3 = $D410 ; channel 3 pulse width lo (7-0) &ubyte PWHI3 = $D411 ; channel 3 pulse width hi (11-8) &uword PW3 = $D410 ; channel 3 pulse width (word) &ubyte CR3 = $D412 ; channel 3 voice control register &ubyte AD3 = $D413 ; channel 3 attack & decay &ubyte SR3 = $D414 ; channel 3 sustain & release &ubyte FCLO = $D415 ; filter cutoff lo (2-0) &ubyte FCHI = $D416 ; filter cutoff hi (10-3) &uword FC = $D415 ; filter cutoff (word) &ubyte RESFILT = $D417 ; filter resonance and routing &ubyte MVOL = $D418 ; filter mode and main volume control &ubyte POTX = $D419 ; potentiometer X &ubyte POTY = $D41A ; potentiometer Y &ubyte OSC3 = $D41B ; channel 3 oscillator value read &ubyte ENV3 = $D41C ; channel 3 envelope value read ; ---- end of SID registers ---- sub get_vic_memory_base() -> uword { ; one of the 4 possible banks. $0000/$4000/$8000/$c000. c64.CIA2DDRA |= %11 return ((c64.CIA2PRA & 3) ^ 3) as uword << 14 } sub get_char_matrix_ptr() -> uword { ; Usually the character screen matrix is at 1024-2039 (see above) ; However the vic memory configuration can be altered and this moves these registers with it. ; So this routine determines it dynamically from the VIC memory setup. uword chars_matrix_offset = (c64.VMCSB & $f0) as uword << 6 return get_vic_memory_base() + chars_matrix_offset } sub get_bitmap_ptr() -> uword { return get_vic_memory_base() + ((c64.VMCSB & %00001000) as uword << 10) } sub get_sprite_addr_ptrs() -> uword { ; Usually the sprite address pointers are at addresses 2040-2047 (see above) ; However the vic memory configuration can be altered and this moves these registers with it. ; So this routine determines it dynamically from the VIC memory setup. return get_char_matrix_ptr() + 1016 } sub set_sprite_ptr(ubyte sprite_num, uword sprite_data_address) { ; Sets the sprite data pointer to the given address. ; Because it takes some time to calculate things based on the vic memory setup, ; its only suitable if you're not continuously changing the data address. ; Otherwise store the correct sprite data pointer location somewhere yourself and reuse it. @(get_sprite_addr_ptrs() + sprite_num) = lsb(sprite_data_address / 64) } } sys { ; ------- lowlevel system routines -------- const ubyte target = 64 ; compilation target specifier. 64 = C64, 128 = C128, 16 = CommanderX16. asmsub init_system() { ; Initializes the machine to a sane starting state. ; Called automatically by the loader program logic. ; This means that the BASIC, KERNAL and CHARGEN ROMs are banked in, ; the VIC, SID and CIA chips are reset, screen is cleared, and the default IRQ is set. ; Also a different color scheme is chosen to identify ourselves a little. ; Uppercase charset is activated. %asm {{ sei cld lda #%00101111 sta $00 lda #%00100111 sta $01 jsr cbm.IOINIT jsr cbm.RESTOR jsr cbm.CINT lda #6 sta c64.EXTCOL lda #7 sta cbm.COLOR lda #0 sta c64.BGCOL0 jsr disable_runstop_and_charsetswitch clc clv cli rts }} } asmsub init_system_phase2() { %asm {{ rts ; no phase 2 steps on the C64 }} } asmsub cleanup_at_exit() { ; executed when the main subroutine does rts %asm {{ lda #31 sta $01 ; bank the kernal in jsr cbm.CLRCHN ; reset i/o channels jsr enable_runstop_and_charsetswitch _exitcode = *+1 lda #0 ; exit code possibly modified in exit() rts }} } asmsub disable_runstop_and_charsetswitch() clobbers(A) { %asm {{ lda #$80 sta 657 ; disable charset switching lda #239 sta 808 ; disable run/stop key rts }} } asmsub enable_runstop_and_charsetswitch() clobbers(A) { %asm {{ lda #0 sta 657 ; enable charset switching lda #237 sta 808 ; enable run/stop key rts }} } asmsub save_prog8_internals() { %asm {{ lda P8ZP_SCRATCH_B1 sta save_SCRATCH_ZPB1 lda P8ZP_SCRATCH_REG sta save_SCRATCH_ZPREG lda P8ZP_SCRATCH_W1 sta save_SCRATCH_ZPWORD1 lda P8ZP_SCRATCH_W1+1 sta save_SCRATCH_ZPWORD1+1 lda P8ZP_SCRATCH_W2 sta save_SCRATCH_ZPWORD2 lda P8ZP_SCRATCH_W2+1 sta save_SCRATCH_ZPWORD2+1 rts save_SCRATCH_ZPB1 .byte 0 save_SCRATCH_ZPREG .byte 0 save_SCRATCH_ZPWORD1 .word 0 save_SCRATCH_ZPWORD2 .word 0 }} } asmsub restore_prog8_internals() { %asm {{ lda save_prog8_internals.save_SCRATCH_ZPB1 sta P8ZP_SCRATCH_B1 lda save_prog8_internals.save_SCRATCH_ZPREG sta P8ZP_SCRATCH_REG lda save_prog8_internals.save_SCRATCH_ZPWORD1 sta P8ZP_SCRATCH_W1 lda save_prog8_internals.save_SCRATCH_ZPWORD1+1 sta P8ZP_SCRATCH_W1+1 lda save_prog8_internals.save_SCRATCH_ZPWORD2 sta P8ZP_SCRATCH_W2 lda save_prog8_internals.save_SCRATCH_ZPWORD2+1 sta P8ZP_SCRATCH_W2+1 rts }} } asmsub set_irq(uword handler @AY) clobbers(A) { %asm {{ sei sta _modified+1 sty _modified+2 lda #<_irq_handler sta cbm.CINV lda #>_irq_handler sta cbm.CINV+1 cli rts _irq_handler jsr sys.save_prog8_internals cld _modified jsr $ffff ; modified pha jsr sys.restore_prog8_internals pla beq + jmp cbm.IRQDFRT ; continue with normal kernal irq routine + lda #$ff sta c64.VICIRQ ; acknowledge raster irq lda c64.CIA1ICR ; acknowledge CIA1 interrupt pla tay pla tax pla rti }} } asmsub restore_irq() clobbers(A) { %asm {{ sei lda #cbm.IRQDFRT sta cbm.CINV+1 lda #0 sta c64.IREQMASK ; disable raster irq lda #%10000001 sta c64.CIA1ICR ; restore CIA1 irq cli rts }} } asmsub set_rasterirq(uword handler @AY, uword rasterpos @R0) clobbers(A) { %asm {{ sei sta _modified+1 sty _modified+2 lda cx16.r0 ldy cx16.r0+1 jsr _setup_raster_irq lda #<_raster_irq_handler sta cbm.CINV lda #>_raster_irq_handler sta cbm.CINV+1 cli rts _raster_irq_handler jsr sys.save_prog8_internals cld _modified jsr $ffff ; modified pha jsr sys.restore_prog8_internals lda #$ff sta c64.VICIRQ ; acknowledge raster irq pla beq + jmp cbm.IRQDFRT ; continue with kernal irq routine + pla tay pla tax pla rti _setup_raster_irq pha lda #%01111111 sta c64.CIA1ICR ; "switch off" interrupts signals from cia-1 sta c64.CIA2ICR ; "switch off" interrupts signals from cia-2 and c64.SCROLY sta c64.SCROLY ; clear most significant bit of raster position lda c64.CIA1ICR ; ack previous irq lda c64.CIA2ICR ; ack previous irq pla sta c64.RASTER ; set the raster line number where interrupt should occur cpy #0 beq + lda c64.SCROLY ora #%10000000 sta c64.SCROLY ; set most significant bit of raster position + lda #%00000001 sta c64.IREQMASK ;enable raster interrupt signals from vic rts }} } asmsub reset_system() { ; Soft-reset the system back to initial power-on Basic prompt. %asm {{ sei lda #14 sta $01 ; bank the kernal in jmp (cbm.RESET_VEC) }} } asmsub wait(uword jiffies @AY) { ; --- wait approximately the given number of jiffies (1/60th seconds) (N or N+1) ; note: the system irq handler has to be active for this to work as it depends on the system jiffy clock %asm {{ stx P8ZP_SCRATCH_B1 sta P8ZP_SCRATCH_W1 sty P8ZP_SCRATCH_W1+1 _loop lda P8ZP_SCRATCH_W1 ora P8ZP_SCRATCH_W1+1 bne + ldx P8ZP_SCRATCH_B1 rts + lda cbm.TIME_LO sta P8ZP_SCRATCH_B1 - lda cbm.TIME_LO cmp P8ZP_SCRATCH_B1 beq - lda P8ZP_SCRATCH_W1 bne + dec P8ZP_SCRATCH_W1+1 + dec P8ZP_SCRATCH_W1 jmp _loop }} } asmsub waitvsync() clobbers(A) { ; --- busy wait till the next vsync has occurred (approximately), without depending on custom irq handling. ; note: a more accurate way to wait for vsync is to set up a vsync irq handler instead. %asm {{ - bit c64.SCROLY bpl - - bit c64.SCROLY bmi - rts }} } inline asmsub waitrastborder() { ; --- busy wait till the raster position has reached the bottom screen border (approximately) ; note: a more accurate way to do this is by using a raster irq handler instead. %asm {{ - bit c64.SCROLY bpl - }} } asmsub internal_stringcopy(uword source @R0, uword target @AY) clobbers (A,Y) { ; Called when the compiler wants to assign a string value to another string. %asm {{ sta P8ZP_SCRATCH_W1 sty P8ZP_SCRATCH_W1+1 lda cx16.r0 ldy cx16.r0+1 jmp prog8_lib.strcpy }} } asmsub memcopy(uword source @R0, uword target @R1, uword count @AY) clobbers(A,X,Y) { ; note: only works for NON-OVERLAPPING memory regions! ; note: can't be inlined because is called from asm as well %asm {{ ldx cx16.r0 stx P8ZP_SCRATCH_W1 ; source in ZP ldx cx16.r0+1 stx P8ZP_SCRATCH_W1+1 ldx cx16.r1 stx P8ZP_SCRATCH_W2 ; target in ZP ldx cx16.r1+1 stx P8ZP_SCRATCH_W2+1 cpy #0 bne _longcopy ; copy <= 255 bytes tay bne _copyshort rts ; nothing to copy _copyshort ; decrease source and target pointers so we can simply index by Y lda P8ZP_SCRATCH_W1 bne + dec P8ZP_SCRATCH_W1+1 + dec P8ZP_SCRATCH_W1 lda P8ZP_SCRATCH_W2 bne + dec P8ZP_SCRATCH_W2+1 + dec P8ZP_SCRATCH_W2 - lda (P8ZP_SCRATCH_W1),y sta (P8ZP_SCRATCH_W2),y dey bne - rts _longcopy sta P8ZP_SCRATCH_B1 ; lsb(count) = remainder in last page tya tax ; x = num pages (1+) ldy #0 - lda (P8ZP_SCRATCH_W1),y sta (P8ZP_SCRATCH_W2),y iny bne - inc P8ZP_SCRATCH_W1+1 inc P8ZP_SCRATCH_W2+1 dex bne - ldy P8ZP_SCRATCH_B1 bne _copyshort rts }} } asmsub memset(uword mem @R0, uword numbytes @R1, ubyte value @A) clobbers(A,X,Y) { %asm {{ ldy cx16.r0 sty P8ZP_SCRATCH_W1 ldy cx16.r0+1 sty P8ZP_SCRATCH_W1+1 ldx cx16.r1 ldy cx16.r1+1 jmp prog8_lib.memset }} } asmsub memsetw(uword mem @R0, uword numwords @R1, uword value @AY) clobbers(A,X,Y) { %asm {{ ldx cx16.r0 stx P8ZP_SCRATCH_W1 ldx cx16.r0+1 stx P8ZP_SCRATCH_W1+1 ldx cx16.r1 stx P8ZP_SCRATCH_W2 ldx cx16.r1+1 stx P8ZP_SCRATCH_W2+1 jmp prog8_lib.memsetw }} } inline asmsub read_flags() -> ubyte @A { %asm {{ php pla }} } inline asmsub clear_carry() { %asm {{ clc }} } inline asmsub set_carry() { %asm {{ sec }} } inline asmsub clear_irqd() { %asm {{ cli }} } inline asmsub set_irqd() { %asm {{ sei }} } inline asmsub irqsafe_set_irqd() { %asm {{ php sei }} } inline asmsub irqsafe_clear_irqd() { %asm {{ plp }} } inline asmsub disable_caseswitch() { %asm {{ lda #$80 sta 657 }} } inline asmsub enable_caseswitch() { %asm {{ lda #0 sta 657 }} } asmsub exit(ubyte returnvalue @A) { ; -- immediately exit the program with a return code in the A register %asm {{ sta cleanup_at_exit._exitcode ldx prog8_lib.orig_stackpointer txs jmp cleanup_at_exit }} } inline asmsub progend() -> uword @AY { %asm {{ lda #prog8_program_end }} } inline asmsub push(ubyte value @A) { %asm {{ pha }} } inline asmsub pushw(uword value @AY) { %asm {{ pha tya pha }} } inline asmsub pop() -> ubyte @A { %asm {{ pla }} } inline asmsub popw() -> uword @AY { %asm {{ pla tay pla }} } } cx16 { ; the sixteen virtual 16-bit registers that the CX16 has defined in the zeropage ; they are simulated on the C64 as well but their location in memory is different ; (because there's no room for them in the zeropage in the default configuration) ; Note that when using ZP options that free up more of the zeropage (such as %zeropage kernalsafe) ; there might be enough space to put them there after all, and the compiler will change these addresses! &uword r0 = $cfe0 &uword r1 = $cfe2 &uword r2 = $cfe4 &uword r3 = $cfe6 &uword r4 = $cfe8 &uword r5 = $cfea &uword r6 = $cfec &uword r7 = $cfee &uword r8 = $cff0 &uword r9 = $cff2 &uword r10 = $cff4 &uword r11 = $cff6 &uword r12 = $cff8 &uword r13 = $cffa &uword r14 = $cffc &uword r15 = $cffe &word r0s = $cfe0 &word r1s = $cfe2 &word r2s = $cfe4 &word r3s = $cfe6 &word r4s = $cfe8 &word r5s = $cfea &word r6s = $cfec &word r7s = $cfee &word r8s = $cff0 &word r9s = $cff2 &word r10s = $cff4 &word r11s = $cff6 &word r12s = $cff8 &word r13s = $cffa &word r14s = $cffc &word r15s = $cffe &ubyte r0L = $cfe0 &ubyte r1L = $cfe2 &ubyte r2L = $cfe4 &ubyte r3L = $cfe6 &ubyte r4L = $cfe8 &ubyte r5L = $cfea &ubyte r6L = $cfec &ubyte r7L = $cfee &ubyte r8L = $cff0 &ubyte r9L = $cff2 &ubyte r10L = $cff4 &ubyte r11L = $cff6 &ubyte r12L = $cff8 &ubyte r13L = $cffa &ubyte r14L = $cffc &ubyte r15L = $cffe &ubyte r0H = $cfe1 &ubyte r1H = $cfe3 &ubyte r2H = $cfe5 &ubyte r3H = $cfe7 &ubyte r4H = $cfe9 &ubyte r5H = $cfeb &ubyte r6H = $cfed &ubyte r7H = $cfef &ubyte r8H = $cff1 &ubyte r9H = $cff3 &ubyte r10H = $cff5 &ubyte r11H = $cff7 &ubyte r12H = $cff9 &ubyte r13H = $cffb &ubyte r14H = $cffd &ubyte r15H = $cfff &byte r0sL = $cfe0 &byte r1sL = $cfe2 &byte r2sL = $cfe4 &byte r3sL = $cfe6 &byte r4sL = $cfe8 &byte r5sL = $cfea &byte r6sL = $cfec &byte r7sL = $cfee &byte r8sL = $cff0 &byte r9sL = $cff2 &byte r10sL = $cff4 &byte r11sL = $cff6 &byte r12sL = $cff8 &byte r13sL = $cffa &byte r14sL = $cffc &byte r15sL = $cffe &byte r0sH = $cfe1 &byte r1sH = $cfe3 &byte r2sH = $cfe5 &byte r3sH = $cfe7 &byte r4sH = $cfe9 &byte r5sH = $cfeb &byte r6sH = $cfed &byte r7sH = $cfef &byte r8sH = $cff1 &byte r9sH = $cff3 &byte r10sH = $cff5 &byte r11sH = $cff7 &byte r12sH = $cff9 &byte r13sH = $cffb &byte r14sH = $cffd &byte r15sH = $cfff asmsub save_virtual_registers() clobbers(A,Y) { %asm {{ ldy #31 - lda cx16.r0,y sta _cx16_vreg_storage,y dey bpl - rts _cx16_vreg_storage .word 0,0,0,0,0,0,0,0 .word 0,0,0,0,0,0,0,0 }} } asmsub restore_virtual_registers() clobbers(A,Y) { %asm {{ ldy #31 - lda save_virtual_registers._cx16_vreg_storage,y sta cx16.r0,y dey bpl - rts }} } sub cpu_is_65816() -> bool { ; Returns true when you have a 65816 cpu, false when it's a 6502. return false } }