prog8/codeGenCpu6502/src/prog8/codegen/cpu6502/ProgramAndVarsGen.kt

832 lines
36 KiB
Kotlin

package prog8.codegen.cpu6502
import prog8.code.*
import prog8.code.ast.*
import prog8.code.core.*
import prog8.codegen.cpu6502.assignment.AsmAssignTarget
import prog8.codegen.cpu6502.assignment.TargetStorageKind
import java.time.LocalDate
import java.time.LocalDateTime
import kotlin.math.absoluteValue
/**
* Generates the main parts of the program:
* - entry/exit code
* - initialization routines
* - blocks
* - subroutines
* - all variables (note: VarDecl ast nodes are *NOT* used anymore for this! now uses IVariablesAndConsts data tables!)
*/
internal class ProgramAndVarsGen(
val program: PtProgram,
val options: CompilationOptions,
val errors: IErrorReporter,
private val symboltable: SymbolTable,
private val functioncallAsmGen: FunctionCallAsmGen,
private val asmgen: AsmGen6502Internal,
private val allocator: VariableAllocator,
private val zeropage: Zeropage
) {
private val compTarget = options.compTarget
private val blockVariableInitializers = program.allBlocks().associateWith { it.children.filterIsInstance<PtAssignment>() }
internal fun generate() {
header()
val allBlocks = program.allBlocks()
if(allBlocks.first().name != "p8b_main" && allBlocks.first().name != "main")
throw AssemblyError("first block should be 'main' or 'p8b_main'")
if(errors.noErrors()) {
program.allBlocks().forEach { block2asm(it) }
// the global list of all floating point constants for the whole program
asmgen.out("; global float constants")
for (flt in allocator.globalFloatConsts) {
val floatFill = compTarget.machine.getFloatAsmBytes(flt.key)
val floatvalue = flt.key
asmgen.out("${flt.value}\t.byte $floatFill ; float $floatvalue")
}
memorySlabs()
tempVars()
footer()
}
}
private fun header() {
val ourName = this.javaClass.name
val cpu = when(compTarget.machine.cpu) {
CpuType.CPU6502 -> "6502"
CpuType.CPU65c02 -> "w65c02"
else -> "unsupported"
}
asmgen.out("; $cpu assembly code for '${program.name}'")
asmgen.out("; generated by $ourName on ${LocalDateTime.now().withNano(0)}")
asmgen.out("; assembler syntax is for the 64tasm cross-assembler")
asmgen.out("; output options: output=${options.output} launcher=${options.launcher} zp=${options.zeropage}")
asmgen.out("")
asmgen.out(".cpu '$cpu'\n.enc 'none'")
// the global prog8 variables needed
val zp = zeropage
asmgen.out("P8ZP_SCRATCH_B1 = ${zp.SCRATCH_B1}")
asmgen.out("P8ZP_SCRATCH_REG = ${zp.SCRATCH_REG}")
asmgen.out("P8ZP_SCRATCH_W1 = ${zp.SCRATCH_W1} ; word")
asmgen.out("P8ZP_SCRATCH_W2 = ${zp.SCRATCH_W2} ; word")
asmgen.out(".weak") // hack to allow user to override the following two with command line redefinition (however, just use '-esa' command line option instead!)
asmgen.out(".endweak")
if(options.symbolDefs.isNotEmpty()) {
asmgen.out("; -- user supplied symbols on the command line")
for((name, value) in options.symbolDefs) {
asmgen.out("$name = $value")
}
}
when(options.output) {
OutputType.RAW -> {
asmgen.out("; ---- raw assembler program ----")
asmgen.out("* = ${options.loadAddress.toHex()}")
}
OutputType.PRG -> {
when(options.launcher) {
CbmPrgLauncherType.BASIC -> {
if (options.loadAddress != options.compTarget.machine.PROGRAM_LOAD_ADDRESS) {
errors.err("BASIC output must have load address ${options.compTarget.machine.PROGRAM_LOAD_ADDRESS.toHex()}", program.position)
}
asmgen.out("; ---- basic program with sys call ----")
asmgen.out("* = ${options.loadAddress.toHex()}")
val year = LocalDate.now().year
asmgen.out(" .word (+), $year")
asmgen.out(" .null $9e, format(' %d ', prog8_entrypoint), $3a, $8f, ' prog8'")
asmgen.out("+\t.word 0")
asmgen.out("prog8_entrypoint\t; assembly code starts here")
if(!options.noSysInit)
asmgen.out(" jsr sys.init_system")
asmgen.out(" jsr sys.init_system_phase2")
}
CbmPrgLauncherType.NONE -> {
asmgen.out("; ---- program without basic sys call ----")
asmgen.out("* = ${options.loadAddress.toHex()}")
if(!options.noSysInit)
asmgen.out(" jsr sys.init_system")
asmgen.out(" jsr sys.init_system_phase2")
}
}
}
OutputType.XEX -> {
asmgen.out("; ---- atari xex program ----")
asmgen.out("* = ${options.loadAddress.toHex()}")
if(!options.noSysInit)
asmgen.out(" jsr sys.init_system")
asmgen.out(" jsr sys.init_system_phase2")
}
}
if(options.zeropage !in arrayOf(ZeropageType.BASICSAFE, ZeropageType.DONTUSE)) {
asmgen.out("""
; zeropage is clobbered so we need to reset the machine at exit
lda #>sys.reset_system
pha
lda #<sys.reset_system
pha""")
}
when(compTarget.name) {
"cx16" -> {
if(options.floats)
asmgen.out(" lda #4 | sta $01") // to use floats, make sure Basic rom is banked in
asmgen.out(" jsr p8b_main.p8s_start")
asmgen.out(" jmp sys.cleanup_at_exit")
}
"c64" -> {
asmgen.out(" jsr p8b_main.p8s_start | lda #31 | sta $01")
asmgen.out(" jmp sys.cleanup_at_exit")
}
"c128" -> {
asmgen.out(" jsr p8b_main.p8s_start | lda #0 | sta ${"$"}ff00")
asmgen.out(" jmp sys.cleanup_at_exit")
}
else -> asmgen.jmp("p8b_main.p8s_start")
}
}
private fun memorySlabs() {
if(symboltable.allMemorySlabs.isNotEmpty()) {
asmgen.out("; memory slabs\n .section slabs_BSS")
asmgen.out("prog8_slabs\t.block")
for (slab in symboltable.allMemorySlabs) {
if (slab.align > 1u)
asmgen.out("\t.align ${slab.align.toHex()}")
asmgen.out("${slab.name}\t.fill ${slab.size}")
}
asmgen.out("\t.bend\n .send slabs_BSS")
}
}
private fun tempVars() {
asmgen.out("; expression temp vars\n .section BSS")
for((dt, count) in asmgen.tempVarsCounters) {
if(count>0) {
for(num in 1..count) {
val name = asmgen.buildTempVarName(dt, num)
when (dt) {
DataType.BOOL -> asmgen.out("$name .byte ?")
DataType.BYTE -> asmgen.out("$name .char ?")
DataType.UBYTE -> asmgen.out("$name .byte ?")
DataType.WORD -> asmgen.out("$name .sint ?")
DataType.UWORD -> asmgen.out("$name .word ?")
DataType.FLOAT -> asmgen.out("$name .fill ${options.compTarget.machine.FLOAT_MEM_SIZE}")
else -> throw AssemblyError("weird dt for extravar $dt")
}
}
}
}
asmgen.out(" .send BSS")
}
private fun footer() {
var relocateBssVars = false
var relocateBssSlabs = false
var relocatedBssStart = 0u
var relocatedBssEnd = 0u
if(options.varsGolden) {
if(options.compTarget.machine.BSSGOLDENRAM_START == 0u ||
options.compTarget.machine.BSSGOLDENRAM_END == 0u ||
options.compTarget.machine.BSSGOLDENRAM_END <= options.compTarget.machine.BSSGOLDENRAM_START) {
throw AssemblyError("current compilation target hasn't got the golden ram area properly defined or it is simply not available")
}
relocateBssVars = true
relocatedBssStart = options.compTarget.machine.BSSGOLDENRAM_START
relocatedBssEnd = options.compTarget.machine.BSSGOLDENRAM_END
}
else if(options.varsHighBank!=null) {
if(options.compTarget.machine.BSSHIGHRAM_START == 0u ||
options.compTarget.machine.BSSHIGHRAM_END == 0u ||
options.compTarget.machine.BSSHIGHRAM_END <= options.compTarget.machine.BSSHIGHRAM_START) {
throw AssemblyError("current compilation target hasn't got the high ram area properly defined or it is simply not available")
}
if(options.slabsHighBank!=null && options.varsHighBank!=options.slabsHighBank)
throw AssemblyError("slabs and vars high bank must be the same")
relocateBssVars = true
relocatedBssStart = options.compTarget.machine.BSSHIGHRAM_START
relocatedBssEnd = options.compTarget.machine.BSSHIGHRAM_END
}
if(options.slabsGolden) {
if(options.compTarget.machine.BSSGOLDENRAM_START == 0u ||
options.compTarget.machine.BSSGOLDENRAM_END == 0u ||
options.compTarget.machine.BSSGOLDENRAM_END <= options.compTarget.machine.BSSGOLDENRAM_START) {
throw AssemblyError("current compilation target hasn't got the golden ram area properly defined or it is simply not available")
}
relocateBssSlabs = true
relocatedBssStart = options.compTarget.machine.BSSGOLDENRAM_START
relocatedBssEnd = options.compTarget.machine.BSSGOLDENRAM_END
}
else if(options.slabsHighBank!=null) {
if(options.compTarget.machine.BSSHIGHRAM_START == 0u ||
options.compTarget.machine.BSSHIGHRAM_END == 0u ||
options.compTarget.machine.BSSHIGHRAM_END <= options.compTarget.machine.BSSHIGHRAM_START) {
throw AssemblyError("current compilation target hasn't got the high ram area properly defined or it is simply not available")
}
if(options.varsHighBank!=null && options.varsHighBank!=options.slabsHighBank)
throw AssemblyError("slabs and vars high bank must be the same")
relocateBssSlabs = true
relocatedBssStart = options.compTarget.machine.BSSHIGHRAM_START
relocatedBssEnd = options.compTarget.machine.BSSHIGHRAM_END
}
asmgen.out("; bss sections")
asmgen.out("PROG8_VARSHIGH_RAMBANK = ${options.varsHighBank ?: 1}")
if(relocateBssVars) {
if(!relocateBssSlabs)
asmgen.out(" .dsection slabs_BSS")
asmgen.out("prog8_program_end\t; end of program label for progend()")
asmgen.out(" * = ${relocatedBssStart.toHex()}")
asmgen.out("prog8_bss_section_start")
asmgen.out(" .dsection BSS")
if(relocateBssSlabs)
asmgen.out(" .dsection slabs_BSS")
asmgen.out(" .cerror * > ${relocatedBssEnd.toHex()}, \"too many variables/data for BSS section\"")
asmgen.out("prog8_bss_section_size = * - prog8_bss_section_start")
} else {
asmgen.out("prog8_bss_section_start")
asmgen.out(" .dsection BSS")
asmgen.out("prog8_bss_section_size = * - prog8_bss_section_start")
if(!relocateBssSlabs)
asmgen.out(" .dsection slabs_BSS")
asmgen.out("prog8_program_end\t; end of program label for progend()")
if(relocateBssSlabs) {
asmgen.out(" * = ${relocatedBssStart.toHex()}")
asmgen.out(" .dsection slabs_BSS")
asmgen.out(" .cerror * > ${relocatedBssEnd.toHex()}, \"too many data for slabs_BSS section\"")
}
}
}
private fun block2asm(block: PtBlock) {
asmgen.out("")
asmgen.out("; ---- block: '${block.name}' ----")
if(block.options.address!=null)
asmgen.out("* = ${block.options.address!!.toHex()}")
else {
if(block.options.alignment==PtBlock.BlockAlignment.WORD)
asmgen.out("\t.align 2")
else if(block.options.alignment==PtBlock.BlockAlignment.PAGE)
asmgen.out("\t.align $100")
}
asmgen.out("${block.name}\t" + (if(block.options.forceOutput) ".block" else ".proc"))
asmgen.outputSourceLine(block)
createBlockVariables(block)
asmsubs2asm(block.children)
asmgen.out("")
val initializers = blockVariableInitializers.getValue(block)
val notInitializers = block.children.filterNot { it in initializers }
notInitializers.forEach { asmgen.translate(it) }
// generate subroutine to initialize block-level (global) variables
if (initializers.isNotEmpty()) {
asmgen.out("prog8_init_vars\t.block")
initializers.forEach { assign ->
if((assign.value as? PtNumber)?.number != 0.0 || allocator.isZpVar(assign.target.identifier!!.name))
asmgen.translate(assign)
// the other variables that should be set to zero are done so as part of the BSS section.
}
asmgen.out(" rts\n .bend")
}
asmgen.out(if(block.options.forceOutput) "\n\t.bend" else "\n\t.pend")
}
private fun getVars(scope: StNode): Map<String, StNode> =
scope.children.filter { it.value.type in arrayOf(StNodeType.STATICVAR, StNodeType.CONSTANT, StNodeType.MEMVAR) }
private fun createBlockVariables(block: PtBlock) {
val scope = symboltable.lookupUnscopedOrElse(block.name) { throw AssemblyError("lookup") }
require(scope.type==StNodeType.BLOCK)
val varsInBlock = getVars(scope)
// Zeropage Variables
val varnames = varsInBlock.filter { it.value.type==StNodeType.STATICVAR }.map { it.value.scopedName }.toSet()
zeropagevars2asm(varnames)
// MemDefs and Consts
val mvs = varsInBlock
.filter { it.value.type==StNodeType.MEMVAR }
.map { it.value as StMemVar }
val consts = varsInBlock
.filter { it.value.type==StNodeType.CONSTANT }
.map { it.value as StConstant }
memdefsAndConsts2asm(mvs, consts)
// normal statically allocated variables
val variables = varsInBlock
.filter { it.value.type==StNodeType.STATICVAR && !allocator.isZpVar(it.value.scopedName) }
.map { it.value as StStaticVariable }
nonZpVariables2asm(variables)
}
internal fun translateAsmSubroutine(sub: PtAsmSub) {
if(sub.inline) {
return // subroutine gets inlined at call site.
}
asmgen.out("")
val asmStartScope: String
val asmEndScope: String
if(sub.definingBlock()!!.options.forceOutput) {
asmStartScope = ".block"
asmEndScope = ".bend"
} else {
asmStartScope = ".proc"
asmEndScope = ".pend"
}
if(sub.address!=null)
return // already done at the memvars section
// asmsub with most likely just an inline asm in it
asmgen.out("${sub.name}\t$asmStartScope")
sub.children.forEach { asmgen.translate(it) }
asmgen.out(" $asmEndScope")
}
internal fun translateSubroutine(sub: PtSub) {
asmgen.out("")
val asmStartScope: String
val asmEndScope: String
if(sub.definingBlock()!!.options.forceOutput) {
asmStartScope = ".block"
asmEndScope = ".bend"
} else {
asmStartScope = ".proc"
asmEndScope = ".pend"
}
asmgen.out("${sub.name}\t$asmStartScope")
val scope = symboltable.lookupOrElse(sub.scopedName) {
throw AssemblyError("lookup ${sub.scopedName}")
}
require(scope.type==StNodeType.SUBROUTINE)
val varsInSubroutine = getVars(scope)
// Zeropage Variables
val varnames = varsInSubroutine.filter { it.value.type==StNodeType.STATICVAR }.map { it.value.scopedName }.toSet()
zeropagevars2asm(varnames)
// MemDefs and Consts
val mvs = varsInSubroutine
.filter { it.value.type==StNodeType.MEMVAR }
.map { it.value as StMemVar }
val consts = varsInSubroutine
.filter { it.value.type==StNodeType.CONSTANT }
.map { it.value as StConstant }
memdefsAndConsts2asm(mvs, consts)
asmsubs2asm(sub.children)
// the main.start subroutine is the program's entrypoint and should perform some initialization logic
if((sub.name=="start" || sub.name=="p8s_start") && (sub.definingBlock()!!.name=="main" || sub.definingBlock()!!.name=="p8b_main"))
entrypointInitialization()
if(functioncallAsmGen.optimizeIntArgsViaRegisters(sub)) {
asmgen.out("; simple int arg(s) passed via register(s)")
if(sub.parameters.size==1) {
val dt = sub.parameters[0].type
val target = AsmAssignTarget(TargetStorageKind.VARIABLE, asmgen, dt, sub, sub.parameters[0].position, variableAsmName = sub.parameters[0].name)
if(dt in ByteDatatypesWithBoolean)
asmgen.assignRegister(RegisterOrPair.A, target)
else
asmgen.assignRegister(RegisterOrPair.AY, target)
} else {
require(sub.parameters.size==2)
// 2 simple byte args, first in A, second in Y
val target1 = AsmAssignTarget(TargetStorageKind.VARIABLE, asmgen, sub.parameters[0].type, sub, sub.parameters[0].position, variableAsmName = sub.parameters[0].name)
val target2 = AsmAssignTarget(TargetStorageKind.VARIABLE, asmgen, sub.parameters[1].type, sub, sub.parameters[1].position, variableAsmName = sub.parameters[1].name)
asmgen.assignRegister(RegisterOrPair.A, target1)
asmgen.assignRegister(RegisterOrPair.Y, target2)
}
}
asmgen.out("; statements")
sub.children.forEach { asmgen.translate(it) }
asmgen.out("; variables")
asmgen.out(" .section BSS")
val asmGenInfo = asmgen.subroutineExtra(sub)
for((dt, name, addr) in asmGenInfo.extraVars) {
if(addr!=null)
asmgen.out("$name = $addr")
else when(dt) {
DataType.UBYTE -> asmgen.out("$name .byte ?")
DataType.UWORD -> asmgen.out("$name .word ?")
DataType.FLOAT -> asmgen.out("$name .fill ${options.compTarget.machine.FLOAT_MEM_SIZE}")
else -> throw AssemblyError("weird dt for extravar $dt")
}
}
if(asmGenInfo.usedFloatEvalResultVar1)
asmgen.out("$subroutineFloatEvalResultVar1 .fill ${options.compTarget.machine.FLOAT_MEM_SIZE}")
if(asmGenInfo.usedFloatEvalResultVar2)
asmgen.out("$subroutineFloatEvalResultVar2 .fill ${options.compTarget.machine.FLOAT_MEM_SIZE}")
asmgen.out(" .send BSS")
// normal statically allocated variables
val variables = varsInSubroutine
.filter { it.value.type==StNodeType.STATICVAR && !allocator.isZpVar(it.value.scopedName) }
.map { it.value as StStaticVariable }
nonZpVariables2asm(variables)
asmgen.out(" $asmEndScope")
}
private fun entrypointInitialization() {
asmgen.out("; program startup initialization")
asmgen.out(" cld | tsx | stx prog8_lib.orig_stackpointer ; required for sys.exit()")
// set full BSS area to zero
asmgen.out("""
.if prog8_bss_section_size>0
; reset all variables in BSS section to zero
lda #<prog8_bss_section_start
ldy #>prog8_bss_section_start
sta P8ZP_SCRATCH_W1
sty P8ZP_SCRATCH_W1+1
ldx #<prog8_bss_section_size
ldy #>prog8_bss_section_size
lda #0
jsr prog8_lib.memset
.endif""")
blockVariableInitializers.forEach {
if (it.value.isNotEmpty())
asmgen.out(" jsr ${it.key.name}.prog8_init_vars")
}
// string and array variables in zeropage that have initializer value, should be initialized
val stringVarsWithInitInZp = getZpStringVarsWithInitvalue()
val arrayVarsWithInitInZp = getZpArrayVarsWithInitvalue()
if(stringVarsWithInitInZp.isNotEmpty() || arrayVarsWithInitInZp.isNotEmpty()) {
asmgen.out("; zp str and array initializations")
stringVarsWithInitInZp.forEach {
val name = asmgen.asmVariableName(it.name)
asmgen.out("""
lda #<${name}
ldy #>${name}
sta P8ZP_SCRATCH_W1
sty P8ZP_SCRATCH_W1+1
lda #<${name}_init_value
ldy #>${name}_init_value
jsr prog8_lib.strcpy""")
}
arrayVarsWithInitInZp.forEach {
val size = it.alloc.size
val name = asmgen.asmVariableName(it.name)
asmgen.out("""
lda #<${name}_init_value
ldy #>${name}_init_value
sta cx16.r0
sty cx16.r0+1
lda #<${name}
ldy #>${name}
sta cx16.r1
sty cx16.r1+1
lda #<$size
ldy #>$size
jsr sys.memcopy""")
}
asmgen.out(" jmp +")
}
stringVarsWithInitInZp.forEach {
val varname = asmgen.asmVariableName(it.name)+"_init_value"
outputStringvar(varname, it.value.second, it.value.first)
}
arrayVarsWithInitInZp.forEach {
val varname = asmgen.asmVariableName(it.name)+"_init_value"
arrayVariable2asm(varname, it.alloc.dt, it.value, null)
}
asmgen.out("""+
clv
clc""")
}
private class ZpStringWithInitial(
val name: String,
val alloc: MemoryAllocator.VarAllocation,
val value: Pair<String, Encoding>
)
private class ZpArrayWithInitial(
val name: String,
val alloc: MemoryAllocator.VarAllocation,
val value: StArray
)
private fun getZpStringVarsWithInitvalue(): Collection<ZpStringWithInitial> {
val result = mutableListOf<ZpStringWithInitial>()
val vars = allocator.zeropageVars.filter { it.value.dt==DataType.STR }
for (variable in vars) {
val scopedName = variable.key
val svar = symboltable.lookup(scopedName) as? StStaticVariable
if(svar?.onetimeInitializationStringValue!=null)
result.add(ZpStringWithInitial(scopedName, variable.value, svar.onetimeInitializationStringValue!!))
}
return result
}
private fun getZpArrayVarsWithInitvalue(): Collection<ZpArrayWithInitial> {
val result = mutableListOf<ZpArrayWithInitial>()
val vars = allocator.zeropageVars.filter { it.value.dt in ArrayDatatypes }
for (variable in vars) {
val scopedName = variable.key
val svar = symboltable.lookup(scopedName) as? StStaticVariable
if(svar?.onetimeInitializationArrayValue!=null)
result.add(ZpArrayWithInitial(scopedName, variable.value, svar.onetimeInitializationArrayValue!!))
}
return result
}
private fun zeropagevars2asm(varNames: Set<String>) {
val zpVariables = allocator.zeropageVars.filter { it.key in varNames }.toList().sortedBy { it.second.address }
for ((scopedName, zpvar) in zpVariables) {
if (scopedName.startsWith("cx16.r"))
continue // The 16 virtual registers of the cx16 are not actual variables in zp, they're memory mapped
val variable = symboltable.flat.getValue(scopedName) as StStaticVariable
if(variable.dt in SplitWordArrayTypes) {
val lsbAddr = zpvar.address
val msbAddr = zpvar.address + (zpvar.size/2).toUInt()
asmgen.out("${scopedName.substringAfterLast('.')}_lsb \t= $lsbAddr \t; zp ${zpvar.dt} (lsbs)")
asmgen.out("${scopedName.substringAfterLast('.')}_msb \t= $msbAddr \t; zp ${zpvar.dt} (msbs)")
} else {
asmgen.out("${scopedName.substringAfterLast('.')} \t= ${zpvar.address} \t; zp ${zpvar.dt}")
}
}
}
private fun nonZpVariables2asm(variables: List<StStaticVariable>) {
asmgen.out("")
val (varsNoInit, varsWithInit) = variables.partition { it.uninitialized }
if(varsNoInit.isNotEmpty()) {
asmgen.out("; non-zeropage variables without initialization value")
asmgen.out(" .section BSS")
varsNoInit.sortedWith(compareBy<StStaticVariable> { it.name }.thenBy { it.dt }).forEach {
uninitializedVariable2asm(it)
}
asmgen.out(" .send BSS")
}
if(varsWithInit.isNotEmpty()) {
asmgen.out("; non-zeropage variables")
val (stringvars, othervars) = varsWithInit.sortedBy { it.name }.partition { it.dt == DataType.STR }
stringvars.forEach {
outputStringvar(
it.name,
it.onetimeInitializationStringValue!!.second,
it.onetimeInitializationStringValue!!.first
)
}
othervars.sortedBy { it.type }.forEach {
staticVariable2asm(it)
}
}
}
private fun uninitializedVariable2asm(variable: StStaticVariable) {
when (variable.dt) {
DataType.BOOL, DataType.UBYTE -> asmgen.out("${variable.name}\t.byte ?")
DataType.BYTE -> asmgen.out("${variable.name}\t.char ?")
DataType.UWORD -> asmgen.out("${variable.name}\t.word ?")
DataType.WORD -> asmgen.out("${variable.name}\t.sint ?")
DataType.FLOAT -> asmgen.out("${variable.name}\t.fill ${compTarget.machine.FLOAT_MEM_SIZE}")
in SplitWordArrayTypes -> {
val numbytesPerHalf = compTarget.memorySize(variable.dt, variable.length!!) / 2
asmgen.out("${variable.name}_lsb\t.fill $numbytesPerHalf")
asmgen.out("${variable.name}_msb\t.fill $numbytesPerHalf")
}
in ArrayDatatypes -> {
val numbytes = compTarget.memorySize(variable.dt, variable.length!!)
asmgen.out("${variable.name}\t.fill $numbytes")
}
else -> {
throw AssemblyError("weird dt")
}
}
}
private fun staticVariable2asm(variable: StStaticVariable) {
val initialValue: Number =
if(variable.onetimeInitializationNumericValue!=null) {
if(variable.dt== DataType.FLOAT)
variable.onetimeInitializationNumericValue!!
else
variable.onetimeInitializationNumericValue!!.toInt()
} else 0
when (variable.dt) {
DataType.BOOL, DataType.UBYTE -> asmgen.out("${variable.name}\t.byte ${initialValue.toHex()}")
DataType.BYTE -> asmgen.out("${variable.name}\t.char $initialValue")
DataType.UWORD -> asmgen.out("${variable.name}\t.word ${initialValue.toHex()}")
DataType.WORD -> asmgen.out("${variable.name}\t.sint $initialValue")
DataType.FLOAT -> {
if(initialValue==0) {
asmgen.out("${variable.name}\t.byte 0,0,0,0,0 ; float")
} else {
val floatFill = compTarget.machine.getFloatAsmBytes(initialValue)
asmgen.out("${variable.name}\t.byte $floatFill ; float $initialValue")
}
}
DataType.STR -> {
throw AssemblyError("all string vars should have been interned into prog")
}
in ArrayDatatypes -> arrayVariable2asm(variable.name, variable.dt, variable.onetimeInitializationArrayValue, variable.length)
else -> {
throw AssemblyError("weird dt")
}
}
}
private fun arrayVariable2asm(varname: String, dt: DataType, value: StArray?, orNumberOfZeros: Int?) {
when(dt) {
DataType.ARRAY_UB, DataType.ARRAY_BOOL -> {
val data = makeArrayFillDataUnsigned(dt, value, orNumberOfZeros)
if (data.size <= 16)
asmgen.out("$varname\t.byte ${data.joinToString()}")
else {
asmgen.out(varname)
for (chunk in data.chunked(16))
asmgen.out(" .byte " + chunk.joinToString())
}
}
DataType.ARRAY_B -> {
val data = makeArrayFillDataSigned(dt, value, orNumberOfZeros)
if (data.size <= 16)
asmgen.out("$varname\t.char ${data.joinToString()}")
else {
asmgen.out(varname)
for (chunk in data.chunked(16))
asmgen.out(" .char " + chunk.joinToString())
}
}
DataType.ARRAY_UW -> {
val data = makeArrayFillDataUnsigned(dt, value, orNumberOfZeros)
if (data.size <= 16)
asmgen.out("$varname\t.word ${data.joinToString()}")
else {
asmgen.out(varname)
for (chunk in data.chunked(16))
asmgen.out(" .word " + chunk.joinToString())
}
}
DataType.ARRAY_W -> {
val data = makeArrayFillDataSigned(dt, value, orNumberOfZeros)
if (data.size <= 16)
asmgen.out("$varname\t.sint ${data.joinToString()}")
else {
asmgen.out(varname)
for (chunk in data.chunked(16))
asmgen.out(" .sint " + chunk.joinToString())
}
}
DataType.ARRAY_UW_SPLIT -> {
val data = makeArrayFillDataUnsigned(dt, value, orNumberOfZeros)
asmgen.out("_array_$varname := ${data.joinToString()}")
asmgen.out("${varname}_lsb\t.byte <_array_$varname")
asmgen.out("${varname}_msb\t.byte >_array_$varname")
}
DataType.ARRAY_W_SPLIT -> {
val data = makeArrayFillDataSigned(dt, value, orNumberOfZeros)
asmgen.out("_array_$varname := ${data.joinToString()}")
asmgen.out("${varname}_lsb\t.byte <_array_$varname")
asmgen.out("${varname}_msb\t.byte >_array_$varname")
}
DataType.ARRAY_F -> {
val array = value ?: zeroFilledArray(orNumberOfZeros!!)
val floatFills = array.map {
compTarget.machine.getFloatAsmBytes(it.number!!)
}
asmgen.out(varname)
for (f in array.zip(floatFills))
asmgen.out(" .byte ${f.second} ; float ${f.first}")
}
else -> throw AssemblyError("require array dt")
}
}
private fun zeroFilledArray(numElts: Int): StArray {
val values = mutableListOf<StArrayElement>()
repeat(numElts) {
values.add(StArrayElement(0.0, null, null))
}
return values
}
private fun memdefsAndConsts2asm(memvars: Collection<StMemVar>, consts: Collection<StConstant>) {
memvars.sortedBy { it.address }.forEach {
asmgen.out(" ${it.name} = ${it.address.toHex()}")
}
consts.sortedBy { it.name }.forEach {
if(it.dt==DataType.FLOAT)
asmgen.out(" ${it.name} = ${it.value}")
else
asmgen.out(" ${it.name} = ${it.value.toHex()}")
}
}
private fun asmsubs2asm(statements: List<PtNode>) {
statements
.filter { it is PtAsmSub && it.address!=null }
.forEach { asmsub ->
asmsub as PtAsmSub
asmgen.out(" ${asmsub.name} = ${asmsub.address!!.toHex()}")
}
}
private fun outputStringvar(varname: String, encoding: Encoding, value: String) {
asmgen.out("$varname\t; $encoding:\"${value.escape().replace("\u0000", "<NULL>")}\"", false)
val bytes = compTarget.encodeString(value, encoding).plus(0.toUByte())
val outputBytes = bytes.map { "$" + it.toString(16).padStart(2, '0') }
for (chunk in outputBytes.chunked(16))
asmgen.out(" .byte " + chunk.joinToString())
}
private fun makeArrayFillDataUnsigned(dt: DataType, value: StArray?, orNumberOfZeros: Int?): List<String> {
val array = value ?: zeroFilledArray(orNumberOfZeros!!)
return when (dt) {
DataType.ARRAY_BOOL ->
// byte array can never contain pointer-to types, so treat values as all integers
array.map {
if(it.boolean!=null)
if(it.boolean==true) "1" else "0"
else {
val number = it.number!!
if(number==0.0) "0" else "1"
}
}
DataType.ARRAY_UB ->
// byte array can never contain pointer-to types, so treat values as all integers
array.map {
val number = it.number!!.toInt()
"$"+number.toString(16).padStart(2, '0')
}
DataType.ARRAY_UW, DataType.ARRAY_UW_SPLIT -> array.map {
if(it.number!=null) {
"$" + it.number!!.toInt().toString(16).padStart(4, '0')
}
else if(it.addressOfSymbol!=null) {
asmgen.asmSymbolName(it.addressOfSymbol!!)
}
else
throw AssemblyError("weird array elt")
}
else -> throw AssemblyError("invalid dt")
}
}
private fun makeArrayFillDataSigned(dt: DataType, value: StArray?, orNumberOfZeros: Int?): List<String> {
val array = value ?: zeroFilledArray(orNumberOfZeros!!)
return when (dt) {
// byte array can never contain pointer-to types, so treat values as all integers
DataType.ARRAY_UB ->
array.map {
val number = it.number!!.toInt()
"$"+number.toString(16).padStart(2, '0')
}
DataType.ARRAY_B ->
array.map {
val number = it.number!!.toInt()
val hexnum = number.absoluteValue.toString(16).padStart(2, '0')
if(number>=0)
"$$hexnum"
else
"-$$hexnum"
}
DataType.ARRAY_UW, DataType.ARRAY_UW_SPLIT -> array.map {
val number = it.number!!.toInt()
"$" + number.toString(16).padStart(4, '0')
}
DataType.ARRAY_W, DataType.ARRAY_W_SPLIT -> array.map {
val number = it.number!!.toInt()
val hexnum = number.absoluteValue.toString(16).padStart(4, '0')
if(number>=0)
"$$hexnum"
else
"-$$hexnum"
}
else -> throw AssemblyError("invalid dt")
}
}
}