; Prog8 definitions for the Commodore-64 ; Including memory registers, I/O registers, Basic and Kernal subroutines. ; ; Written by Irmen de Jong (irmen@razorvine.net) - license: GNU GPL 3.0 ; ; indent format: TABS, size=8 ~ c64 { memory ubyte SCRATCH_ZPB1 = $02 ; scratch byte 1 in ZP memory ubyte SCRATCH_ZPREG = $03 ; scratch register in ZP memory ubyte SCRATCH_ZPREGX = $fa ; temp storage for X register (stack pointer) memory uword SCRATCH_ZPWORD1 = $fb ; scratch word in ZP ($fb/$fc) memory uword SCRATCH_ZPWORD2 = $fd ; scratch word in ZP ($fd/$fe) memory ubyte TIME_HI = $a0 ; software jiffy clock, hi byte memory ubyte TIME_MID = $a1 ; .. mid byte memory ubyte TIME_LO = $a2 ; .. lo byte. Updated by IRQ every 1/60 sec memory ubyte STKEY = $91 ; various keyboard statuses (updated by IRQ) memory ubyte SFDX = $cb ; current key pressed (matrix value) (updated by IRQ) memory ubyte COLOR = $0286 ; cursor color memory ubyte HIBASE = $0288 ; screen base address / 256 (hi-byte of screen memory address) memory uword CINV = $0314 ; IRQ vector memory uword NMI_VEC = $FFFA ; 6502 nmi vector, determined by the kernal if banked in memory uword RESET_VEC = $FFFC ; 6502 reset vector, determined by the kernal if banked in memory uword IRQ_VEC = $FFFE ; 6502 interrupt vector, determined by the kernal if banked in const uword Screen = $0400 ; default character screen matrix @todo matrix/array? needs to support array size > 255 const uword Colors = $d800 ; character screen colors @todo matrix/array? needs to support array size > 255 ; ---- VIC-II registers ---- memory ubyte SP0X = $d000 memory ubyte SP0Y = $d001 memory ubyte SP1X = $d002 memory ubyte SP1Y = $d003 memory ubyte SP2X = $d004 memory ubyte SP2Y = $d005 memory ubyte SP3X = $d006 memory ubyte SP3Y = $d007 memory ubyte SP4X = $d008 memory ubyte SP4Y = $d009 memory ubyte SP5X = $d00a memory ubyte SP5Y = $d00b memory ubyte SP6X = $d00c memory ubyte SP6Y = $d00d memory ubyte SP7X = $d00e memory ubyte SP7Y = $d00f memory ubyte MSIGX = $d010 memory ubyte SCROLY = $d011 memory ubyte RASTER = $d012 memory ubyte LPENX = $d013 memory ubyte LPENY = $d014 memory ubyte SPENA = $d015 memory ubyte SCROLX = $d016 memory ubyte YXPAND = $d017 memory ubyte VMCSB = $d018 memory ubyte VICIRQ = $d019 memory ubyte IREQMASK = $d01a memory ubyte SPBGPR = $d01b memory ubyte SPMC = $d01c memory ubyte XXPAND = $d01d memory ubyte SPSPCL = $d01e memory ubyte SPBGCL = $d01f memory ubyte EXTCOL = $d020 ; border color memory ubyte BGCOL0 = $d021 ; screen color memory ubyte BGCOL1 = $d022 memory ubyte BGCOL2 = $d023 memory ubyte BGCOL4 = $d024 memory ubyte SPMC0 = $d025 memory ubyte SPMC1 = $d026 memory ubyte SP0COL = $d027 memory ubyte SP1COL = $d028 memory ubyte SP2COL = $d029 memory ubyte SP3COL = $d02a memory ubyte SP4COL = $d02b memory ubyte SP5COL = $d02c memory ubyte SP6COL = $d02d memory ubyte SP7COL = $d02e ; ---- end of VIC-II registers ---- ; ---- C64 basic and kernal ROM float constants and functions ---- ; note: the fac1 and fac2 are working registers and take 6 bytes each, ; floats in memory (and rom) are stored in 5-byte MFLPT packed format. ; constants in five-byte "mflpt" format in the BASIC ROM memory float FL_PIVAL = $aea8 ; 3.1415926... memory float FL_N32768 = $b1a5 ; -32768 memory float FL_FONE = $b9bc ; 1 memory float FL_SQRHLF = $b9d6 ; SQR(2) / 2 memory float FL_SQRTWO = $b9db ; SQR(2) memory float FL_NEGHLF = $b9e0 ; -.5 memory float FL_LOG2 = $b9e5 ; LOG(2) memory float FL_TENC = $baf9 ; 10 memory float FL_NZMIL = $bdbd ; 1e9 (1 billion) memory float FL_FHALF = $bf11 ; .5 memory float FL_LOGEB2 = $bfbf ; 1 / LOG(2) memory float FL_PIHALF = $e2e0 ; PI / 2 memory float FL_TWOPI = $e2e5 ; 2 * PI memory float FL_FR4 = $e2ea ; .25 ; note: fac1/2 might get clobbered even if not mentioned in the function's name. ; note: for subtraction and division, the left operand is in fac2, the right operand in fac1. ; checked functions below: asmsub MOVFM (uword mflpt @ AY) -> clobbers(A,Y) -> () = $bba2 ; load mflpt value from memory in A/Y into fac1 asmsub FREADMEM () -> clobbers(A,Y) -> () = $bba6 ; load mflpt value from memory in $22/$23 into fac1 asmsub CONUPK (uword mflpt @ AY) -> clobbers(A,Y) -> () = $ba8c ; load mflpt value from memory in A/Y into fac2 asmsub FAREADMEM () -> clobbers(A,Y) -> () = $ba90 ; load mflpt value from memory in $22/$23 into fac2 asmsub MOVFA () -> clobbers(A,X) -> () = $bbfc ; copy fac2 to fac1 asmsub MOVAF () -> clobbers(A,X) -> () = $bc0c ; copy fac1 to fac2 (rounded) asmsub MOVEF () -> clobbers(A,X) -> () = $bc0f ; copy fac1 to fac2 asmsub MOVMF (uword mflpt @ XY) -> clobbers(A,Y) -> () = $bbd4 ; store fac1 to memory X/Y as 5-byte mflpt ; fac1-> signed word in Y/A (might throw ILLEGAL QUANTITY) ; (tip: use c64flt.FTOSWRDAY to get A/Y output; lo/hi switched to normal little endian order) asmsub FTOSWORDYA () -> clobbers(X) -> (ubyte @ Y, ubyte @ A) = $b1aa ; fac1 -> unsigned word in Y/A (might throw ILLEGAL QUANTITY) (result also in $14/15) ; (tip: use c64flt.GETADRAY to get A/Y output; lo/hi switched to normal little endian order) asmsub GETADR () -> clobbers(X) -> (ubyte @ Y, ubyte @ A) = $b7f7 asmsub QINT () -> clobbers(A,X,Y) -> () = $bc9b ; fac1 -> 4-byte signed integer in 98-101 ($62-$65), with the MSB FIRST. asmsub AYINT () -> clobbers(A,X,Y) -> () = $b1bf ; fac1-> signed word in 100-101 ($64-$65) MSB FIRST. (might throw ILLEGAL QUANTITY) ; GIVAYF: signed word in Y/A (note different lsb/msb order) -> float in fac1 ; (tip: use c64flt.GIVAYFAY to use A/Y input; lo/hi switched to normal order) ; there is also c64flt.GIVUAYFAY - unsigned word in A/Y (lo/hi) to fac1 ; there is also c64flt.FREADS32 that reads from 98-101 ($62-$65) MSB FIRST ; there is also c64flt.FREADUS32 that reads from 98-101 ($62-$65) MSB FIRST ; there is also c64flt.FREADS24AXY that reads signed int24 into fac1 from A/X/Y (lo/mid/hi bytes) asmsub GIVAYF (ubyte lo @ Y, ubyte hi @ A) -> clobbers(A,X,Y) -> () = $b391 asmsub FREADUY (ubyte value @ Y) -> clobbers(A,X,Y) -> () = $b3a2 ; 8 bit unsigned Y -> float in fac1 asmsub FREADSA (byte value @ A) -> clobbers(A,X,Y) -> () = $bc3c ; 8 bit signed A -> float in fac1 asmsub FREADSTR (ubyte length @ A) -> clobbers(A,X,Y) -> () = $b7b5 ; str -> fac1, $22/23 must point to string, A=string length asmsub FPRINTLN () -> clobbers(A,X,Y) -> () = $aabc ; print string of fac1, on one line (= with newline) destroys fac1. (consider FOUT + STROUT as well) asmsub FOUT () -> clobbers(X) -> (uword @ AY) = $bddd ; fac1 -> string, address returned in AY ($0100) asmsub FADDH () -> clobbers(A,X,Y) -> () = $b849 ; fac1 += 0.5, for rounding- call this before INT asmsub MUL10 () -> clobbers(A,X,Y) -> () = $bae2 ; fac1 *= 10 asmsub DIV10 () -> clobbers(A,X,Y) -> () = $bafe ; fac1 /= 10 , CAUTION: result is always positive! asmsub FCOMP (uword mflpt @ AY) -> clobbers(X,Y) -> (ubyte @ A) = $bc5b ; A = compare fac1 to mflpt in A/Y, 0=equal 1=fac1 is greater, 255=fac1 is less than asmsub FADDT () -> clobbers(A,X,Y) -> () = $b86a ; fac1 += fac2 asmsub FADD (uword mflpt @ AY) -> clobbers(A,X,Y) -> () = $b867 ; fac1 += mflpt value from A/Y asmsub FSUBT () -> clobbers(A,X,Y) -> () = $b853 ; fac1 = fac2-fac1 mind the order of the operands asmsub FSUB (uword mflpt @ AY) -> clobbers(A,X,Y) -> () = $b850 ; fac1 = mflpt from A/Y - fac1 asmsub FMULTT () -> clobbers(A,X,Y) -> () = $ba2b ; fac1 *= fac2 asmsub FMULT (uword mflpt @ AY) -> clobbers(A,X,Y) -> () = $ba28 ; fac1 *= mflpt value from A/Y asmsub FDIVT () -> clobbers(A,X,Y) -> () = $bb12 ; fac1 = fac2/fac1 (remainder in fac2) mind the order of the operands asmsub FDIV (uword mflpt @ AY) -> clobbers(A,X,Y) -> () = $bb0f ; fac1 = mflpt in A/Y / fac1 (remainder in fac2) asmsub FPWRT () -> clobbers(A,X,Y) -> () = $bf7b ; fac1 = fac2 ** fac1 asmsub FPWR (uword mflpt @ AY) -> clobbers(A,X,Y) -> () = $bf78 ; fac1 = fac2 ** mflpt from A/Y asmsub NOTOP () -> clobbers(A,X,Y) -> () = $aed4 ; fac1 = NOT(fac1) asmsub INT () -> clobbers(A,X,Y) -> () = $bccc ; INT() truncates, use FADDH first to round instead of trunc asmsub LOG () -> clobbers(A,X,Y) -> () = $b9ea ; fac1 = LN(fac1) (natural log) asmsub SGN () -> clobbers(A,X,Y) -> () = $bc39 ; fac1 = SGN(fac1), result of SIGN (-1, 0 or 1) asmsub SIGN () -> clobbers() -> (ubyte @ A) = $bc2b ; SIGN(fac1) to A, $ff, $0, $1 for negative, zero, positive asmsub ABS () -> clobbers() -> () = $bc58 ; fac1 = ABS(fac1) asmsub SQR () -> clobbers(A,X,Y) -> () = $bf71 ; fac1 = SQRT(fac1) asmsub SQRA () -> clobbers(A,X,Y) -> () = $bf74 ; fac1 = SQRT(fac2) asmsub EXP () -> clobbers(A,X,Y) -> () = $bfed ; fac1 = EXP(fac1) (e ** fac1) asmsub NEGOP () -> clobbers(A) -> () = $bfb4 ; switch the sign of fac1 asmsub RND () -> clobbers(A,X,Y) -> () = $e097 ; fac1 = RND(fac1) float random number generator asmsub COS () -> clobbers(A,X,Y) -> () = $e264 ; fac1 = COS(fac1) asmsub SIN () -> clobbers(A,X,Y) -> () = $e26b ; fac1 = SIN(fac1) asmsub TAN () -> clobbers(A,X,Y) -> () = $e2b4 ; fac1 = TAN(fac1) asmsub ATN () -> clobbers(A,X,Y) -> () = $e30e ; fac1 = ATN(fac1) ; ---- C64 basic routines ---- asmsub CLEARSCR () -> clobbers(A,X,Y) -> () = $E544 ; clear the screen asmsub HOMECRSR () -> clobbers(A,X,Y) -> () = $E566 ; cursor to top left of screen ; ---- end of C64 basic routines ---- ; ---- C64 kernal routines ---- asmsub STROUT (uword strptr @ AY) -> clobbers(A, X, Y) -> () = $AB1E ; print null-terminated string (a bit slow, see if you can use c64scr.print_string instead) asmsub IRQDFRT () -> clobbers(A,X,Y) -> () = $EA31 ; default IRQ routine asmsub IRQDFEND () -> clobbers(A,X,Y) -> () = $EA81 ; default IRQ end/cleanup asmsub CINT () -> clobbers(A,X,Y) -> () = $FF81 ; (alias: SCINIT) initialize screen editor and video chip asmsub IOINIT () -> clobbers(A, X) -> () = $FF84 ; initialize I/O devices (CIA, SID, IRQ) asmsub RAMTAS () -> clobbers(A,X,Y) -> () = $FF87 ; initialize RAM, tape buffer, screen asmsub RESTOR () -> clobbers(A,X,Y) -> () = $FF8A ; restore default I/O vectors asmsub VECTOR (ubyte dir @ Pc, uword userptr @ XY) -> clobbers(A,Y) -> () = $FF8D ; read/set I/O vector table asmsub SETMSG (ubyte value @ A) -> clobbers() -> () = $FF90 ; set Kernal message control flag asmsub SECOND (ubyte address @ A) -> clobbers(A) -> () = $FF93 ; (alias: LSTNSA) send secondary address after LISTEN asmsub TKSA (ubyte address @ A) -> clobbers(A) -> () = $FF96 ; (alias: TALKSA) send secondary address after TALK asmsub MEMTOP (ubyte dir @ Pc, uword address @ XY) -> clobbers() -> (uword @ XY) = $FF99 ; read/set top of memory pointer asmsub MEMBOT (ubyte dir @ Pc, uword address @ XY) -> clobbers() -> (uword @ XY) = $FF9C ; read/set bottom of memory pointer asmsub SCNKEY () -> clobbers(A,X,Y) -> () = $FF9F ; scan the keyboard asmsub SETTMO (ubyte timeout @ A) -> clobbers() -> () = $FFA2 ; set time-out flag for IEEE bus asmsub ACPTR () -> clobbers() -> (ubyte @ A) = $FFA5 ; (alias: IECIN) input byte from serial bus asmsub CIOUT (ubyte databyte @ A) -> clobbers() -> () = $FFA8 ; (alias: IECOUT) output byte to serial bus asmsub UNTLK () -> clobbers(A) -> () = $FFAB ; command serial bus device to UNTALK asmsub UNLSN () -> clobbers(A) -> () = $FFAE ; command serial bus device to UNLISTEN asmsub LISTEN (ubyte device @ A) -> clobbers(A) -> () = $FFB1 ; command serial bus device to LISTEN asmsub TALK (ubyte device @ A) -> clobbers(A) -> () = $FFB4 ; command serial bus device to TALK asmsub READST () -> clobbers() -> (ubyte @ A) = $FFB7 ; read I/O status word asmsub SETLFS (ubyte logical @ A, ubyte device @ X, ubyte address @ Y) -> clobbers() -> () = $FFBA ; set logical file parameters asmsub SETNAM (ubyte namelen @ A, str filename @ XY) -> clobbers() -> () = $FFBD ; set filename parameters asmsub OPEN () -> clobbers(A,X,Y) -> () = $FFC0 ; (via 794 ($31A)) open a logical file asmsub CLOSE (ubyte logical @ A) -> clobbers(A,X,Y) -> () = $FFC3 ; (via 796 ($31C)) close a logical file asmsub CHKIN (ubyte logical @ X) -> clobbers(A,X) -> () = $FFC6 ; (via 798 ($31E)) define an input channel asmsub CHKOUT (ubyte logical @ X) -> clobbers(A,X) -> () = $FFC9 ; (via 800 ($320)) define an output channel asmsub CLRCHN () -> clobbers(A,X) -> () = $FFCC ; (via 802 ($322)) restore default devices asmsub CHRIN () -> clobbers(Y) -> (ubyte @ A) = $FFCF ; (via 804 ($324)) input a character (for keyboard, read a whole line from the screen) A=byte read. asmsub CHROUT (ubyte char @ A) -> clobbers() -> () = $FFD2 ; (via 806 ($326)) output a character asmsub LOAD (ubyte verify @ A, uword address @ XY) -> clobbers() -> (ubyte @Pc, ubyte @ A, ubyte @ X, ubyte @ Y) = $FFD5 ; (via 816 ($330)) load from device asmsub SAVE (ubyte zp_startaddr @ A, uword endaddr @ XY) -> clobbers() -> (ubyte @ Pc, ubyte @ A) = $FFD8 ; (via 818 ($332)) save to a device asmsub SETTIM (ubyte low @ A, ubyte middle @ X, ubyte high @ Y) -> clobbers() -> () = $FFDB ; set the software clock asmsub RDTIM () -> clobbers() -> (ubyte @ A, ubyte @ X, ubyte @ Y) = $FFDE ; read the software clock asmsub STOP () -> clobbers(A,X) -> (ubyte @ Pz, ubyte @ Pc) = $FFE1 ; (via 808 ($328)) check the STOP key asmsub GETIN () -> clobbers(X,Y) -> (ubyte @ A) = $FFE4 ; (via 810 ($32A)) get a character asmsub CLALL () -> clobbers(A,X) -> () = $FFE7 ; (via 812 ($32C)) close all files asmsub UDTIM () -> clobbers(A,X) -> () = $FFEA ; update the software clock asmsub SCREEN () -> clobbers() -> (ubyte @ X, ubyte @ Y) = $FFED ; read number of screen rows and columns asmsub PLOT (ubyte dir @ Pc, ubyte col @ Y, ubyte row @ X) -> clobbers() -> (ubyte @ X, ubyte @ Y) = $FFF0 ; read/set position of cursor on screen. See c64scr.PLOT for a 'safe' wrapper that preserves X. asmsub IOBASE () -> clobbers() -> (uword @ XY) = $FFF3 ; read base address of I/O devices ; ---- end of C64 kernal routines ---- }