; Prog8 definitions for the CommanderX16 ; Including memory registers, I/O registers, Basic and Kernal subroutines. %option no_symbol_prefixing, ignore_unused cbm { ; Commodore (CBM) common variables, vectors and kernal routines ; STROUT --> use txt.print ; CLEARSCR -> use txt.clear_screen ; HOMECRSR -> use txt.home or txt.plot romsub $FF81 = CINT() clobbers(A,X,Y) ; (alias: SCINIT) initialize screen editor and video chip, including resetting to the default color palette. Note: also sets the video mode back to VGA romsub $FF84 = IOINIT() clobbers(A, X) ; initialize I/O devices (CIA, IRQ, ...) romsub $FF87 = RAMTAS() clobbers(A,X,Y) ; initialize RAM, screen romsub $FF8A = RESTOR() clobbers(A,X,Y) ; restore default I/O vectors romsub $FF8D = VECTOR(uword userptr @ XY, bool dir @ Pc) clobbers(A,Y) ; read/set I/O vector table romsub $FF90 = SETMSG(ubyte value @ A) ; set Kernal message control flag romsub $FF93 = SECOND(ubyte address @ A) clobbers(A) ; (alias: LSTNSA) send secondary address after LISTEN romsub $FF96 = TKSA(ubyte address @ A) clobbers(A) ; (alias: TALKSA) send secondary address after TALK romsub $FF99 = MEMTOP(uword address @ XY, bool dir @ Pc) -> uword @ XY ; read/set top of memory pointer. NOTE: as a Cx16 extension, also returns the number of RAM memory banks in register A ! See cx16.numbanks() romsub $FF9C = MEMBOT(uword address @ XY, bool dir @ Pc) -> uword @ XY ; read/set bottom of memory pointer romsub $FF9F = SCNKEY() clobbers(A,X,Y) ; scan the keyboard, also called kbd_scan romsub $FFA2 = SETTMO(ubyte timeout @ A) ; set time-out flag for IEEE bus romsub $FFA5 = ACPTR() -> ubyte @ A ; (alias: IECIN) input byte from serial bus romsub $FFA8 = CIOUT(ubyte databyte @ A) ; (alias: IECOUT) output byte to serial bus romsub $FFAB = UNTLK() clobbers(A) ; command serial bus device to UNTALK romsub $FFAE = UNLSN() clobbers(A) ; command serial bus device to UNLISTEN romsub $FFB1 = LISTEN(ubyte device @ A) clobbers(A) ; command serial bus device to LISTEN romsub $FFB4 = TALK(ubyte device @ A) clobbers(A) ; command serial bus device to TALK romsub $FFB7 = READST() -> ubyte @ A ; read I/O status word (use CLEARST to reset it to 0) romsub $FFBA = SETLFS(ubyte logical @ A, ubyte device @ X, ubyte secondary @ Y) ; set logical file parameters romsub $FFBD = SETNAM(ubyte namelen @ A, str filename @ XY) ; set filename parameters romsub $FFC0 = OPEN() clobbers(X,Y) -> bool @Pc, ubyte @A ; (via 794 ($31A)) open a logical file romsub $FFC3 = CLOSE(ubyte logical @ A) clobbers(A,X,Y) ; (via 796 ($31C)) close a logical file romsub $FFC6 = CHKIN(ubyte logical @ X) clobbers(A,X) -> bool @Pc ; (via 798 ($31E)) define an input channel romsub $FFC9 = CHKOUT(ubyte logical @ X) clobbers(A,X) ; (via 800 ($320)) define an output channel romsub $FFCC = CLRCHN() clobbers(A,X) ; (via 802 ($322)) restore default devices romsub $FFCF = CHRIN() clobbers(X, Y) -> ubyte @ A ; (via 804 ($324)) input a character (for keyboard, read a whole line from the screen) A=byte read. romsub $FFD2 = CHROUT(ubyte character @ A) ; (via 806 ($326)) output a character romsub $FFD5 = LOAD(ubyte verify @ A, uword address @ XY) -> bool @Pc, ubyte @ A, uword @ XY ; (via 816 ($330)) load from device romsub $FFD8 = SAVE(ubyte zp_startaddr @ A, uword endaddr @ XY) clobbers (X, Y) -> bool @ Pc, ubyte @ A ; (via 818 ($332)) save to a device. See also BSAVE romsub $FFDB = SETTIM(ubyte low @ A, ubyte middle @ X, ubyte high @ Y) ; set the software clock romsub $FFDE = RDTIM() -> ubyte @ A, ubyte @ X, ubyte @ Y ; read the software clock (A=lo,X=mid,Y=high) romsub $FFE1 = STOP() clobbers(X) -> bool @ Pz, ubyte @ A ; (via 808 ($328)) check the STOP key (and some others in A) romsub $FFE4 = GETIN() clobbers(X,Y) -> bool @Pc, ubyte @ A ; (via 810 ($32A)) get a character romsub $FFE7 = CLALL() clobbers(A,X) ; (via 812 ($32C)) close all files romsub $FFEA = UDTIM() clobbers(A,X) ; update the software clock romsub $FFED = SCREEN() -> ubyte @ X, ubyte @ Y ; read number of screen rows and columns romsub $FFF0 = PLOT(ubyte col @ Y, ubyte row @ X, bool dir @ Pc) clobbers(A) -> ubyte @ X, ubyte @ Y ; read/set position of cursor on screen. Use txt.plot for a 'safe' wrapper that preserves X. romsub $FFF3 = IOBASE() -> uword @ XY ; read base address of I/O devices ; ---- utility asmsub STOP2() clobbers(X) -> bool @A { ; -- check if STOP key was pressed, returns true if so. More convenient to use than STOP() because that only sets the zero status flag. %asm {{ jsr cbm.STOP beq + lda #0 rts + lda #1 rts }} } asmsub RDTIM16() clobbers(X) -> uword @AY { ; -- like RDTIM() but only returning the lower 16 bits in AY for convenience. Also avoids ram bank issue for irqs. %asm {{ php sei jsr cbm.RDTIM plp cli pha txa tay pla rts }} } sub CLEARST() { ; -- Set the ST status variable back to 0. (there's no direct kernal call for this) ; Note: a drive error state (blinking led) isn't cleared! You can use diskio.status() to clear that. SETNAM(0, $0000) SETLFS(15, 3, 15) void OPEN() CLOSE(15) } asmsub kbdbuf_clear() { ; -- convenience helper routine to clear the keyboard buffer %asm {{ - jsr GETIN cmp #0 bne - rts }} } } cx16 { ; irq, system and hardware vectors: &uword IERROR = $0300 &uword IMAIN = $0302 &uword ICRNCH = $0304 &uword IQPLOP = $0306 &uword IGONE = $0308 &uword IEVAL = $030a &ubyte SAREG = $030c ; register storage for A for SYS calls &ubyte SXREG = $030d ; register storage for X for SYS calls &ubyte SYREG = $030e ; register storage for Y for SYS calls &ubyte SPREG = $030f ; register storage for P (status register) for SYS calls &uword USRADD = $0311 ; vector for the USR() basic command ; $0313 is unused. &uword CINV = $0314 ; IRQ vector (in ram) &uword CBINV = $0316 ; BRK vector (in ram) &uword NMINV = $0318 ; NMI vector (in ram) &uword IOPEN = $031a &uword ICLOSE = $031c &uword ICHKIN = $031e &uword ICKOUT = $0320 &uword ICLRCH = $0322 &uword IBASIN = $0324 &uword IBSOUT = $0326 &uword ISTOP = $0328 &uword IGETIN = $032a &uword ICLALL = $032c &uword KEYHDL = $032e ; keyboard scan code handler see examples/cx16/keyboardhandler.p8 &uword ILOAD = $0330 &uword ISAVE = $0332 &uword NMI_VEC = $FFFA ; 65c02 nmi vector, determined by the kernal if banked in &uword RESET_VEC = $FFFC ; 65c02 reset vector, determined by the kernal if banked in &uword IRQ_VEC = $FFFE ; 65c02 interrupt vector, determined by the kernal if banked in &uword edkeyvec = $ac03 ; (ram bank 0): for intercepting BASIN/CHRIN key strokes. See set_chrin_keyhandler() &ubyte edkeybk = $ac05 ; ...the RAM bank of the handler routine, if not in low ram ; the sixteen virtual 16-bit registers in both normal unsigned mode and signed mode (s) &uword r0 = $0002 &uword r1 = $0004 &uword r2 = $0006 &uword r3 = $0008 &uword r4 = $000a &uword r5 = $000c &uword r6 = $000e &uword r7 = $0010 &uword r8 = $0012 &uword r9 = $0014 &uword r10 = $0016 &uword r11 = $0018 &uword r12 = $001a &uword r13 = $001c &uword r14 = $001e &uword r15 = $0020 &word r0s = $0002 &word r1s = $0004 &word r2s = $0006 &word r3s = $0008 &word r4s = $000a &word r5s = $000c &word r6s = $000e &word r7s = $0010 &word r8s = $0012 &word r9s = $0014 &word r10s = $0016 &word r11s = $0018 &word r12s = $001a &word r13s = $001c &word r14s = $001e &word r15s = $0020 &ubyte r0L = $0002 &ubyte r1L = $0004 &ubyte r2L = $0006 &ubyte r3L = $0008 &ubyte r4L = $000a &ubyte r5L = $000c &ubyte r6L = $000e &ubyte r7L = $0010 &ubyte r8L = $0012 &ubyte r9L = $0014 &ubyte r10L = $0016 &ubyte r11L = $0018 &ubyte r12L = $001a &ubyte r13L = $001c &ubyte r14L = $001e &ubyte r15L = $0020 &ubyte r0H = $0003 &ubyte r1H = $0005 &ubyte r2H = $0007 &ubyte r3H = $0009 &ubyte r4H = $000b &ubyte r5H = $000d &ubyte r6H = $000f &ubyte r7H = $0011 &ubyte r8H = $0013 &ubyte r9H = $0015 &ubyte r10H = $0017 &ubyte r11H = $0019 &ubyte r12H = $001b &ubyte r13H = $001d &ubyte r14H = $001f &ubyte r15H = $0021 &byte r0sL = $0002 &byte r1sL = $0004 &byte r2sL = $0006 &byte r3sL = $0008 &byte r4sL = $000a &byte r5sL = $000c &byte r6sL = $000e &byte r7sL = $0010 &byte r8sL = $0012 &byte r9sL = $0014 &byte r10sL = $0016 &byte r11sL = $0018 &byte r12sL = $001a &byte r13sL = $001c &byte r14sL = $001e &byte r15sL = $0020 &byte r0sH = $0003 &byte r1sH = $0005 &byte r2sH = $0007 &byte r3sH = $0009 &byte r4sH = $000b &byte r5sH = $000d &byte r6sH = $000f &byte r7sH = $0011 &byte r8sH = $0013 &byte r9sH = $0015 &byte r10sH = $0017 &byte r11sH = $0019 &byte r12sH = $001b &byte r13sH = $001d &byte r14sH = $001f &byte r15sH = $0021 ; VERA registers const uword VERA_BASE = $9F20 &ubyte VERA_ADDR_L = VERA_BASE + $0000 &ubyte VERA_ADDR_M = VERA_BASE + $0001 &uword VERA_ADDR = VERA_BASE + $0000 ; still need to do the _H separately &ubyte VERA_ADDR_H = VERA_BASE + $0002 &ubyte VERA_DATA0 = VERA_BASE + $0003 &ubyte VERA_DATA1 = VERA_BASE + $0004 &ubyte VERA_CTRL = VERA_BASE + $0005 &ubyte VERA_IEN = VERA_BASE + $0006 &ubyte VERA_ISR = VERA_BASE + $0007 &ubyte VERA_IRQLINE_L = VERA_BASE + $0008 ; write only &ubyte VERA_SCANLINE_L = VERA_BASE + $0008 ; read only &ubyte VERA_DC_VIDEO = VERA_BASE + $0009 ; DCSEL= 0 &ubyte VERA_DC_HSCALE = VERA_BASE + $000A ; DCSEL= 0 &ubyte VERA_DC_VSCALE = VERA_BASE + $000B ; DCSEL= 0 &ubyte VERA_DC_BORDER = VERA_BASE + $000C ; DCSEL= 0 &ubyte VERA_DC_HSTART = VERA_BASE + $0009 ; DCSEL= 1 &ubyte VERA_DC_HSTOP = VERA_BASE + $000A ; DCSEL= 1 &ubyte VERA_DC_VSTART = VERA_BASE + $000B ; DCSEL= 1 &ubyte VERA_DC_VSTOP = VERA_BASE + $000C ; DCSEL= 1 &ubyte VERA_DC_VER0 = VERA_BASE + $0009 ; DCSEL=63 &ubyte VERA_DC_VER1 = VERA_BASE + $000A ; DCSEL=63 &ubyte VERA_DC_VER2 = VERA_BASE + $000B ; DCSEL=63 &ubyte VERA_DC_VER3 = VERA_BASE + $000C ; DCSEL=63 &ubyte VERA_L0_CONFIG = VERA_BASE + $000D &ubyte VERA_L0_MAPBASE = VERA_BASE + $000E &ubyte VERA_L0_TILEBASE = VERA_BASE + $000F &ubyte VERA_L0_HSCROLL_L = VERA_BASE + $0010 &ubyte VERA_L0_HSCROLL_H = VERA_BASE + $0011 &uword VERA_L0_HSCROLL = VERA_BASE + $0010 &ubyte VERA_L0_VSCROLL_L = VERA_BASE + $0012 &ubyte VERA_L0_VSCROLL_H = VERA_BASE + $0013 &uword VERA_L0_VSCROLL = VERA_BASE + $0012 &ubyte VERA_L1_CONFIG = VERA_BASE + $0014 &ubyte VERA_L1_MAPBASE = VERA_BASE + $0015 &ubyte VERA_L1_TILEBASE = VERA_BASE + $0016 &ubyte VERA_L1_HSCROLL_L = VERA_BASE + $0017 &ubyte VERA_L1_HSCROLL_H = VERA_BASE + $0018 &uword VERA_L1_HSCROLL = VERA_BASE + $0017 &ubyte VERA_L1_VSCROLL_L = VERA_BASE + $0019 &ubyte VERA_L1_VSCROLL_H = VERA_BASE + $001A &uword VERA_L1_VSCROLL = VERA_BASE + $0019 &ubyte VERA_AUDIO_CTRL = VERA_BASE + $001B &ubyte VERA_AUDIO_RATE = VERA_BASE + $001C &ubyte VERA_AUDIO_DATA = VERA_BASE + $001D &ubyte VERA_SPI_DATA = VERA_BASE + $001E &ubyte VERA_SPI_CTRL = VERA_BASE + $001F ; Vera FX registers: (accessing depends on particular DCSEL value set in VERA_CTRL!) &ubyte VERA_FX_CTRL = VERA_BASE + $0009 &ubyte VERA_FX_TILEBASE = VERA_BASE + $000a &ubyte VERA_FX_MAPBASE = VERA_BASE + $000b &ubyte VERA_FX_MULT = VERA_BASE + $000c &ubyte VERA_FX_X_INCR_L = VERA_BASE + $0009 &ubyte VERA_FX_X_INCR_H = VERA_BASE + $000a &uword VERA_FX_X_INCR = VERA_BASE + $0009 &ubyte VERA_FX_Y_INCR_L = VERA_BASE + $000b &ubyte VERA_FX_Y_INCR_H = VERA_BASE + $000c &uword VERA_FX_Y_INCR = VERA_BASE + $000b &ubyte VERA_FX_X_POS_L = VERA_BASE + $0009 &ubyte VERA_FX_X_POS_H = VERA_BASE + $000a &uword VERA_FX_X_POS = VERA_BASE + $0009 &ubyte VERA_FX_Y_POS_L = VERA_BASE + $000b &ubyte VERA_FX_Y_POS_H = VERA_BASE + $000c &uword VERA_FX_Y_POS = VERA_BASE + $000b &ubyte VERA_FX_X_POS_S = VERA_BASE + $0009 &ubyte VERA_FX_Y_POS_S = VERA_BASE + $000a &ubyte VERA_FX_POLY_FILL_L = VERA_BASE + $000b &ubyte VERA_FX_POLY_FILL_H = VERA_BASE + $000c &uword VERA_FX_POLY_FILL = VERA_BASE + $000b &ubyte VERA_FX_CACHE_L = VERA_BASE + $0009 &ubyte VERA_FX_CACHE_M = VERA_BASE + $000a &ubyte VERA_FX_CACHE_H = VERA_BASE + $000b &ubyte VERA_FX_CACHE_U = VERA_BASE + $000c &ubyte VERA_FX_ACCUM = VERA_BASE + $000a &ubyte VERA_FX_ACCUM_RESET = VERA_BASE + $0009 ; VERA_PSG_BASE = $1F9C0 ; VERA_PALETTE_BASE = $1FA00 ; VERA_SPRITES_BASE = $1FC00 ; I/O const uword VIA1_BASE = $9f00 ;VIA 6522 #1 &ubyte via1prb = VIA1_BASE + 0 &ubyte via1pra = VIA1_BASE + 1 &ubyte via1ddrb = VIA1_BASE + 2 &ubyte via1ddra = VIA1_BASE + 3 &ubyte via1t1l = VIA1_BASE + 4 &ubyte via1t1h = VIA1_BASE + 5 &ubyte via1t1ll = VIA1_BASE + 6 &ubyte via1t1lh = VIA1_BASE + 7 &ubyte via1t2l = VIA1_BASE + 8 &ubyte via1t2h = VIA1_BASE + 9 &ubyte via1sr = VIA1_BASE + 10 &ubyte via1acr = VIA1_BASE + 11 &ubyte via1pcr = VIA1_BASE + 12 &ubyte via1ifr = VIA1_BASE + 13 &ubyte via1ier = VIA1_BASE + 14 &ubyte via1ora = VIA1_BASE + 15 const uword VIA2_BASE = $9f10 ;VIA 6522 #2 &ubyte via2prb = VIA2_BASE + 0 &ubyte via2pra = VIA2_BASE + 1 &ubyte via2ddrb = VIA2_BASE + 2 &ubyte via2ddra = VIA2_BASE + 3 &ubyte via2t1l = VIA2_BASE + 4 &ubyte via2t1h = VIA2_BASE + 5 &ubyte via2t1ll = VIA2_BASE + 6 &ubyte via2t1lh = VIA2_BASE + 7 &ubyte via2t2l = VIA2_BASE + 8 &ubyte via2t2h = VIA2_BASE + 9 &ubyte via2sr = VIA2_BASE + 10 &ubyte via2acr = VIA2_BASE + 11 &ubyte via2pcr = VIA2_BASE + 12 &ubyte via2ifr = VIA2_BASE + 13 &ubyte via2ier = VIA2_BASE + 14 &ubyte via2ora = VIA2_BASE + 15 ; YM-2151 sound chip &ubyte YM_ADDRESS = $9f40 &ubyte YM_DATA = $9f41 const uword extdev = $9f60 ; ---- Commander X-16 additions on top of C64 kernal routines ---- ; spelling of the names is taken from the Commander X-16 rom sources ; supported C128 additions romsub $ff4a = CLOSE_ALL(ubyte device @A) clobbers(A,X,Y) romsub $ff59 = LKUPLA(ubyte la @A) clobbers(A,X,Y) romsub $ff5c = LKUPSA(ubyte sa @Y) clobbers(A,X,Y) romsub $ff5f = screen_mode(ubyte mode @A, bool getCurrent @Pc) clobbers(X, Y) -> ubyte @A, bool @Pc ; note: X,Y size result is not supported, use SCREEN or get_screen_mode routine for that romsub $ff62 = screen_set_charset(ubyte charset @A, uword charsetptr @XY) clobbers(A,X,Y) ; incompatible with C128 dlchr() ; not yet supported: romsub $ff65 = pfkey() clobbers(A,X,Y) romsub $ff6e = JSRFAR() ; following word = address to call, byte after that=rom/ram bank it is in romsub $ff74 = fetch(ubyte bank @X, ubyte index @Y) clobbers(X) -> ubyte @A romsub $ff77 = stash(ubyte data @A, ubyte bank @X, ubyte index @Y) clobbers(X) romsub $ff7d = PRIMM() ; It's not documented what registers are clobbered, so we assume the worst for all following kernal routines...: ; high level graphics & fonts romsub $ff20 = GRAPH_init(uword vectors @R0) clobbers(A,X,Y) romsub $ff23 = GRAPH_clear() clobbers(A,X,Y) romsub $ff26 = GRAPH_set_window(uword x @R0, uword y @R1, uword width @R2, uword height @R3) clobbers(A,X,Y) romsub $ff29 = GRAPH_set_colors(ubyte stroke @A, ubyte fill @X, ubyte background @Y) clobbers (A,X,Y) romsub $ff2c = GRAPH_draw_line(uword x1 @R0, uword y1 @R1, uword x2 @R2, uword y2 @R3) clobbers(A,X,Y) romsub $ff2f = GRAPH_draw_rect(uword x @R0, uword y @R1, uword width @R2, uword height @R3, uword cornerradius @R4, bool fill @Pc) clobbers(A,X,Y) romsub $ff32 = GRAPH_move_rect(uword sx @R0, uword sy @R1, uword tx @R2, uword ty @R3, uword width @R4, uword height @R5) clobbers(A,X,Y) romsub $ff35 = GRAPH_draw_oval(uword x @R0, uword y @R1, uword width @R2, uword height @R3, bool fill @Pc) clobbers(A,X,Y) romsub $ff38 = GRAPH_draw_image(uword x @R0, uword y @R1, uword ptr @R2, uword width @R3, uword height @R4) clobbers(A,X,Y) romsub $ff3b = GRAPH_set_font(uword fontptr @R0) clobbers(A,X,Y) romsub $ff3e = GRAPH_get_char_size(ubyte baseline @A, ubyte width @X, ubyte height_or_style @Y, bool is_control @Pc) clobbers(A,X,Y) romsub $ff41 = GRAPH_put_char(uword x @R0, uword y @R1, ubyte character @A) clobbers(A,X,Y) romsub $ff41 = GRAPH_put_next_char(ubyte character @A) clobbers(A,X,Y) ; alias for the routine above that doesn't reset the position of the initial character ; framebuffer romsub $fef6 = FB_init() clobbers(A,X,Y) romsub $fef9 = FB_get_info() clobbers(X,Y) -> byte @A, uword @R0, uword @R1 ; width=r0, height=r1 romsub $fefc = FB_set_palette(uword pointer @R0, ubyte index @A, ubyte colorcount @X) clobbers(A,X,Y) romsub $feff = FB_cursor_position(uword x @R0, uword y @R1) clobbers(A,X,Y) romsub $ff02 = FB_cursor_next_line(uword x @R0) clobbers(A,X,Y) romsub $ff05 = FB_get_pixel() clobbers(X,Y) -> ubyte @A romsub $ff08 = FB_get_pixels(uword pointer @R0, uword count @R1) clobbers(A,X,Y) romsub $ff0b = FB_set_pixel(ubyte color @A) clobbers(A,X,Y) romsub $ff0e = FB_set_pixels(uword pointer @R0, uword count @R1) clobbers(A,X,Y) romsub $ff11 = FB_set_8_pixels(ubyte pattern @A, ubyte color @X) clobbers(A,X,Y) romsub $ff14 = FB_set_8_pixels_opaque(ubyte pattern @R0, ubyte mask @A, ubyte color1 @X, ubyte color2 @Y) clobbers(A,X,Y) romsub $ff17 = FB_fill_pixels(uword count @R0, uword pstep @R1, ubyte color @A) clobbers(A,X,Y) romsub $ff1a = FB_filter_pixels(uword pointer @ R0, uword count @R1) clobbers(A,X,Y) romsub $ff1d = FB_move_pixels(uword sx @R0, uword sy @R1, uword tx @R2, uword ty @R3, uword count @R4) clobbers(A,X,Y) ; misc romsub $FEBA = BSAVE(ubyte zp_startaddr @ A, uword endaddr @ XY) clobbers (X, Y) -> bool @ Pc, ubyte @ A ; like cbm.SAVE, but omits the 2-byte prg header romsub $fec6 = i2c_read_byte(ubyte device @X, ubyte offset @Y) clobbers (X,Y) -> ubyte @A, bool @Pc romsub $fec9 = i2c_write_byte(ubyte device @X, ubyte offset @Y, ubyte data @A) clobbers (A,X,Y) -> bool @Pc romsub $fef0 = sprite_set_image(uword pixels @R0, uword mask @R1, ubyte bpp @R2, ubyte number @A, ubyte width @X, ubyte height @Y, bool apply_mask @Pc) clobbers(A,X,Y) -> bool @Pc romsub $fef3 = sprite_set_position(uword x @R0, uword y @R1, ubyte number @A) clobbers(A,X,Y) romsub $fee4 = memory_fill(uword address @R0, uword num_bytes @R1, ubyte value @A) clobbers(A,X,Y) romsub $fee7 = memory_copy(uword source @R0, uword target @R1, uword num_bytes @R2) clobbers(A,X,Y) romsub $feea = memory_crc(uword address @R0, uword num_bytes @R1) clobbers(A,X,Y) -> uword @R2 romsub $feed = memory_decompress(uword input @R0, uword output @R1) clobbers(A,X,Y) -> uword @R1 ; last address +1 is result in R1 romsub $fedb = console_init(uword x @R0, uword y @R1, uword width @R2, uword height @R3) clobbers(A,X,Y) romsub $fede = console_put_char(ubyte character @A, bool wrapping @Pc) clobbers(A,X,Y) romsub $fee1 = console_get_char() clobbers(X,Y) -> ubyte @A romsub $fed8 = console_put_image(uword pointer @R0, uword width @R1, uword height @R2) clobbers(A,X,Y) romsub $fed5 = console_set_paging_message(uword msgptr @R0) clobbers(A,X,Y) romsub $fecf = entropy_get() -> ubyte @A, ubyte @X, ubyte @Y romsub $fecc = monitor() clobbers(A,X,Y) romsub $ff44 = MACPTR(ubyte length @A, uword buffer @XY, bool dontAdvance @Pc) clobbers(A) -> bool @Pc, uword @XY romsub $feb1 = MCIOUT(ubyte length @A, uword buffer @XY, bool dontAdvance @Pc) clobbers(A) -> bool @Pc, uword @XY romsub $ff47 = enter_basic(bool cold_or_warm @Pc) clobbers(A,X,Y) romsub $ff4d = clock_set_date_time(uword yearmonth @R0, uword dayhours @R1, uword minsecs @R2, uword jiffiesweekday @R3) clobbers(A, X, Y) romsub $ff50 = clock_get_date_time() clobbers(A, X, Y) -> uword @R0, uword @R1, uword @R2, uword @R3 ; result registers see clock_set_date_time() ; keyboard, mouse, joystick ; note: also see the cbm.kbdbuf_clear() helper routine romsub $febd = kbdbuf_peek() -> ubyte @A, ubyte @X ; key in A, queue length in X romsub $febd = kbdbuf_peek2() -> uword @AX ; alternative to above to not have the hassle to deal with multiple return values romsub $fec0 = kbdbuf_get_modifiers() -> ubyte @A romsub $fec3 = kbdbuf_put(ubyte key @A) clobbers(X) romsub $fed2 = keymap(uword identifier @XY, bool read @Pc) -> bool @Pc romsub $ff68 = mouse_config(byte shape @A, ubyte resX @X, ubyte resY @Y) clobbers (A, X, Y) romsub $ff6b = mouse_get(ubyte zpdataptr @X) -> ubyte @A romsub $ff71 = mouse_scan() clobbers(A, X, Y) romsub $ff53 = joystick_scan() clobbers(A, X, Y) romsub $ff56 = joystick_get(ubyte joynr @A) -> ubyte @A, ubyte @X, ubyte @Y romsub $ff56 = joystick_get2(ubyte joynr @A) clobbers(Y) -> uword @AX ; alternative to above to not have the hassle to deal with multiple return values ; X16Edit (rom bank 13/14 but you ideally should use the routine search_x16edit() to search for the correct bank) romsub $C000 = x16edit_default() clobbers(A,X,Y) romsub $C003 = x16edit_loadfile(ubyte firstbank @X, ubyte lastbank @Y, str filename @R0, ubyte filenameLength @R1) clobbers(A,X,Y) romsub $C006 = x16edit_loadfile_options(ubyte firstbank @X, ubyte lastbank @Y, str filename @R0, uword filenameLengthAndOptions @R1, uword tabstopAndWordwrap @R2, uword disknumberAndColors @R3, uword headerAndStatusColors @R4) clobbers(A,X,Y) ; Audio (rom bank 10 - you have to activate this bank manually first! Or use callfar/JSRFAR.) romsub $C09F = audio_init() clobbers(A,X,Y) -> bool @Pc ; (re)initialize both vera PSG and YM audio chips romsub $C000 = bas_fmfreq(ubyte channel @A, uword freq @XY, bool noretrigger @Pc) clobbers(A,X,Y) -> bool @Pc romsub $C003 = bas_fmnote(ubyte channel @A, ubyte note @X, ubyte fracsemitone @Y, bool noretrigger @Pc) clobbers(A,X,Y) -> bool @Pc romsub $C006 = bas_fmplaystring(ubyte length @A, str string @XY) clobbers(A,X,Y) romsub $C009 = bas_fmvib(ubyte speed @A, ubyte depth @X) clobbers(A,X,Y) -> bool @Pc romsub $C00C = bas_playstringvoice(ubyte channel @A) clobbers(Y) romsub $C00F = bas_psgfreq(ubyte voice @A, uword freq @XY) clobbers(A,X,Y) -> bool @Pc romsub $C012 = bas_psgnote(ubyte voice @A, ubyte note @X, ubyte fracsemitone @Y) clobbers(A,X,Y) -> bool @Pc romsub $C015 = bas_psgwav(ubyte voice @A, ubyte waveform @X) clobbers(A,X,Y) -> bool @Pc romsub $C018 = bas_psgplaystring(ubyte length @A, str string @XY) clobbers(A,X,Y) romsub $C08D = bas_fmchordstring(ubyte length @A, str string @XY) clobbers(A,X,Y) romsub $C090 = bas_psgchordstring(ubyte length @A, str string @XY) clobbers(A,X,Y) romsub $C01B = notecon_bas2fm(ubyte note @X) clobbers(A) -> ubyte @X, bool @Pc romsub $C01E = notecon_bas2midi(ubyte note @X) clobbers(A) -> ubyte @X, bool @Pc romsub $C021 = notecon_bas2psg(ubyte note @X, ubyte fracsemitone @Y) clobbers(A) -> uword @XY, bool @Pc romsub $C024 = notecon_fm2bas(ubyte note @X) clobbers(A) -> ubyte @X, bool @Pc romsub $C027 = notecon_fm2midi(ubyte note @X) clobbers(A) -> ubyte @X, bool @Pc romsub $C02A = notecon_fm2psg(ubyte note @X, ubyte fracsemitone @Y) clobbers(A) -> uword @XY, bool @Pc romsub $C02D = notecon_freq2bas(uword freqHz @XY) clobbers(A) -> ubyte @X, ubyte @Y, bool @Pc romsub $C030 = notecon_freq2fm(uword freqHz @XY) clobbers(A) -> ubyte @X, ubyte @Y, bool @Pc romsub $C033 = notecon_freq2midi(uword freqHz @XY) clobbers(A) -> ubyte @X, ubyte @Y, bool @Pc romsub $C036 = notecon_freq2psg(uword freqHz @XY) clobbers(A) -> uword @XY, bool @Pc romsub $C039 = notecon_midi2bas(ubyte note @X) clobbers(A) -> ubyte @X, bool @Pc romsub $C03C = notecon_midi2fm(ubyte note @X) clobbers(A) -> ubyte @X, bool @Pc romsub $C03F = notecon_midi2psg(ubyte note @X, ubyte fracsemitone @Y) clobbers(A) -> uword @XY, bool @Pc romsub $C042 = notecon_psg2bas(uword freq @XY) clobbers(A) -> ubyte @X, ubyte @Y, bool @Pc romsub $C045 = notecon_psg2fm(uword freq @XY) clobbers(A) -> ubyte @X, ubyte @Y, bool @Pc romsub $C048 = notecon_psg2midi(uword freq @XY) clobbers(A) -> ubyte @X, ubyte @Y, bool @Pc romsub $C04B = psg_init() clobbers(A,X,Y) ; (re)init Vera PSG romsub $C04E = psg_playfreq(ubyte voice @A, uword freq @XY) clobbers(A,X,Y) romsub $C051 = psg_read(ubyte offset @X, bool cookedVol @Pc) clobbers(Y) -> ubyte @A romsub $C054 = psg_setatten(ubyte voice @A, ubyte attenuation @X) clobbers(A,X,Y) romsub $C057 = psg_setfreq(ubyte voice @A, uword freq @XY) clobbers(A,X,Y) romsub $C05A = psg_setpan(ubyte voice @A, ubyte panning @X) clobbers(A,X,Y) romsub $C05D = psg_setvol(ubyte voice @A, ubyte volume @X) clobbers(A,X,Y) romsub $C060 = psg_write(ubyte value @A, ubyte offset @X) clobbers(Y) romsub $C0A2 = psg_write_fast(ubyte value @A, ubyte offset @X) clobbers(Y) romsub $C093 = psg_getatten(ubyte voice @A) clobbers(Y) -> ubyte @X romsub $C096 = psg_getpan(ubyte voice @A) clobbers(Y) -> ubyte @X romsub $C063 = ym_init() clobbers(A,X,Y) -> bool @Pc ; (re)init YM chip romsub $C066 = ym_loaddefpatches() clobbers(A,X,Y) -> bool @Pc ; load default YM patches romsub $C069 = ym_loadpatch(ubyte channel @A, uword patchOrAddress @XY, bool what @Pc) clobbers(A,X,Y) romsub $C06C = ym_loadpatchlfn(ubyte channel @A, ubyte lfn @X) clobbers(X,Y) -> ubyte @A, bool @Pc romsub $C06F = ym_playdrum(ubyte channel @A, ubyte note @X) clobbers(A,X,Y) -> bool @Pc romsub $C072 = ym_playnote(ubyte channel @A, ubyte kc @X, ubyte kf @Y, bool notrigger @Pc) clobbers(A,X,Y) -> bool @Pc romsub $C075 = ym_setatten(ubyte channel @A, ubyte attenuation @X) clobbers(Y) -> bool @Pc romsub $C078 = ym_setdrum(ubyte channel @A, ubyte note @X) clobbers(A,X,Y) -> bool @Pc romsub $C07B = ym_setnote(ubyte channel @A, ubyte kc @X, ubyte kf @Y) clobbers(A,X,Y) -> bool @Pc romsub $C07E = ym_setpan(ubyte channel @A, ubyte panning @X) clobbers(A,X,Y) -> bool @Pc romsub $C081 = ym_read(ubyte register @X, bool cooked @Pc) clobbers(Y) -> ubyte @A, bool @Pc romsub $C084 = ym_release(ubyte channel @A) clobbers(A,X,Y) -> bool @Pc romsub $C087 = ym_trigger(ubyte channel @A, bool noRelease @Pc) clobbers(A,X,Y) -> bool @Pc romsub $C08A = ym_write(ubyte value @A, ubyte register @X) clobbers(Y) -> bool @Pc romsub $C099 = ym_getatten(ubyte channel @A) clobbers(Y) -> ubyte @X romsub $C09C = ym_getpan(ubyte channel @A) clobbers(Y) -> ubyte @X romsub $C0A5 = ym_get_chip_type() clobbers(X) -> ubyte @A asmsub set_screen_mode(ubyte mode @A) clobbers(A,X,Y) -> bool @Pc { ; -- convenience wrapper for screen_mode() to just set a new mode (and return success) %asm {{ clc jmp screen_mode }} } asmsub get_screen_mode() -> byte @A, byte @X, byte @Y { ; -- convenience wrapper for screen_mode() to just get the current mode in A, and size in characters in X+Y ; this does need a piece of inlined asm to call it ans store the result values if you call this from prog8 code ; Note: you can also just do the SEC yourself and simply call screen_mode() directly, ; or use the existing SCREEN kernal routine for just getting the size in characters. %asm {{ sec jmp screen_mode }} } asmsub mouse_config2(byte shape @A) clobbers (A, X, Y) { ; -- convenience wrapper function that handles the screen resolution for mouse_config() for you %asm {{ pha ; save shape sec jsr cx16.screen_mode ; set current screen mode and res in A, X, Y pla ; get shape back jmp cx16.mouse_config }} } asmsub mouse_pos() clobbers(X) -> ubyte @A { ; -- short wrapper around mouse_get() kernal routine: ; -- gets the position of the mouse cursor in cx16.r0 and cx16.r1 (x/y coordinate), returns mouse button status in A. %asm {{ ldx #cx16.r0 jmp cx16.mouse_get }} } ; ---- end of kernal routines ---- ; ---- utilities ----- inline asmsub rombank(ubyte bank @A) { ; -- set the rom banks %asm {{ sta $01 }} } inline asmsub rambank(ubyte bank @A) { ; -- set the ram bank %asm {{ sta $00 }} } inline asmsub getrombank() -> ubyte @A { ; -- get the current rom bank %asm {{ lda $01 }} } inline asmsub getrambank() -> ubyte @A { ; -- get the current RAM bank %asm {{ lda $00 }} } asmsub numbanks() clobbers(X) -> uword @AY { ; -- Returns the number of available RAM banks according to the kernal (each bank is 8 Kb). ; Note that the number of such banks can be 256 so a word is returned. ; But just looking at the A register (the LSB of the result word) could suffice if you know that A=0 means 256 banks: ; The maximum number of RAM banks in the X16 is currently 256 (2 Megabytes of banked RAM). ; Kernal's MEMTOP routine reports 0 in this case but that doesn't mean 'zero banks', instead it means 256 banks, ; as there is no X16 without at least 1 page of banked RAM. So this routine returns 256 instead of 0. %asm {{ sec jsr cbm.MEMTOP ldy #0 cmp #0 bne + iny + rts }} } asmsub vpeek(ubyte bank @A, uword address @XY) -> ubyte @A { ; -- get a byte from VERA's video memory ; note: inefficient when reading multiple sequential bytes! %asm {{ stz cx16.VERA_CTRL sta cx16.VERA_ADDR_H sty cx16.VERA_ADDR_M stx cx16.VERA_ADDR_L lda cx16.VERA_DATA0 rts }} } asmsub vaddr(ubyte bank @A, uword address @R0, ubyte addrsel @R1, byte autoIncrOrDecrByOne @Y) clobbers(A) { ; -- setup the VERA's data address register 0 or 1 ; with optional auto increment or decrement of 1. ; Note that the vaddr_autoincr() and vaddr_autodecr() routines allow to set all possible strides, not just 1. %asm {{ pha lda cx16.r1 and #1 sta cx16.VERA_CTRL lda cx16.r0 sta cx16.VERA_ADDR_L lda cx16.r0+1 sta cx16.VERA_ADDR_M pla cpy #0 bmi ++ beq + ora #%00010000 + sta cx16.VERA_ADDR_H rts + ora #%00011000 sta cx16.VERA_ADDR_H rts }} } asmsub vaddr_clone(ubyte port @A) clobbers (A,X,Y) { ; -- clones Vera addresses from the given source port to the other one. %asm {{ sta VERA_CTRL ldx VERA_ADDR_L ldy VERA_ADDR_H phy ldy VERA_ADDR_M eor #1 sta VERA_CTRL stx VERA_ADDR_L sty VERA_ADDR_M ply sty VERA_ADDR_H eor #1 sta VERA_CTRL rts }} } asmsub vaddr_autoincr(ubyte bank @A, uword address @R0, ubyte addrsel @R1, uword autoIncrAmount @R2) clobbers(A,Y) { ; -- setup the VERA's data address register 0 or 1 ; including setting up optional auto increment amount. ; Specifiying an unsupported amount results in amount of zero. See the Vera docs about what amounts are possible. %asm {{ jsr _setup lda cx16.r2H ora cx16.r2L beq + jsr _determine_incr_bits + ora P8ZP_SCRATCH_REG sta cx16.VERA_ADDR_H rts _setup sta P8ZP_SCRATCH_REG lda cx16.r1 and #1 sta cx16.VERA_CTRL lda cx16.r0 sta cx16.VERA_ADDR_L lda cx16.r0+1 sta cx16.VERA_ADDR_M rts _determine_incr_bits lda cx16.r2H bne _large lda cx16.r2L ldy #13 - cmp _strides_lsb,y beq + dey bpl - + tya asl a asl a asl a asl a rts _large ora cx16.r2L cmp #1 ; 256 bne + lda #9<<4 rts + cmp #2 ; 512 bne + lda #10<<4 rts + cmp #65 ; 320 bne + lda #14<<4 rts + cmp #130 ; 640 bne + lda #15<<4 rts + lda #0 rts _strides_lsb .byte 0,1,2,4,8,16,32,64,128,255,255,40,80,160,255,255 }} } asmsub vaddr_autodecr(ubyte bank @A, uword address @R0, ubyte addrsel @R1, uword autoDecrAmount @R2) clobbers(A,Y) { ; -- setup the VERA's data address register 0 or 1 ; including setting up optional auto decrement amount. ; Specifiying an unsupported amount results in amount of zero. See the Vera docs about what amounts are possible. %asm {{ jsr vaddr_autoincr._setup lda cx16.r2H ora cx16.r2L beq + jsr vaddr_autoincr._determine_incr_bits ora #%00001000 ; autodecrement + ora P8ZP_SCRATCH_REG sta cx16.VERA_ADDR_H rts }} } asmsub vpoke(ubyte bank @A, uword address @R0, ubyte value @Y) clobbers(A) { ; -- write a single byte to VERA's video memory ; note: inefficient when writing multiple sequential bytes! %asm {{ stz cx16.VERA_CTRL sta cx16.VERA_ADDR_H lda cx16.r0 sta cx16.VERA_ADDR_L lda cx16.r0+1 sta cx16.VERA_ADDR_M sty cx16.VERA_DATA0 rts }} } asmsub vpoke_or(ubyte bank @A, uword address @R0, ubyte value @Y) clobbers (A) { ; -- or a single byte to the value already in the VERA's video memory at that location ; note: inefficient when writing multiple sequential bytes! %asm {{ stz cx16.VERA_CTRL sta cx16.VERA_ADDR_H lda cx16.r0 sta cx16.VERA_ADDR_L lda cx16.r0+1 sta cx16.VERA_ADDR_M tya ora cx16.VERA_DATA0 sta cx16.VERA_DATA0 rts }} } asmsub vpoke_and(ubyte bank @A, uword address @R0, ubyte value @Y) clobbers(A) { ; -- and a single byte to the value already in the VERA's video memory at that location ; note: inefficient when writing multiple sequential bytes! %asm {{ stz cx16.VERA_CTRL sta cx16.VERA_ADDR_H lda cx16.r0 sta cx16.VERA_ADDR_L lda cx16.r0+1 sta cx16.VERA_ADDR_M tya and cx16.VERA_DATA0 sta cx16.VERA_DATA0 rts }} } asmsub vpoke_xor(ubyte bank @A, uword address @R0, ubyte value @Y) clobbers (A) { ; -- xor a single byte to the value already in the VERA's video memory at that location ; note: inefficient when writing multiple sequential bytes! %asm {{ stz cx16.VERA_CTRL sta cx16.VERA_ADDR_H lda cx16.r0 sta cx16.VERA_ADDR_L lda cx16.r0+1 sta cx16.VERA_ADDR_M tya eor cx16.VERA_DATA0 sta cx16.VERA_DATA0 rts }} } asmsub vpoke_mask(ubyte bank @A, uword address @R0, ubyte mask @X, ubyte value @Y) clobbers (A) { ; -- bitwise or a single byte to the value already in the VERA's video memory at that location ; after applying the and-mask. Note: inefficient when writing multiple sequential bytes! %asm {{ sty P8ZP_SCRATCH_B1 stz cx16.VERA_CTRL sta cx16.VERA_ADDR_H lda cx16.r0 sta cx16.VERA_ADDR_L lda cx16.r0+1 sta cx16.VERA_ADDR_M txa and cx16.VERA_DATA0 ora P8ZP_SCRATCH_B1 sta cx16.VERA_DATA0 rts }} } asmsub save_virtual_registers() clobbers(A,Y) { %asm {{ ldy #31 - lda cx16.r0,y sta _cx16_vreg_storage,y dey bpl - rts _cx16_vreg_storage .word 0,0,0,0,0,0,0,0 .word 0,0,0,0,0,0,0,0 }} } asmsub restore_virtual_registers() clobbers(A,Y) { %asm {{ ldy #31 - lda save_virtual_registers._cx16_vreg_storage,y sta cx16.r0,y dey bpl - rts }} } asmsub save_vera_context() clobbers(A) { ; -- use this at the start of your IRQ handler if it uses Vera registers, to save the state %asm {{ ; note cannot store this on cpu hardware stack because this gets called as a subroutine lda cx16.VERA_ADDR_L sta _vera_storage lda cx16.VERA_ADDR_M sta _vera_storage+1 lda cx16.VERA_ADDR_H sta _vera_storage+2 lda cx16.VERA_CTRL sta _vera_storage+3 eor #1 sta _vera_storage+7 sta cx16.VERA_CTRL lda cx16.VERA_ADDR_L sta _vera_storage+4 lda cx16.VERA_ADDR_M sta _vera_storage+5 lda cx16.VERA_ADDR_H sta _vera_storage+6 rts _vera_storage: .byte 0,0,0,0,0,0,0,0 }} } asmsub restore_vera_context() clobbers(A) { ; -- use this at the end of your IRQ handler if it uses Vera registers, to restore the state %asm {{ lda cx16.save_vera_context._vera_storage+7 sta cx16.VERA_CTRL lda cx16.save_vera_context._vera_storage+6 sta cx16.VERA_ADDR_H lda cx16.save_vera_context._vera_storage+5 sta cx16.VERA_ADDR_M lda cx16.save_vera_context._vera_storage+4 sta cx16.VERA_ADDR_L lda cx16.save_vera_context._vera_storage+3 sta cx16.VERA_CTRL lda cx16.save_vera_context._vera_storage+2 sta cx16.VERA_ADDR_H lda cx16.save_vera_context._vera_storage+1 sta cx16.VERA_ADDR_M lda cx16.save_vera_context._vera_storage+0 sta cx16.VERA_ADDR_L rts }} } asmsub set_chrin_keyhandler(ubyte handlerbank @A, uword handler @XY) clobbers(A) { ; Install a custom CHRIN (BASIN) key handler in a safe manner. Call this before each line you want to read. ; See https://github.com/X16Community/x16-docs/blob/master/X16%20Reference%20-%2002%20-%20Editor.md#custom-basin-petscii-code-override-handler %asm {{ sei sta P8ZP_SCRATCH_REG lda $00 pha stz $00 lda P8ZP_SCRATCH_REG sta cx16.edkeybk stx cx16.edkeyvec sty cx16.edkeyvec+1 pla sta $00 cli rts }} } asmsub get_chrin_keyhandler() -> ubyte @R0, uword @R1 { ; --- retrieve the currently set CHRIN keyhandler in a safe manner, bank in r0L, handler address in R1. %asm {{ sei lda $00 pha stz $00 lda cx16.edkeybk sta cx16.r0L lda cx16.edkeyvec ldy cx16.edkeyvec+1 sta cx16.r1 sty cx16.r1+1 pla sta $00 cli rts }} } ; Commander X16 IRQ dispatcher routines inline asmsub disable_irqs() clobbers(A) { ; Disable all Vera IRQ sources. Note that it does NOT set the CPU IRQ disabled status bit! %asm {{ lda #%00001111 trb cx16.VERA_IEN }} } asmsub enable_irq_handlers(bool disable_all_irq_sources @Pc) clobbers(A,Y) { ; Install the "master IRQ handler" that will dispatch IRQs ; to the registered handler for each type. (Only Vera IRQs supported for now). ; The handlers don't need to clear its ISR bit, but have to return 0 or 1 in A, ; where 1 means: continue with the system IRQ handler, 0 means: don't call that. %asm {{ php sei bcc + lda #%00001111 trb cx16.VERA_IEN ; disable all IRQ sources + lda #<_irq_dispatcher ldy #>_irq_dispatcher sta cx16.CINV sty cx16.CINV+1 plp rts _irq_dispatcher ; order of handling: LINE, SPRCOL, AFLOW, VSYNC. jsr sys.save_prog8_internals cld lda cx16.VERA_ISR and cx16.VERA_IEN ; only consider the bits for sources that can actually raise the IRQ bit #2 beq + _mod_line_jump jsr _default_line_handler ; modified ldy #2 sty cx16.VERA_ISR bra _dispatch_end + bit #4 beq + _mod_sprcol_jump jsr _default_sprcol_handler ; modified ldy #4 sty cx16.VERA_ISR bra _dispatch_end + bit #8 beq + _mod_aflow_jump jsr _default_aflow_handler ; modified ; note: AFLOW can only be cleared by filling the audio FIFO for at least 1/4. Not via the ISR bit. bra _dispatch_end + bit #1 beq + _mod_vsync_jump jsr _default_vsync_handler ; modified cmp #0 bne _dispatch_end ldy #1 sty cx16.VERA_ISR bra _return_irq + lda #0 _dispatch_end cmp #0 beq _return_irq jsr sys.restore_prog8_internals jmp (sys.restore_irq._orig_irqvec) ; continue with normal kernal irq routine _return_irq jsr sys.restore_prog8_internals ply plx pla rti _default_vsync_handler lda #1 rts _default_line_handler lda #0 rts _default_sprcol_handler lda #0 rts _default_aflow_handler lda #0 rts }} } asmsub set_vsync_irq_handler(uword address @AY) clobbers(A) { ; Sets the VSYNC irq handler to use with enable_irq_handlers(). Also enables VSYNC irqs. ; NOTE: unless a proper irq handler is already running, you should enclose this call in set_irqd() / clear_irqd() to avoid system crashes. %asm {{ php sei sta enable_irq_handlers._mod_vsync_jump+1 sty enable_irq_handlers._mod_vsync_jump+2 lda #1 tsb cx16.VERA_IEN plp rts }} } asmsub set_line_irq_handler(uword rasterline @R0, uword address @AY) clobbers(A,Y) { ; Sets the LINE irq handler to use with enable_irq_handlers(), for the given rasterline. Also enables LINE irqs. ; You can use sys.set_rasterline() later to adjust the rasterline on which to trigger. ; NOTE: unless a proper irq handler is already running, you should enclose this call in set_irqd() / clear_irqd() to avoid system crashes. %asm {{ php sei sta enable_irq_handlers._mod_line_jump+1 sty enable_irq_handlers._mod_line_jump+2 lda cx16.r0 ldy cx16.r0+1 jsr sys.set_rasterline lda #2 tsb cx16.VERA_IEN plp rts }} } asmsub set_sprcol_irq_handler(uword address @AY) clobbers(A) { ; Sets the SPRCOL irq handler to use with enable_irq_handlers(). Also enables SPRCOL irqs. ; NOTE: unless a proper irq handler is already running, you should enclose this call in set_irqd() / clear_irqd() to avoid system crashes. %asm {{ php sei sta enable_irq_handlers._mod_sprcol_jump+1 sty enable_irq_handlers._mod_sprcol_jump+2 lda #4 tsb cx16.VERA_IEN plp rts }} } asmsub set_aflow_irq_handler(uword address @AY) clobbers(A) { ; Sets the AFLOW irq handler to use with enable_irq_handlers(). Also enables AFLOW irqs. ; NOTE: unless a proper irq handler is already running, you should enclose this call in set_irqd() / clear_irqd() to avoid system crashes. %asm {{ php sei sta enable_irq_handlers._mod_aflow_jump+1 sty enable_irq_handlers._mod_aflow_jump+2 lda #8 tsb cx16.VERA_IEN plp rts }} } inline asmsub disable_irq_handlers() { ; back to the system default IRQ handler. %asm {{ jsr sys.restore_irq }} } sub search_x16edit() -> ubyte { ; -- Search the rom bank that contains x16edit. Returns bank number, or 255 if not found. cx16.r0L = cx16.getrombank() sys.set_irqd() str @shared signature = petscii:"x16edit" for cx16.r1L in 31 downto 0 { cx16.rombank(cx16.r1L) cx16.r2 = $fff0 %asm {{ ldy #0 - lda signature,y cmp (cx16.r2),y bne + iny cpy #7 bne - sec bcs ++ + clc + }} if_cs { cx16.rombank(cx16.r0L) sys.clear_irqd() return cx16.r1L } } sys.clear_irqd() return 255 } asmsub cpu_is_65816() -> bool @A { ; Returns true when you have a 65816 cpu, false when it's a 6502. %asm {{ php clv .byte $e2, $ea ; SEP #$ea, should be interpreted as 2 NOPs by 6502. 65c816 will set the Overflow flag. bvc + lda #1 plp rts + lda #0 plp rts }} } sub set_program_args(uword args_ptr, ubyte args_size) { ; Set the inter-program arguments. ; standardized way to pass arguments between programs is in ram bank 0, address $bf00-$bfff. ; see https://github.com/X16Community/x16-docs/blob/master/X16%20Reference%20-%2007%20-%20Memory%20Map.md#bank-0 sys.push(getrambank()) rambank(0) sys.memcopy(args_ptr, $bf00, args_size) if args_size<255 @($bf00+args_size) = 0 rambank(sys.pop()) } asmsub get_program_args(uword buffer @R0, ubyte buf_size @R1, bool binary @Pc) { ; Retrieve the inter-program arguments. If binary=false, it treats them as a string (stops copying at first zero). ; standardized way to pass arguments between programs is in ram bank 0, address $bf00-$bfff. ; see https://github.com/X16Community/x16-docs/blob/master/X16%20Reference%20-%2007%20-%20Memory%20Map.md#bank-0 %asm {{ lda #0 rol a sta P8ZP_SCRATCH_REG lda $00 pha stz $00 stz P8ZP_SCRATCH_W1 lda #$bf sta P8ZP_SCRATCH_W1+1 ldy #0 - lda (P8ZP_SCRATCH_W1),y sta (cx16.r0),y beq + _continue iny cpy cx16.r1L ; max size? bne - beq ++ + lda P8ZP_SCRATCH_REG ; binary? bne _continue + pla sta $00 }} } sub reset_system() { ; Soft-reset the system back to initial power-on Basic prompt. sys.reset_system() } sub poweroff_system() { ; use the SMC to shutdown the computer void cx16.i2c_write_byte($42, $01, $00) } sub set_led_brightness(ubyte brightness) { void cx16.i2c_write_byte($42, $05, brightness) } } sys { ; ------- lowlevel system routines -------- const ubyte target = 16 ; compilation target specifier. 64 = C64, 128 = C128, 16 = CommanderX16. asmsub init_system() { ; Initializes the machine to a sane starting state. ; Called automatically by the loader program logic. %asm {{ sei lda #0 tax tay jsr cx16.mouse_config ; disable mouse cld lda cx16.VERA_DC_VIDEO and #%00000111 ; retain chroma + output mode sta P8ZP_SCRATCH_REG lda #$0a sta $01 ; rom bank 10 (audio) jsr cx16.audio_init ; silence stz $01 ; rom bank 0 (kernal) jsr cbm.IOINIT jsr cbm.RESTOR jsr cbm.CINT lda cx16.VERA_DC_VIDEO and #%11111000 ora P8ZP_SCRATCH_REG sta cx16.VERA_DC_VIDEO ; restore old output mode lda #$90 ; black jsr cbm.CHROUT lda #1 jsr cbm.CHROUT ; swap fg/bg lda #$9e ; yellow jsr cbm.CHROUT lda #147 ; clear screen jsr cbm.CHROUT lda #8 ; disable charset case switch jsr cbm.CHROUT lda #PROG8_VARSHIGH_RAMBANK sta $00 ; select ram bank lda #0 tax tay clc clv cli rts }} } asmsub init_system_phase2() { %asm {{ sei lda cx16.CINV sta restore_irq._orig_irqvec lda cx16.CINV+1 sta restore_irq._orig_irqvec+1 lda #PROG8_VARSHIGH_RAMBANK sta $00 ; select ram bank cli rts }} } asmsub cleanup_at_exit() { ; executed when the main subroutine does rts %asm {{ lda #1 sta $00 ; ram bank 1 lda #4 sta $01 ; rom bank 4 (basic) stz $2d ; hack to reset machine code monitor bank to 0 jsr cbm.CLRCHN ; reset i/o channels _exitcodeCarry = *+1 lda #0 lsr a _exitcode = *+1 lda #0 ; exit code possibly modified in exit() _exitcodeX = *+1 ldx #0 _exitcodeY = *+1 ldy #0 rts }} } asmsub set_irq(uword handler @AY) clobbers(A) { ; Sets the handler for the VSYNC interrupt, and enable that interrupt. %asm {{ sei sta _modified+1 sty _modified+2 lda #<_irq_handler sta cx16.CINV lda #>_irq_handler sta cx16.CINV+1 lda #1 tsb cx16.VERA_IEN ; enable the vsync irq cli rts _irq_handler jsr sys.save_prog8_internals cld _modified jsr $ffff ; modified pha jsr sys.restore_prog8_internals pla beq + jmp (restore_irq._orig_irqvec) ; continue with normal kernal irq routine + lda #1 sta cx16.VERA_ISR ; clear Vera Vsync irq status ply plx pla rti }} } asmsub restore_irq() clobbers(A) { %asm {{ sei lda _orig_irqvec sta cx16.CINV lda _orig_irqvec+1 sta cx16.CINV+1 lda cx16.VERA_IEN and #%11110000 ; disable all Vera IRQs but the vsync ora #%00000001 sta cx16.VERA_IEN cli rts _orig_irqvec .word 0 }} } asmsub set_rasterirq(uword handler @AY, uword rasterpos @R0) clobbers(A) { ; Sets the handler for the LINE interrupt, and enable (only) that interrupt. %asm {{ sei sta _modified+1 sty _modified+2 lda cx16.r0 ldy cx16.r0+1 lda cx16.VERA_IEN and #%11110000 ; disable all irqs but the line(raster) one ora #%00000010 sta cx16.VERA_IEN lda cx16.r0 ldy cx16.r0+1 jsr set_rasterline lda #<_raster_irq_handler sta cx16.CINV lda #>_raster_irq_handler sta cx16.CINV+1 cli rts _raster_irq_handler jsr sys.save_prog8_internals cld _modified jsr $ffff ; modified jsr sys.restore_prog8_internals ; end irq processing - don't use kernal's irq handling lda #2 tsb cx16.VERA_ISR ; clear Vera line irq status ply plx pla rti }} } asmsub set_rasterline(uword line @AY) { %asm {{ php sei sta cx16.VERA_IRQLINE_L tya lsr a bcs + lda #%10000000 trb cx16.VERA_IEN plp rts + lda #%10000000 tsb cx16.VERA_IEN plp rts }} } asmsub reset_system() { ; Soft-reset the system back to initial power-on Basic prompt. ; We do this via the SMC so that a true reset is performed that also resets the Vera fully. ; (note: this is an asmsub on purpose! don't change into a normal sub) %asm {{ sei ldx #$42 ldy #2 lda #0 jmp cx16.i2c_write_byte }} } sub poweroff_system() { ; use the SMC to shutdown the computer void cx16.i2c_write_byte($42, $01, $00) } sub set_leds_brightness(ubyte activity, ubyte power) { void cx16.i2c_write_byte($42, $04, power) void cx16.i2c_write_byte($42, $05, activity) } asmsub wait(uword jiffies @AY) clobbers(X) { ; --- wait approximately the given number of jiffies (1/60th seconds) (N or N+1) ; note: the system irq handler has to be active for this to work as it depends on the system jiffy clock ; note: this routine cannot be used from inside a irq handler %asm {{ sta P8ZP_SCRATCH_W1 sty P8ZP_SCRATCH_W1+1 _loop lda P8ZP_SCRATCH_W1 ora P8ZP_SCRATCH_W1+1 bne + rts + sei jsr cbm.RDTIM cli sta P8ZP_SCRATCH_B1 - sei jsr cbm.RDTIM cli cmp P8ZP_SCRATCH_B1 beq - lda P8ZP_SCRATCH_W1 bne + dec P8ZP_SCRATCH_W1+1 + dec P8ZP_SCRATCH_W1 bra _loop }} } inline asmsub waitvsync() { ; --- suspend execution until the next vsync has occurred, without depending on custom irq handling. ; note: system vsync irq handler has to be active for this routine to work (and no other irqs-- which is the default). ; note: a more accurate way to wait for vsync is to set up a vsync irq handler instead. %asm {{ wai }} } asmsub internal_stringcopy(uword source @R0, uword target @AY) clobbers (A,Y) { ; Called when the compiler wants to assign a string value to another string. %asm {{ sta P8ZP_SCRATCH_W1 sty P8ZP_SCRATCH_W1+1 lda cx16.r0 ldy cx16.r0+1 jmp prog8_lib.strcpy }} } asmsub memcopy(uword source @R0, uword target @R1, uword count @AY) clobbers(A,X,Y) { ; note: only works for NON-OVERLAPPING memory regions! ; If you have to copy overlapping memory regions, consider using ; the cx16 specific kernal routine `memory_copy` (make sure kernal rom is banked in). ; note: can't be inlined because is called from asm as well. ; also: doesn't use cx16 ROM routine so this always works even when ROM is not banked in. %asm {{ cpy #0 bne _longcopy ; copy <= 255 bytes tay bne _copyshort rts ; nothing to copy _copyshort dey beq + - lda (cx16.r0),y sta (cx16.r1),y dey bne - + lda (cx16.r0),y sta (cx16.r1),y rts _longcopy pha ; lsb(count) = remainder in last page tya tax ; x = num pages (1+) ldy #0 - lda (cx16.r0),y sta (cx16.r1),y iny bne - inc cx16.r0+1 inc cx16.r1+1 dex bne - ply bne _copyshort rts }} } asmsub memset(uword mem @R0, uword numbytes @R1, ubyte value @A) clobbers(A,X,Y) { %asm {{ ldy cx16.r0 sty P8ZP_SCRATCH_W1 ldy cx16.r0+1 sty P8ZP_SCRATCH_W1+1 ldx cx16.r1 ldy cx16.r1+1 jmp prog8_lib.memset }} } asmsub memsetw(uword mem @R0, uword numwords @R1, uword value @AY) clobbers (A,X,Y) { %asm {{ ldx cx16.r0 stx P8ZP_SCRATCH_W1 ldx cx16.r0+1 stx P8ZP_SCRATCH_W1+1 ldx cx16.r1 stx P8ZP_SCRATCH_W2 ldx cx16.r1+1 stx P8ZP_SCRATCH_W2+1 jmp prog8_lib.memsetw }} } inline asmsub read_flags() -> ubyte @A { %asm {{ php pla }} } inline asmsub clear_carry() { %asm {{ clc }} } inline asmsub set_carry() { %asm {{ sec }} } inline asmsub clear_irqd() { %asm {{ cli }} } inline asmsub set_irqd() { %asm {{ sei }} } inline asmsub irqsafe_set_irqd() { %asm {{ php sei }} } inline asmsub irqsafe_clear_irqd() { %asm {{ plp }} } inline asmsub disable_caseswitch() { %asm {{ lda #8 jsr cbm.CHROUT }} } inline asmsub enable_caseswitch() { %asm {{ lda #9 jsr cbm.CHROUT }} } asmsub save_prog8_internals() { %asm {{ lda P8ZP_SCRATCH_B1 sta save_SCRATCH_ZPB1 lda P8ZP_SCRATCH_REG sta save_SCRATCH_ZPREG lda P8ZP_SCRATCH_W1 sta save_SCRATCH_ZPWORD1 lda P8ZP_SCRATCH_W1+1 sta save_SCRATCH_ZPWORD1+1 lda P8ZP_SCRATCH_W2 sta save_SCRATCH_ZPWORD2 lda P8ZP_SCRATCH_W2+1 sta save_SCRATCH_ZPWORD2+1 rts save_SCRATCH_ZPB1 .byte 0 save_SCRATCH_ZPREG .byte 0 save_SCRATCH_ZPWORD1 .word 0 save_SCRATCH_ZPWORD2 .word 0 }} } asmsub restore_prog8_internals() { %asm {{ lda save_prog8_internals.save_SCRATCH_ZPB1 sta P8ZP_SCRATCH_B1 lda save_prog8_internals.save_SCRATCH_ZPREG sta P8ZP_SCRATCH_REG lda save_prog8_internals.save_SCRATCH_ZPWORD1 sta P8ZP_SCRATCH_W1 lda save_prog8_internals.save_SCRATCH_ZPWORD1+1 sta P8ZP_SCRATCH_W1+1 lda save_prog8_internals.save_SCRATCH_ZPWORD2 sta P8ZP_SCRATCH_W2 lda save_prog8_internals.save_SCRATCH_ZPWORD2+1 sta P8ZP_SCRATCH_W2+1 rts }} } asmsub exit(ubyte returnvalue @A) { ; -- immediately exit the program with a return code in the A register %asm {{ sta cleanup_at_exit._exitcode ldx prog8_lib.orig_stackpointer txs jmp cleanup_at_exit }} } asmsub exit2(ubyte resulta @A, ubyte resultx @X, ubyte resulty @Y) { ; -- immediately exit the program with result values in the A, X and Y registers. %asm {{ sta cleanup_at_exit._exitcode stx cleanup_at_exit._exitcodeX sty cleanup_at_exit._exitcodeY ldx prog8_lib.orig_stackpointer txs jmp cleanup_at_exit }} } asmsub exit3(ubyte resulta @A, ubyte resultx @X, ubyte resulty @Y, bool carry @Pc) { ; -- immediately exit the program with result values in the A, X and Y registers, and the Carry flag in the status register. %asm {{ sta cleanup_at_exit._exitcode lda #0 rol a sta cleanup_at_exit._exitcodeCarry stx cleanup_at_exit._exitcodeX sty cleanup_at_exit._exitcodeY ldx prog8_lib.orig_stackpointer txs jmp cleanup_at_exit }} } inline asmsub progend() -> uword @AY { %asm {{ lda #prog8_program_end }} } inline asmsub push(ubyte value @A) { %asm {{ pha }} } inline asmsub pushw(uword value @AY) { %asm {{ pha phy }} } inline asmsub pop() -> ubyte @A { %asm {{ pla }} } inline asmsub popw() -> uword @AY { %asm {{ ply pla }} } }