sys { %option merge, ignore_unused ; add some constants to sys const float MAX_FLOAT = 1.7014118345e+38 ; bytes: 255,127,255,255,255 const float MIN_FLOAT = -1.7014118345e+38 ; bytes: 255,255,255,255,255 } txt { %option merge, ignore_unused ; add function to txt alias print_f = floats.print } math { %option merge, ignore_unused ; add functions to math alias lerpf = floats.lerp alias lerpf_fast = floats.lerp_fast alias interpolatef = floats.interpolate } floats { ; the floating point functions shared across compiler targets %option merge, no_symbol_prefixing, ignore_unused const float π = 3.141592653589793 const float PI = π const float TWOPI = 2*π const float E = 2.718281828459045 const float EPSILON = 2.938735878e-39 ; bytes: 1,0,0,0,0 asmsub print(float value @FAC1) clobbers(A,X,Y) { ; ---- prints the floating point value (without a newline). No leading space (unlike BASIC)! %asm {{ jsr tostr ldy #0 - lda (P8ZP_SCRATCH_W1),y beq + jsr cbm.CHROUT iny bne - + rts }} } asmsub tostr(float value @FAC1) clobbers(X) -> str @AY { ; ---- converts the floating point value to a string. No leading space! %asm {{ jsr FOUT sta P8ZP_SCRATCH_W1 sty P8ZP_SCRATCH_W1+1 ldy #0 lda (P8ZP_SCRATCH_W1),y cmp #' ' bne + inc P8ZP_SCRATCH_W1 bne + inc P8ZP_SCRATCH_W1+1 + lda P8ZP_SCRATCH_W1 ldy P8ZP_SCRATCH_W1+1 rts }} } sub pow(float value, float power) -> float { %asm {{ stx P8ZP_SCRATCH_W1 sty P8ZP_SCRATCH_W1+1 lda #value jsr floats.CONUPK lda #power jsr floats.FPWR ldx P8ZP_SCRATCH_W1 ldy P8ZP_SCRATCH_W1+1 rts }} } sub sin(float angle) -> float { %asm {{ lda #angle jsr MOVFM jmp SIN }} } sub cos(float angle) -> float { %asm {{ lda #angle jsr MOVFM jmp COS rts }} } sub tan(float value) -> float { %asm {{ lda #value jsr MOVFM jmp TAN }} } sub atan(float value) -> float { %asm {{ lda #value jsr MOVFM jmp ATN }} } ; two-argument arctangent that returns an angle in the correct quadrant ; for the signs of x and y, normalized to the range [0, 2π] sub atan2(float y, float x) -> float { float atn if x == 0 { atn = π/2 if y == 0 return 0 if y < 0 { atn += π } } else { atn = atan(y / x) } if x < 0 atn += π if atn < 0 atn += 2*π return atn } ; reciprocal functions sub secant(float value) -> float { return 1.0 / cos(value) } sub csc(float value) -> float { return 1.0 / sin(value) } sub cot(float value) -> float { return 1.0 / tan(value) } sub ln(float value) -> float { %asm {{ lda #value jsr MOVFM jmp LOG }} } sub log2(float value) -> float { %asm {{ lda #value jsr MOVFM jsr LOG jsr MOVEF lda #FL_LOG2_const jsr MOVFM jmp FDIVT }} } sub rad(float angle) -> float { ; -- convert degrees to radians (d * pi / 180) %asm {{ lda #angle jsr MOVFM lda #<_pi_div_180 ldy #>_pi_div_180 jmp FMULT _pi_div_180 .byte 123, 14, 250, 53, 18 ; pi / 180 }} } sub deg(float angle) -> float { ; -- convert radians to degrees (d * (1/ pi * 180)) %asm {{ lda #angle jsr MOVFM lda #<_one_over_pi_div_180 ldy #>_one_over_pi_div_180 jmp FMULT rts _one_over_pi_div_180 .byte 134, 101, 46, 224, 211 ; 1 / (pi * 180) }} } sub round(float value) -> float { %asm {{ lda #value jsr MOVFM jsr FADDH jmp INT }} } sub floor(float value) -> float { %asm {{ lda #value jsr MOVFM jmp INT }} } sub ceil(float value) -> float { ; -- ceil: tr = int(f); if tr==f -> return else return tr+1 %asm {{ lda #value jsr MOVFM ldx #fmath_float1 jsr MOVMF jsr INT lda #fmath_float1 jsr FCOMP cmp #0 beq + lda #FL_ONE_const jsr FADD + rts }} } sub rndseed(float seed) { if seed>0 seed = -seed ; make sure fp seed is always negative %asm {{ lda #seed jsr MOVFM ; load float into fac1 lda #-1 jmp floats.RND }} } sub minf(float f1, float f2) -> float { if f1 float { if f1>f2 return f1 return f2 } sub clampf(float value, float minimum, float maximum) -> float { if value>maximum value=maximum if value>minimum return value return minimum } inline asmsub push(float value @FAC1) { %asm {{ jsr floats.pushFAC1 }} } inline asmsub pop() -> float @FAC1 { %asm {{ clc jsr floats.popFAC }} } sub lerp(float v0, float v1, float t) -> float { ; Linear interpolation (LERP) ; Precise method, which guarantees v = v1 when t = 1. ; returns an interpolation between two inputs (v0, v1) for a parameter t in the closed unit interval [0, 1] return (1 - t) * v0 + t * v1 } sub lerp_fast(float v0, float v1, float t) -> float { ; Linear interpolation (LERP) ; Imprecise (but slightly faster) method, which does not guarantee v = v1 when t = 1 ; returns an interpolation between two inputs (v0, v1) for a parameter t in the closed unit interval [0, 1] return v0 + t * (v1 - v0) } sub interpolate(float v, float inputMin, float inputMax, float outputMin, float outputMax) -> float { ; Interpolate a value v in interval [inputMin, inputMax] to output interval [outputMin, outputMax] if outputMin==outputMax return outputMin v = (v - inputMin) / (inputMax - inputMin) return v * (outputMax - outputMin) + outputMin } }