prog8/examples/queens.p8
Irmen de Jong 966b017670 tweaks
2024-07-22 18:20:01 +02:00

74 lines
2.0 KiB
Lua

%import textio
; Recursive N-Queens solver.
; The problem is: find all possible ways to place 8 Queen chess pieces on a chess board, so that none of them attacks any other.
; (this program prints all solutions without taking mirroring and flipping the chess board into account)
; Note: this program can be compiled for multiple target systems.
main {
const ubyte NUMQUEENS=8
ubyte[NUMQUEENS] board
sub could_place(ubyte row, ubyte col) -> bool {
if row==0
return true
ubyte i
for i in 0 to row-1 {
if board[i]==col or board[i]-i==col-row or board[i]+i==col+row
return false
}
return true
}
ubyte solution_count
sub print_solution() {
solution_count++
txt.home()
txt.print("found solution ")
txt.print_ub(solution_count)
txt.nl()
ubyte i
for i in 0 to NUMQUEENS-1 {
ubyte col = board[i]
txt.chrout(' ')
repeat col txt.chrout('.')
txt.chrout('q')
repeat NUMQUEENS-col-1 txt.chrout('.')
txt.nl()
}
}
sub place_queen(ubyte row) {
if row == NUMQUEENS {
print_solution()
return
}
ubyte col
for col in 0 to NUMQUEENS-1 {
if could_place(row, col) {
board[row] = col
; we need to save the local variables row and col.
sys.push(row)
sys.push(col)
place_queen(row + 1)
; restore the local variables after the recursive call.
col = sys.pop()
row = sys.pop()
board[row] = 0
}
}
}
sub start() {
cbm.SETTIM(0,0,0)
txt.clear_screen()
place_queen(0)
txt.nl()
uword duration=100*cbm.RDTIM16()/6
txt.print_uw(duration)
txt.print(" milliseconds\n")
repeat {
}
}
}