; Prog8 definitions for the CommanderX16 ; Including memory registers, I/O registers, Basic and Kernal subroutines. c64 { ; ---- kernal routines, these are the same as on the Commodore-64 (hence the same block name) ---- ; STROUT --> use txt.print ; CLEARSCR -> use txt.clear_screen ; HOMECRSR -> use txt.home or txt.plot romsub $FF81 = CINT() clobbers(A,X,Y) ; (alias: SCINIT) initialize screen editor and video chip romsub $FF84 = IOINIT() clobbers(A, X) ; initialize I/O devices (CIA, SID, IRQ) romsub $FF87 = RAMTAS() clobbers(A,X,Y) ; initialize RAM, tape buffer, screen romsub $FF8A = RESTOR() clobbers(A,X,Y) ; restore default I/O vectors romsub $FF8D = VECTOR(uword userptr @ XY, ubyte dir @ Pc) clobbers(A,Y) ; read/set I/O vector table romsub $FF90 = SETMSG(ubyte value @ A) ; set Kernal message control flag romsub $FF93 = SECOND(ubyte address @ A) clobbers(A) ; (alias: LSTNSA) send secondary address after LISTEN romsub $FF96 = TKSA(ubyte address @ A) clobbers(A) ; (alias: TALKSA) send secondary address after TALK romsub $FF99 = MEMTOP(uword address @ XY, ubyte dir @ Pc) -> uword @ XY ; read/set top of memory pointer. NOTE: as a Cx16 extension, also returns the number of RAM memory banks in register A ! See cx16.numbanks() romsub $FF9C = MEMBOT(uword address @ XY, ubyte dir @ Pc) -> uword @ XY ; read/set bottom of memory pointer romsub $FF9F = SCNKEY() clobbers(A,X,Y) ; scan the keyboard romsub $FFA2 = SETTMO(ubyte timeout @ A) ; set time-out flag for IEEE bus romsub $FFA5 = ACPTR() -> ubyte @ A ; (alias: IECIN) input byte from serial bus romsub $FFA8 = CIOUT(ubyte databyte @ A) ; (alias: IECOUT) output byte to serial bus romsub $FFAB = UNTLK() clobbers(A) ; command serial bus device to UNTALK romsub $FFAE = UNLSN() clobbers(A) ; command serial bus device to UNLISTEN romsub $FFB1 = LISTEN(ubyte device @ A) clobbers(A) ; command serial bus device to LISTEN romsub $FFB4 = TALK(ubyte device @ A) clobbers(A) ; command serial bus device to TALK romsub $FFB7 = READST() -> ubyte @ A ; read I/O status word romsub $FFBA = SETLFS(ubyte logical @ A, ubyte device @ X, ubyte secondary @ Y) ; set logical file parameters romsub $FFBD = SETNAM(ubyte namelen @ A, str filename @ XY) ; set filename parameters romsub $FFC0 = OPEN() clobbers(X,Y) -> ubyte @Pc, ubyte @A ; (via 794 ($31A)) open a logical file romsub $FFC3 = CLOSE(ubyte logical @ A) clobbers(A,X,Y) ; (via 796 ($31C)) close a logical file romsub $FFC6 = CHKIN(ubyte logical @ X) clobbers(A,X) -> ubyte @Pc ; (via 798 ($31E)) define an input channel romsub $FFC9 = CHKOUT(ubyte logical @ X) clobbers(A,X) ; (via 800 ($320)) define an output channel romsub $FFCC = CLRCHN() clobbers(A,X) ; (via 802 ($322)) restore default devices romsub $FFCF = CHRIN() clobbers(X, Y) -> ubyte @ A ; (via 804 ($324)) input a character (for keyboard, read a whole line from the screen) A=byte read. romsub $FFD2 = CHROUT(ubyte char @ A) ; (via 806 ($326)) output a character romsub $FFD5 = LOAD(ubyte verify @ A, uword address @ XY) -> ubyte @Pc, ubyte @ A, uword @ XY ; (via 816 ($330)) load from device romsub $FFD8 = SAVE(ubyte zp_startaddr @ A, uword endaddr @ XY) -> ubyte @ Pc, ubyte @ A ; (via 818 ($332)) save to a device romsub $FFDB = SETTIM(ubyte low @ A, ubyte middle @ X, ubyte high @ Y) ; set the software clock romsub $FFDE = RDTIM() -> ubyte @ A, ubyte @ X, ubyte @ Y ; read the software clock (A=lo,X=mid,Y=high) romsub $FFE1 = STOP() clobbers(X) -> ubyte @ Pz, ubyte @ A ; (via 808 ($328)) check the STOP key (and some others in A) romsub $FFE4 = GETIN() clobbers(X,Y) -> ubyte @Pc, ubyte @ A ; (via 810 ($32A)) get a character romsub $FFE7 = CLALL() clobbers(A,X) ; (via 812 ($32C)) close all files romsub $FFEA = UDTIM() clobbers(A,X) ; update the software clock romsub $FFED = SCREEN() -> ubyte @ X, ubyte @ Y ; read number of screen rows and columns romsub $FFF0 = PLOT(ubyte col @ Y, ubyte row @ X, ubyte dir @ Pc) -> ubyte @ X, ubyte @ Y ; read/set position of cursor on screen. Use txt.plot for a 'safe' wrapper that preserves X. romsub $FFF3 = IOBASE() -> uword @ XY ; read base address of I/O devices ; ---- utility asmsub STOP2() -> ubyte @A { ; -- check if STOP key was pressed, returns true if so. More convenient to use than STOP() because that only sets the carry status flag. %asm {{ phx jsr c64.STOP beq + plx lda #0 rts + plx lda #1 rts }} } asmsub RDTIM16() -> uword @AY { ; -- like RDTIM() but only returning the lower 16 bits in AY for convenience %asm {{ phx jsr c64.RDTIM pha txa tay pla plx rts }} } } cx16 { ; irq, system and hardware vectors: &uword IERROR = $0300 &uword IMAIN = $0302 &uword ICRNCH = $0304 &uword IQPLOP = $0306 &uword IGONE = $0308 &uword IEVAL = $030a &ubyte SAREG = $030c ; register storage for A for SYS calls &ubyte SXREG = $030d ; register storage for X for SYS calls &ubyte SYREG = $030e ; register storage for Y for SYS calls &ubyte SPREG = $030f ; register storage for P (status register) for SYS calls &uword USRADD = $0311 ; vector for the USR() basic command ; $0313 is unused. &uword CINV = $0314 ; IRQ vector (in ram) &uword CBINV = $0316 ; BRK vector (in ram) &uword NMINV = $0318 ; NMI vector (in ram) &uword IOPEN = $031a &uword ICLOSE = $031c &uword ICHKIN = $031e &uword ICKOUT = $0320 &uword ICLRCH = $0322 &uword IBASIN = $0324 &uword IBSOUT = $0326 &uword ISTOP = $0328 &uword IGETIN = $032a &uword ICLALL = $032c &uword KEYHDL = $032e ; keyboard scan code handler see examples/cx16/keyboardhandler.p8 &uword ILOAD = $0330 &uword ISAVE = $0332 &uword NMI_VEC = $FFFA ; 65c02 nmi vector, determined by the kernal if banked in &uword RESET_VEC = $FFFC ; 65c02 reset vector, determined by the kernal if banked in &uword IRQ_VEC = $FFFE ; 65c02 interrupt vector, determined by the kernal if banked in ; the sixteen virtual 16-bit registers in both normal unsigned mode and signed mode (s) &uword r0 = $0002 &uword r1 = $0004 &uword r2 = $0006 &uword r3 = $0008 &uword r4 = $000a &uword r5 = $000c &uword r6 = $000e &uword r7 = $0010 &uword r8 = $0012 &uword r9 = $0014 &uword r10 = $0016 &uword r11 = $0018 &uword r12 = $001a &uword r13 = $001c &uword r14 = $001e &uword r15 = $0020 &word r0s = $0002 &word r1s = $0004 &word r2s = $0006 &word r3s = $0008 &word r4s = $000a &word r5s = $000c &word r6s = $000e &word r7s = $0010 &word r8s = $0012 &word r9s = $0014 &word r10s = $0016 &word r11s = $0018 &word r12s = $001a &word r13s = $001c &word r14s = $001e &word r15s = $0020 &ubyte r0L = $0002 &ubyte r1L = $0004 &ubyte r2L = $0006 &ubyte r3L = $0008 &ubyte r4L = $000a &ubyte r5L = $000c &ubyte r6L = $000e &ubyte r7L = $0010 &ubyte r8L = $0012 &ubyte r9L = $0014 &ubyte r10L = $0016 &ubyte r11L = $0018 &ubyte r12L = $001a &ubyte r13L = $001c &ubyte r14L = $001e &ubyte r15L = $0020 &ubyte r0H = $0003 &ubyte r1H = $0005 &ubyte r2H = $0007 &ubyte r3H = $0009 &ubyte r4H = $000b &ubyte r5H = $000d &ubyte r6H = $000f &ubyte r7H = $0011 &ubyte r8H = $0013 &ubyte r9H = $0015 &ubyte r10H = $0017 &ubyte r11H = $0019 &ubyte r12H = $001b &ubyte r13H = $001d &ubyte r14H = $001f &ubyte r15H = $0021 &byte r0sL = $0002 &byte r1sL = $0004 &byte r2sL = $0006 &byte r3sL = $0008 &byte r4sL = $000a &byte r5sL = $000c &byte r6sL = $000e &byte r7sL = $0010 &byte r8sL = $0012 &byte r9sL = $0014 &byte r10sL = $0016 &byte r11sL = $0018 &byte r12sL = $001a &byte r13sL = $001c &byte r14sL = $001e &byte r15sL = $0020 &byte r0sH = $0003 &byte r1sH = $0005 &byte r2sH = $0007 &byte r3sH = $0009 &byte r4sH = $000b &byte r5sH = $000d &byte r6sH = $000f &byte r7sH = $0011 &byte r8sH = $0013 &byte r9sH = $0015 &byte r10sH = $0017 &byte r11sH = $0019 &byte r12sH = $001b &byte r13sH = $001d &byte r14sH = $001f &byte r15sH = $0021 ; VERA registers const uword VERA_BASE = $9F20 &ubyte VERA_ADDR_L = VERA_BASE + $0000 &ubyte VERA_ADDR_M = VERA_BASE + $0001 &ubyte VERA_ADDR_H = VERA_BASE + $0002 &ubyte VERA_DATA0 = VERA_BASE + $0003 &ubyte VERA_DATA1 = VERA_BASE + $0004 &ubyte VERA_CTRL = VERA_BASE + $0005 &ubyte VERA_IEN = VERA_BASE + $0006 &ubyte VERA_ISR = VERA_BASE + $0007 &ubyte VERA_IRQ_LINE_L = VERA_BASE + $0008 &ubyte VERA_DC_VIDEO = VERA_BASE + $0009 &ubyte VERA_DC_HSCALE = VERA_BASE + $000A &ubyte VERA_DC_VSCALE = VERA_BASE + $000B &ubyte VERA_DC_BORDER = VERA_BASE + $000C &ubyte VERA_DC_HSTART = VERA_BASE + $0009 &ubyte VERA_DC_HSTOP = VERA_BASE + $000A &ubyte VERA_DC_VSTART = VERA_BASE + $000B &ubyte VERA_DC_VSTOP = VERA_BASE + $000C &ubyte VERA_L0_CONFIG = VERA_BASE + $000D &ubyte VERA_L0_MAPBASE = VERA_BASE + $000E &ubyte VERA_L0_TILEBASE = VERA_BASE + $000F &ubyte VERA_L0_HSCROLL_L = VERA_BASE + $0010 &ubyte VERA_L0_HSCROLL_H = VERA_BASE + $0011 &ubyte VERA_L0_VSCROLL_L = VERA_BASE + $0012 &ubyte VERA_L0_VSCROLL_H = VERA_BASE + $0013 &ubyte VERA_L1_CONFIG = VERA_BASE + $0014 &ubyte VERA_L1_MAPBASE = VERA_BASE + $0015 &ubyte VERA_L1_TILEBASE = VERA_BASE + $0016 &ubyte VERA_L1_HSCROLL_L = VERA_BASE + $0017 &ubyte VERA_L1_HSCROLL_H = VERA_BASE + $0018 &ubyte VERA_L1_VSCROLL_L = VERA_BASE + $0019 &ubyte VERA_L1_VSCROLL_H = VERA_BASE + $001A &ubyte VERA_AUDIO_CTRL = VERA_BASE + $001B &ubyte VERA_AUDIO_RATE = VERA_BASE + $001C &ubyte VERA_AUDIO_DATA = VERA_BASE + $001D &ubyte VERA_SPI_DATA = VERA_BASE + $001E &ubyte VERA_SPI_CTRL = VERA_BASE + $001F ; VERA_PSG_BASE = $1F9C0 ; VERA_PALETTE_BASE = $1FA00 ; VERA_SPRITES_BASE = $1FC00 ; I/O const uword via1 = $9f00 ;VIA 6522 #1 &ubyte d1prb = via1+0 &ubyte d1pra = via1+1 &ubyte d1ddrb = via1+2 &ubyte d1ddra = via1+3 &ubyte d1t1l = via1+4 &ubyte d1t1h = via1+5 &ubyte d1t1ll = via1+6 &ubyte d1t1lh = via1+7 &ubyte d1t2l = via1+8 &ubyte d1t2h = via1+9 &ubyte d1sr = via1+10 &ubyte d1acr = via1+11 &ubyte d1pcr = via1+12 &ubyte d1ifr = via1+13 &ubyte d1ier = via1+14 &ubyte d1ora = via1+15 const uword via2 = $9f10 ;VIA 6522 #2 &ubyte d2prb = via2+0 &ubyte d2pra = via2+1 &ubyte d2ddrb = via2+2 &ubyte d2ddra = via2+3 &ubyte d2t1l = via2+4 &ubyte d2t1h = via2+5 &ubyte d2t1ll = via2+6 &ubyte d2t1lh = via2+7 &ubyte d2t2l = via2+8 &ubyte d2t2h = via2+9 &ubyte d2sr = via2+10 &ubyte d2acr = via2+11 &ubyte d2pcr = via2+12 &ubyte d2ifr = via2+13 &ubyte d2ier = via2+14 &ubyte d2ora = via2+15 ; YM-2151 sound chip &ubyte YM_ADDRESS = $9f40 &ubyte YM_DATA = $9f41 const uword extdev = $9f60 ; ---- Commander X-16 additions on top of C64 kernal routines ---- ; spelling of the names is taken from the Commander X-16 rom sources ; supported C128 additions romsub $ff4a = close_all(ubyte device @A) clobbers(A,X,Y) romsub $ff59 = lkupla(ubyte la @A) clobbers(A,X,Y) romsub $ff5c = lkupsa(ubyte sa @Y) clobbers(A,X,Y) romsub $ff5f = screen_mode(ubyte mode @A, ubyte getCurrent @Pc) clobbers(A, X, Y) -> ubyte @Pc romsub $ff62 = screen_set_charset(ubyte charset @A, uword charsetptr @XY) clobbers(A,X,Y) ; incompatible with C128 dlchr() ; not yet supported: romsub $ff65 = pfkey() clobbers(A,X,Y) romsub $ff6e = jsrfar() ; following word = address to call, byte after that=rom/ram bank it is in romsub $ff74 = fetch(ubyte bank @X, ubyte index @Y) clobbers(X) -> ubyte @A romsub $ff77 = stash(ubyte data @A, ubyte bank @X, ubyte index @Y) clobbers(X) romsub $ff7a = cmpare(ubyte data @A, ubyte bank @X, ubyte index @Y) clobbers(X) romsub $ff7d = primm() ; It's not documented what registers are clobbered, so we assume the worst for all following kernal routines...: ; high level graphics & fonts romsub $ff20 = GRAPH_init(uword vectors @R0) clobbers(A,X,Y) romsub $ff23 = GRAPH_clear() clobbers(A,X,Y) romsub $ff26 = GRAPH_set_window(uword x @R0, uword y @R1, uword width @R2, uword height @R3) clobbers(A,X,Y) romsub $ff29 = GRAPH_set_colors(ubyte stroke @A, ubyte fill @X, ubyte background @Y) clobbers (A,X,Y) romsub $ff2c = GRAPH_draw_line(uword x1 @R0, uword y1 @R1, uword x2 @R2, uword y2 @R3) clobbers(A,X,Y) romsub $ff2f = GRAPH_draw_rect(uword x @R0, uword y @R1, uword width @R2, uword height @R3, uword cornerradius @R4, ubyte fill @Pc) clobbers(A,X,Y) romsub $ff32 = GRAPH_move_rect(uword sx @R0, uword sy @R1, uword tx @R2, uword ty @R3, uword width @R4, uword height @R5) clobbers(A,X,Y) romsub $ff35 = GRAPH_draw_oval(uword x @R0, uword y @R1, uword width @R2, uword height @R3, ubyte fill @Pc) clobbers(A,X,Y) romsub $ff38 = GRAPH_draw_image(uword x @R0, uword y @R1, uword ptr @R2, uword width @R3, uword height @R4) clobbers(A,X,Y) romsub $ff3b = GRAPH_set_font(uword fontptr @R0) clobbers(A,X,Y) romsub $ff3e = GRAPH_get_char_size(ubyte baseline @A, ubyte width @X, ubyte height_or_style @Y, ubyte is_control @Pc) clobbers(A,X,Y) romsub $ff41 = GRAPH_put_char(uword x @R0, uword y @R1, ubyte char @A) clobbers(A,X,Y) romsub $ff41 = GRAPH_put_next_char(ubyte char @A) clobbers(A,X,Y) ; alias for the routine above that doesn't reset the position of the initial character ; framebuffer romsub $fef6 = FB_init() clobbers(A,X,Y) romsub $fef9 = FB_get_info() clobbers(X,Y) -> byte @A, uword @R0, uword @R1 ; width=r0, height=r1 romsub $fefc = FB_set_palette(uword pointer @R0, ubyte index @A, ubyte bytecount @X) clobbers(A,X,Y) romsub $feff = FB_cursor_position(uword x @R0, uword y @R1) clobbers(A,X,Y) romsub $feff = FB_cursor_position2() clobbers(A,X,Y) ; alias for the previous routine, but avoiding having to respecify both x and y every time romsub $ff02 = FB_cursor_next_line(uword x @R0) clobbers(A,X,Y) romsub $ff05 = FB_get_pixel() clobbers(X,Y) -> ubyte @A romsub $ff08 = FB_get_pixels(uword pointer @R0, uword count @R1) clobbers(A,X,Y) romsub $ff0b = FB_set_pixel(ubyte color @A) clobbers(A,X,Y) romsub $ff0e = FB_set_pixels(uword pointer @R0, uword count @R1) clobbers(A,X,Y) romsub $ff11 = FB_set_8_pixels(ubyte pattern @A, ubyte color @X) clobbers(A,X,Y) romsub $ff14 = FB_set_8_pixels_opaque(ubyte pattern @R0, ubyte mask @A, ubyte color1 @X, ubyte color2 @Y) clobbers(A,X,Y) romsub $ff17 = FB_fill_pixels(uword count @R0, uword pstep @R1, ubyte color @A) clobbers(A,X,Y) romsub $ff1a = FB_filter_pixels(uword pointer @ R0, uword count @R1) clobbers(A,X,Y) romsub $ff1d = FB_move_pixels(uword sx @R0, uword sy @R1, uword tx @R2, uword ty @R3, uword count @R4) clobbers(A,X,Y) ; misc romsub $fec6 = i2c_read_byte(ubyte device @X, ubyte offset @Y) clobbers (X,Y) -> ubyte @A, ubyte @Pc romsub $fec9 = i2c_write_byte(ubyte device @X, ubyte offset @Y, ubyte data @A) clobbers (A,X,Y) -> ubyte @Pc romsub $fef0 = sprite_set_image(uword pixels @R0, uword mask @R1, ubyte bpp @R2, ubyte number @A, ubyte width @X, ubyte height @Y, ubyte apply_mask @Pc) clobbers(A,X,Y) -> ubyte @Pc romsub $fef3 = sprite_set_position(uword x @R0, uword y @R1, ubyte number @A) clobbers(A,X,Y) romsub $fee4 = memory_fill(uword address @R0, uword num_bytes @R1, ubyte value @A) clobbers(A,X,Y) romsub $fee7 = memory_copy(uword source @R0, uword target @R1, uword num_bytes @R2) clobbers(A,X,Y) romsub $feea = memory_crc(uword address @R0, uword num_bytes @R1) clobbers(A,X,Y) -> uword @R2 romsub $feed = memory_decompress(uword input @R0, uword output @R1) clobbers(A,X,Y) -> uword @R1 ; last address +1 is result in R1 romsub $fedb = console_init(uword x @R0, uword y @R1, uword width @R2, uword height @R3) clobbers(A,X,Y) romsub $fede = console_put_char(ubyte char @A, ubyte wrapping @Pc) clobbers(A,X,Y) romsub $fee1 = console_get_char() clobbers(X,Y) -> ubyte @A romsub $fed8 = console_put_image(uword pointer @R0, uword width @R1, uword height @R2) clobbers(A,X,Y) romsub $fed5 = console_set_paging_message(uword msgptr @R0) clobbers(A,X,Y) romsub $fecf = entropy_get() -> ubyte @A, ubyte @X, ubyte @Y romsub $fecc = monitor() clobbers(A,X,Y) romsub $ff44 = macptr(ubyte length @A, uword buffer @XY, bool dontAdvance @Pc) clobbers(A) -> bool @Pc, uword @XY romsub $ff47 = enter_basic(ubyte cold_or_warm @Pc) clobbers(A,X,Y) romsub $ff4d = clock_set_date_time(uword yearmonth @R0, uword dayhours @R1, uword minsecs @R2, ubyte jiffies @R3) clobbers(A, X, Y) romsub $ff50 = clock_get_date_time() clobbers(A, X, Y) -> uword @R0, uword @R1, uword @R2, ubyte @R3 ; result registers see clock_set_date_time() ; keyboard, mouse, joystick ; note: also see the kbdbuf_clear() helper routine below! romsub $febd = kbdbuf_peek() -> ubyte @A, ubyte @X ; key in A, queue length in X romsub $febd = kbdbuf_peek2() -> uword @AX ; alternative to above to not have the hassle to deal with multiple return values romsub $fec0 = kbdbuf_get_modifiers() -> ubyte @A romsub $fec3 = kbdbuf_put(ubyte key @A) clobbers(X) romsub $ff68 = mouse_config(ubyte shape @A, ubyte resX @X, ubyte resY @Y) clobbers (A, X, Y) romsub $ff6b = mouse_get(ubyte zpdataptr @X) -> ubyte @A romsub $ff71 = mouse_scan() clobbers(A, X, Y) romsub $ff53 = joystick_scan() clobbers(A, X, Y) romsub $ff56 = joystick_get(ubyte joynr @A) -> ubyte @A, ubyte @X, ubyte @Y romsub $ff56 = joystick_get2(ubyte joynr @A) clobbers(Y) -> uword @AX ; alternative to above to not have the hassle to deal with multiple return values asmsub kbdbuf_clear() { ; -- convenience helper routine to clear the keyboard buffer %asm {{ - jsr c64.GETIN bne - rts }} } asmsub mouse_config2(ubyte shape @A) clobbers (A, X, Y) { ; -- convenience wrapper function that handles the screen resolution for mouse_config() for you %asm {{ pha ; save shape sec jsr cx16.screen_mode ; set current screen mode and res in A, X, Y pla ; get shape back jmp cx16.mouse_config }} } asmsub mouse_pos() -> ubyte @A { ; -- short wrapper around mouse_get() kernal routine: ; -- gets the position of the mouse cursor in cx16.r0 and cx16.r1 (x/y coordinate), returns mouse button status. %asm {{ phx ldx #cx16.r0 jsr cx16.mouse_get plx rts }} } ; ---- end of kernal routines ---- ; ---- utilities ----- inline asmsub rombank(ubyte bank @A) { ; -- set the rom banks %asm {{ sta $01 }} } inline asmsub rambank(ubyte bank @A) { ; -- set the ram bank %asm {{ sta $00 }} } inline asmsub getrombank() -> ubyte @A { ; -- get the current rom bank %asm {{ lda $01 }} } inline asmsub getrambank() -> ubyte @A { ; -- get the current RAM bank %asm {{ lda $00 }} } asmsub numbanks() -> uword @AY { ; -- Returns the number of available RAM banks according to the kernal (each bank is 8 Kb). ; Note that the number of such banks can be 256 so a word is returned. ; But just looking at the A register (the LSB of the result word) could suffice if you know that A=0 means 256 banks: ; The maximum number of RAM banks in the X16 is currently 256 (2 Megabytes of banked RAM). ; Kernal's MEMTOP routine reports 0 in this case but that doesn't mean 'zero banks', instead it means 256 banks, ; as there is no X16 without at least 1 page of banked RAM. So this routine returns 256 instead of 0. %asm {{ phx sec jsr c64.MEMTOP ldy #0 cmp #0 bne + iny + plx rts }} } asmsub vpeek(ubyte bank @A, uword address @XY) -> ubyte @A { ; -- get a byte from VERA's video memory ; note: inefficient when reading multiple sequential bytes! %asm {{ pha lda #1 sta cx16.VERA_CTRL pla and #1 sta cx16.VERA_ADDR_H sty cx16.VERA_ADDR_M stx cx16.VERA_ADDR_L lda cx16.VERA_DATA1 rts }} } asmsub vaddr(ubyte bank @A, uword address @R0, ubyte addrsel @R1, byte autoIncrOrDecrByOne @Y) clobbers(A) { ; -- setup the VERA's data address register 0 or 1 %asm {{ and #1 pha lda cx16.r1 and #1 sta cx16.VERA_CTRL lda cx16.r0 sta cx16.VERA_ADDR_L lda cx16.r0+1 sta cx16.VERA_ADDR_M pla cpy #0 bmi ++ beq + ora #%00010000 + sta cx16.VERA_ADDR_H rts + ora #%00011000 sta cx16.VERA_ADDR_H rts }} } asmsub vpoke(ubyte bank @A, uword address @R0, ubyte value @Y) clobbers(A) { ; -- write a single byte to VERA's video memory ; note: inefficient when writing multiple sequential bytes! %asm {{ stz cx16.VERA_CTRL and #1 sta cx16.VERA_ADDR_H lda cx16.r0 sta cx16.VERA_ADDR_L lda cx16.r0+1 sta cx16.VERA_ADDR_M sty cx16.VERA_DATA0 rts }} } asmsub vpoke_or(ubyte bank @A, uword address @R0, ubyte value @Y) clobbers (A) { ; -- or a single byte to the value already in the VERA's video memory at that location ; note: inefficient when writing multiple sequential bytes! %asm {{ stz cx16.VERA_CTRL and #1 sta cx16.VERA_ADDR_H lda cx16.r0 sta cx16.VERA_ADDR_L lda cx16.r0+1 sta cx16.VERA_ADDR_M tya ora cx16.VERA_DATA0 sta cx16.VERA_DATA0 rts }} } asmsub vpoke_and(ubyte bank @A, uword address @R0, ubyte value @Y) clobbers(A) { ; -- and a single byte to the value already in the VERA's video memory at that location ; note: inefficient when writing multiple sequential bytes! %asm {{ stz cx16.VERA_CTRL and #1 sta cx16.VERA_ADDR_H lda cx16.r0 sta cx16.VERA_ADDR_L lda cx16.r0+1 sta cx16.VERA_ADDR_M tya and cx16.VERA_DATA0 sta cx16.VERA_DATA0 rts }} } asmsub vpoke_xor(ubyte bank @A, uword address @R0, ubyte value @Y) clobbers (A) { ; -- xor a single byte to the value already in the VERA's video memory at that location ; note: inefficient when writing multiple sequential bytes! %asm {{ stz cx16.VERA_CTRL and #1 sta cx16.VERA_ADDR_H lda cx16.r0 sta cx16.VERA_ADDR_L lda cx16.r0+1 sta cx16.VERA_ADDR_M tya eor cx16.VERA_DATA0 sta cx16.VERA_DATA0 rts }} } sub FB_set_pixels_from_buf(uword buffer, uword count) { %asm {{ ; -- This is replacement code for the normal FB_set_pixels subroutine in ROM ; However that routine contains a bug in the current v38 ROM that makes it crash when count > 255. ; So the code below replaces that. Once the ROM is patched this routine is no longer necessary. ; See https://github.com/commanderx16/x16-rom/issues/179 phx lda buffer ldy buffer+1 sta P8ZP_SCRATCH_W1 sty P8ZP_SCRATCH_W1+1 jsr _pixels plx rts _pixels lda count+1 beq + ldx #0 - jsr _loop inc P8ZP_SCRATCH_W1+1 dec count+1 bne - + ldx count _loop ldy #0 - lda (P8ZP_SCRATCH_W1),y sta cx16.VERA_DATA0 iny dex bne - rts }} } ; ---- system stuff ----- asmsub init_system() { ; Initializes the machine to a sane starting state. ; Called automatically by the loader program logic. %asm {{ sei lda #0 tax tay jsr cx16.mouse_config ; disable mouse cld lda VERA_DC_VIDEO and #%00000111 ; retain chroma + output mode sta P8ZP_SCRATCH_REG lda #$80 sta VERA_CTRL ; reset vera stz $01 ; rom bank 0 (kernal) jsr c64.IOINIT jsr c64.RESTOR jsr c64.CINT lda VERA_DC_VIDEO and #%11111000 ora P8ZP_SCRATCH_REG sta VERA_DC_VIDEO ; keep old output mode lda #$90 ; black jsr c64.CHROUT lda #1 sta $00 ; select ram bank 1 jsr c64.CHROUT ; swap fg/bg lda #$9e ; yellow jsr c64.CHROUT lda #147 ; clear screen jsr c64.CHROUT lda #0 tax tay clc clv cli rts }} } asmsub init_system_phase2() { %asm {{ sei lda cx16.CINV sta restore_irq._orig_irqvec lda cx16.CINV+1 sta restore_irq._orig_irqvec+1 cli rts }} } asmsub cleanup_at_exit() { ; executed when the main subroutine does rts %asm {{ lda #1 sta $00 ; ram bank 1 lda #4 sta $01 ; rom bank 4 (basic) stz $2d ; hack to reset machine code monitor bank to 0 rts }} } asmsub set_irq(uword handler @AY, ubyte useKernal @Pc) clobbers(A) { %asm {{ sta _modified+1 sty _modified+2 lda #0 adc #0 sta _use_kernal sei lda #<_irq_handler sta cx16.CINV lda #>_irq_handler sta cx16.CINV+1 lda cx16.VERA_IEN ora #%00000001 ; enable the vsync irq sta cx16.VERA_IEN cli rts _irq_handler jsr _irq_handler_init _modified jsr $ffff ; modified jsr _irq_handler_end lda _use_kernal bne + ; end irq processing - don't use kernal's irq handling lda #1 sta cx16.VERA_ISR ; clear Vera Vsync irq status ply plx pla rti + jmp (restore_irq._orig_irqvec) ; continue with normal kernal irq routine _use_kernal .byte 0 _irq_handler_init ; save all zp scratch registers and the X register as these might be clobbered by the irq routine stx IRQ_X_REG lda P8ZP_SCRATCH_B1 sta IRQ_SCRATCH_ZPB1 lda P8ZP_SCRATCH_REG sta IRQ_SCRATCH_ZPREG lda P8ZP_SCRATCH_W1 sta IRQ_SCRATCH_ZPWORD1 lda P8ZP_SCRATCH_W1+1 sta IRQ_SCRATCH_ZPWORD1+1 lda P8ZP_SCRATCH_W2 sta IRQ_SCRATCH_ZPWORD2 lda P8ZP_SCRATCH_W2+1 sta IRQ_SCRATCH_ZPWORD2+1 ; stack protector; make sure we don't clobber the top of the evaluation stack dex dex dex dex dex dex cld rts _irq_handler_end ; restore all zp scratch registers and the X register lda IRQ_SCRATCH_ZPB1 sta P8ZP_SCRATCH_B1 lda IRQ_SCRATCH_ZPREG sta P8ZP_SCRATCH_REG lda IRQ_SCRATCH_ZPWORD1 sta P8ZP_SCRATCH_W1 lda IRQ_SCRATCH_ZPWORD1+1 sta P8ZP_SCRATCH_W1+1 lda IRQ_SCRATCH_ZPWORD2 sta P8ZP_SCRATCH_W2 lda IRQ_SCRATCH_ZPWORD2+1 sta P8ZP_SCRATCH_W2+1 ldx IRQ_X_REG rts IRQ_X_REG .byte 0 IRQ_SCRATCH_ZPB1 .byte 0 IRQ_SCRATCH_ZPREG .byte 0 IRQ_SCRATCH_ZPWORD1 .word 0 IRQ_SCRATCH_ZPWORD2 .word 0 }} } asmsub push_vera_context() clobbers(A) { ; -- use this at the start of your IRQ handler if it uses Vera registers, to save the state %asm {{ ; note cannot store this on cpu hardware stack because this gets called as a subroutine lda cx16.VERA_ADDR_L sta _vera_storage lda cx16.VERA_ADDR_M sta _vera_storage+1 lda cx16.VERA_ADDR_H sta _vera_storage+2 lda cx16.VERA_CTRL sta _vera_storage+3 eor #1 sta cx16.VERA_CTRL lda cx16.VERA_ADDR_L sta _vera_storage+4 lda cx16.VERA_ADDR_M sta _vera_storage+5 lda cx16.VERA_ADDR_H sta _vera_storage+6 lda cx16.VERA_CTRL sta _vera_storage+7 rts _vera_storage: .byte 0,0,0,0,0,0,0,0 }} } asmsub pop_vera_context() clobbers(A) { ; -- use this at the end of your IRQ handler if it uses Vera registers, to restore the state %asm {{ lda cx16.push_vera_context._vera_storage+7 sta cx16.VERA_CTRL lda cx16.push_vera_context._vera_storage+6 sta cx16.VERA_ADDR_H lda cx16.push_vera_context._vera_storage+5 sta cx16.VERA_ADDR_M lda cx16.push_vera_context._vera_storage+4 sta cx16.VERA_ADDR_L lda cx16.push_vera_context._vera_storage+3 sta cx16.VERA_CTRL lda cx16.push_vera_context._vera_storage+2 sta cx16.VERA_ADDR_H lda cx16.push_vera_context._vera_storage+1 sta cx16.VERA_ADDR_M lda cx16.push_vera_context._vera_storage+0 sta cx16.VERA_ADDR_L rts }} } asmsub restore_irq() clobbers(A) { %asm {{ sei lda _orig_irqvec sta cx16.CINV lda _orig_irqvec+1 sta cx16.CINV+1 lda cx16.VERA_IEN and #%11110000 ; disable all Vera IRQs ora #%00000001 ; enable only the vsync Irq sta cx16.VERA_IEN cli rts _orig_irqvec .word 0 }} } asmsub set_rasterirq(uword handler @AY, uword rasterpos @R0) clobbers(A) { %asm {{ sta _modified+1 sty _modified+2 lda cx16.r0 ldy cx16.r0+1 sei lda cx16.VERA_IEN and #%11110000 ; clear other IRQs ora #%00000010 ; enable the line (raster) irq sta cx16.VERA_IEN lda cx16.r0 ldy cx16.r0+1 jsr set_rasterline lda #<_raster_irq_handler sta cx16.CINV lda #>_raster_irq_handler sta cx16.CINV+1 cli rts _raster_irq_handler jsr set_irq._irq_handler_init _modified jsr $ffff ; modified jsr set_irq._irq_handler_end ; end irq processing - don't use kernal's irq handling lda cx16.VERA_ISR ora #%00000010 sta cx16.VERA_ISR ; clear Vera line irq status ply plx pla rti }} } asmsub set_rasterline(uword line @AY) { %asm {{ sta cx16.VERA_IRQ_LINE_L lda cx16.VERA_IEN and #%01111111 sta cx16.VERA_IEN tya lsr a ror a and #%10000000 ora cx16.VERA_IEN sta cx16.VERA_IEN rts }} } } sys { ; ------- lowlevel system routines -------- const ubyte target = 16 ; compilation target specifier. 64 = C64, 128 = C128, 16 = CommanderX16. asmsub reset_system() { ; Soft-reset the system back to initial power-on Basic prompt. %asm {{ sei stz $01 ; bank the kernal in lda #$80 sta cx16.VERA_CTRL ; reset Vera (kernal doesn't do this?) jmp (cx16.RESET_VEC) }} } asmsub wait(uword jiffies @AY) { ; --- wait approximately the given number of jiffies (1/60th seconds) (N or N+1) ; note: the system irq handler has to be active for this to work as it depends on the system jiffy clock %asm {{ phx sta P8ZP_SCRATCH_W1 sty P8ZP_SCRATCH_W1+1 _loop lda P8ZP_SCRATCH_W1 ora P8ZP_SCRATCH_W1+1 bne + plx rts + jsr c64.RDTIM sta P8ZP_SCRATCH_B1 - jsr c64.RDTIM cmp P8ZP_SCRATCH_B1 beq - lda P8ZP_SCRATCH_W1 bne + dec P8ZP_SCRATCH_W1+1 + dec P8ZP_SCRATCH_W1 bra _loop }} } inline asmsub waitvsync() { ; --- suspend execution until the next vsync has occurred, without depending on custom irq handling. ; note: system vsync irq handler has to be active for this routine to work (and no other irqs-- which is the default). ; note: a more accurate way to wait for vsync is to set up a vsync irq handler instead. %asm {{ wai }} } asmsub internal_stringcopy(uword source @R0, uword target @AY) clobbers (A,Y) { ; Called when the compiler wants to assign a string value to another string. %asm {{ sta P8ZP_SCRATCH_W1 sty P8ZP_SCRATCH_W1+1 lda cx16.r0 ldy cx16.r0+1 jmp prog8_lib.strcpy }} } asmsub memcopy(uword source @R0, uword target @R1, uword count @AY) clobbers(A,X,Y) { ; note: only works for NON-OVERLAPPING memory regions! ; If you have to copy overlapping memory regions, consider using ; the cx16 specific kernal routine `memory_copy` (make sure kernal rom is banked in). ; note: can't be inlined because is called from asm as well. ; also: doesn't use cx16 ROM routine so this always works even when ROM is not banked in. %asm {{ cpy #0 bne _longcopy ; copy <= 255 bytes tay bne _copyshort rts ; nothing to copy _copyshort ; decrease source and target pointers so we can simply index by Y lda cx16.r0 bne + dec cx16.r0+1 + dec cx16.r0 lda cx16.r1 bne + dec cx16.r1+1 + dec cx16.r1 - lda (cx16.r0),y sta (cx16.r1),y dey bne - rts _longcopy pha ; lsb(count) = remainder in last page tya tax ; x = num pages (1+) ldy #0 - lda (cx16.r0),y sta (cx16.r1),y iny bne - inc cx16.r0+1 inc cx16.r1+1 dex bne - ply bne _copyshort rts }} } asmsub memset(uword mem @R0, uword numbytes @R1, ubyte value @A) clobbers(A,X,Y) { %asm {{ ldy cx16.r0 sty P8ZP_SCRATCH_W1 ldy cx16.r0+1 sty P8ZP_SCRATCH_W1+1 ldx cx16.r1 ldy cx16.r1+1 jmp prog8_lib.memset }} } asmsub memsetw(uword mem @R0, uword numwords @R1, uword value @AY) clobbers (A,X,Y) { %asm {{ ldx cx16.r0 stx P8ZP_SCRATCH_W1 ldx cx16.r0+1 stx P8ZP_SCRATCH_W1+1 ldx cx16.r1 stx P8ZP_SCRATCH_W2 ldx cx16.r1+1 stx P8ZP_SCRATCH_W2+1 jmp prog8_lib.memsetw }} } inline asmsub read_flags() -> ubyte @A { %asm {{ php pla }} } inline asmsub clear_carry() { %asm {{ clc }} } inline asmsub set_carry() { %asm {{ sec }} } inline asmsub clear_irqd() { %asm {{ cli }} } inline asmsub set_irqd() { %asm {{ sei }} } inline asmsub exit(ubyte returnvalue @A) { ; -- immediately exit the program with a return code in the A register %asm {{ jsr c64.CLRCHN ; reset i/o channels ldx prog8_lib.orig_stackpointer txs rts ; return to original caller }} } inline asmsub progend() -> uword @AY { %asm {{ lda #prog8_program_end }} } }