mirror of
https://github.com/irmen/prog8.git
synced 2025-01-14 17:31:01 +00:00
787 lines
27 KiB
Lua
787 lines
27 KiB
Lua
; Prog8 definitions for the Commodore-64
|
|
; Including memory registers, I/O registers, Basic and Kernal subroutines.
|
|
;
|
|
; Written by Irmen de Jong (irmen@razorvine.net) - license: GNU GPL 3.0
|
|
;
|
|
; indent format: TABS, size=8
|
|
|
|
c64 {
|
|
&ubyte TIME_HI = $a0 ; software jiffy clock, hi byte
|
|
&ubyte TIME_MID = $a1 ; .. mid byte
|
|
&ubyte TIME_LO = $a2 ; .. lo byte. Updated by IRQ every 1/60 sec
|
|
&ubyte STATUS = $90 ; kernal status variable for I/O
|
|
&ubyte STKEY = $91 ; various keyboard statuses (updated by IRQ)
|
|
&ubyte SFDX = $cb ; current key pressed (matrix value) (updated by IRQ)
|
|
|
|
&ubyte COLOR = $0286 ; cursor color
|
|
&ubyte HIBASE = $0288 ; screen base address / 256 (hi-byte of screen memory address)
|
|
&uword CINV = $0314 ; IRQ vector
|
|
&uword NMI_VEC = $FFFA ; 6502 nmi vector, determined by the kernal if banked in
|
|
&uword RESET_VEC = $FFFC ; 6502 reset vector, determined by the kernal if banked in
|
|
&uword IRQ_VEC = $FFFE ; 6502 interrupt vector, determined by the kernal if banked in
|
|
|
|
; the default addresses for the character screen chars and colors
|
|
const uword Screen = $0400 ; to have this as an array[40*25] the compiler would have to support array size > 255
|
|
const uword Colors = $d800 ; to have this as an array[40*25] the compiler would have to support array size > 255
|
|
|
|
; the default locations of the 8 sprite pointers (store address of sprite / 64)
|
|
&ubyte SPRPTR0 = 2040
|
|
&ubyte SPRPTR1 = 2041
|
|
&ubyte SPRPTR2 = 2042
|
|
&ubyte SPRPTR3 = 2043
|
|
&ubyte SPRPTR4 = 2044
|
|
&ubyte SPRPTR5 = 2045
|
|
&ubyte SPRPTR6 = 2046
|
|
&ubyte SPRPTR7 = 2047
|
|
&ubyte[8] SPRPTR = 2040 ; the 8 sprite pointers as an array.
|
|
|
|
|
|
; ---- VIC-II 6567/6569/856x registers ----
|
|
|
|
&ubyte SP0X = $d000
|
|
&ubyte SP0Y = $d001
|
|
&ubyte SP1X = $d002
|
|
&ubyte SP1Y = $d003
|
|
&ubyte SP2X = $d004
|
|
&ubyte SP2Y = $d005
|
|
&ubyte SP3X = $d006
|
|
&ubyte SP3Y = $d007
|
|
&ubyte SP4X = $d008
|
|
&ubyte SP4Y = $d009
|
|
&ubyte SP5X = $d00a
|
|
&ubyte SP5Y = $d00b
|
|
&ubyte SP6X = $d00c
|
|
&ubyte SP6Y = $d00d
|
|
&ubyte SP7X = $d00e
|
|
&ubyte SP7Y = $d00f
|
|
&ubyte[16] SPXY = $d000 ; the 8 sprite X and Y registers as an array.
|
|
&uword[8] SPXYW = $d000 ; the 8 sprite X and Y registers as a combined xy word array.
|
|
|
|
&ubyte MSIGX = $d010
|
|
&ubyte SCROLY = $d011
|
|
&ubyte RASTER = $d012
|
|
&ubyte LPENX = $d013
|
|
&ubyte LPENY = $d014
|
|
&ubyte SPENA = $d015
|
|
&ubyte SCROLX = $d016
|
|
&ubyte YXPAND = $d017
|
|
&ubyte VMCSB = $d018
|
|
&ubyte VICIRQ = $d019
|
|
&ubyte IREQMASK = $d01a
|
|
&ubyte SPBGPR = $d01b
|
|
&ubyte SPMC = $d01c
|
|
&ubyte XXPAND = $d01d
|
|
&ubyte SPSPCL = $d01e
|
|
&ubyte SPBGCL = $d01f
|
|
|
|
&ubyte EXTCOL = $d020 ; border color
|
|
&ubyte BGCOL0 = $d021 ; screen color
|
|
&ubyte BGCOL1 = $d022
|
|
&ubyte BGCOL2 = $d023
|
|
&ubyte BGCOL4 = $d024
|
|
&ubyte SPMC0 = $d025
|
|
&ubyte SPMC1 = $d026
|
|
&ubyte SP0COL = $d027
|
|
&ubyte SP1COL = $d028
|
|
&ubyte SP2COL = $d029
|
|
&ubyte SP3COL = $d02a
|
|
&ubyte SP4COL = $d02b
|
|
&ubyte SP5COL = $d02c
|
|
&ubyte SP6COL = $d02d
|
|
&ubyte SP7COL = $d02e
|
|
&ubyte[8] SPCOL = $d027
|
|
|
|
|
|
; ---- end of VIC-II registers ----
|
|
|
|
; ---- CIA 6526 1 & 2 registers ----
|
|
|
|
&ubyte CIA1PRA = $DC00 ; CIA 1 DRA, keyboard column drive (and joystick control port #2)
|
|
&ubyte CIA1PRB = $DC01 ; CIA 1 DRB, keyboard row port (and joystick control port #1)
|
|
&ubyte CIA1DDRA = $DC02 ; CIA 1 DDRA, keyboard column
|
|
&ubyte CIA1DDRB = $DC03 ; CIA 1 DDRB, keyboard row
|
|
&ubyte CIA1TAL = $DC04 ; CIA 1 timer A low byte
|
|
&ubyte CIA1TAH = $DC05 ; CIA 1 timer A high byte
|
|
&ubyte CIA1TBL = $DC06 ; CIA 1 timer B low byte
|
|
&ubyte CIA1TBH = $DC07 ; CIA 1 timer B high byte
|
|
&ubyte CIA1TOD10 = $DC08 ; time of day, 1/10 sec.
|
|
&ubyte CIA1TODSEC = $DC09 ; time of day, seconds
|
|
&ubyte CIA1TODMMIN = $DC0A ; time of day, minutes
|
|
&ubyte CIA1TODHR = $DC0B ; time of day, hours
|
|
&ubyte CIA1SDR = $DC0C ; Serial Data Register
|
|
&ubyte CIA1ICR = $DC0D
|
|
&ubyte CIA1CRA = $DC0E
|
|
&ubyte CIA1CRB = $DC0F
|
|
|
|
&ubyte CIA2PRA = $DD00 ; CIA 2 DRA, serial port and video address
|
|
&ubyte CIA2PRB = $DD01 ; CIA 2 DRB, RS232 port / USERPORT
|
|
&ubyte CIA2DDRA = $DD02 ; CIA 2 DDRA, serial port and video address
|
|
&ubyte CIA2DDRB = $DD03 ; CIA 2 DDRB, RS232 port / USERPORT
|
|
&ubyte CIA2TAL = $DD04 ; CIA 2 timer A low byte
|
|
&ubyte CIA2TAH = $DD05 ; CIA 2 timer A high byte
|
|
&ubyte CIA2TBL = $DD06 ; CIA 2 timer B low byte
|
|
&ubyte CIA2TBH = $DD07 ; CIA 2 timer B high byte
|
|
&ubyte CIA2TOD10 = $DD08 ; time of day, 1/10 sec.
|
|
&ubyte CIA2TODSEC = $DD09 ; time of day, seconds
|
|
&ubyte CIA2TODMIN = $DD0A ; time of day, minutes
|
|
&ubyte CIA2TODHR = $DD0B ; time of day, hours
|
|
&ubyte CIA2SDR = $DD0C ; Serial Data Register
|
|
&ubyte CIA2ICR = $DD0D
|
|
&ubyte CIA2CRA = $DD0E
|
|
&ubyte CIA2CRB = $DD0F
|
|
|
|
; ---- end of CIA registers ----
|
|
|
|
; ---- SID 6581/8580 registers ----
|
|
|
|
&ubyte FREQLO1 = $D400 ; channel 1 freq lo
|
|
&ubyte FREQHI1 = $D401 ; channel 1 freq hi
|
|
&uword FREQ1 = $D400 ; channel 1 freq (word)
|
|
&ubyte PWLO1 = $D402 ; channel 1 pulse width lo (7-0)
|
|
&ubyte PWHI1 = $D403 ; channel 1 pulse width hi (11-8)
|
|
&uword PW1 = $D402 ; channel 1 pulse width (word)
|
|
&ubyte CR1 = $D404 ; channel 1 voice control register
|
|
&ubyte AD1 = $D405 ; channel 1 attack & decay
|
|
&ubyte SR1 = $D406 ; channel 1 sustain & release
|
|
&ubyte FREQLO2 = $D407 ; channel 2 freq lo
|
|
&ubyte FREQHI2 = $D408 ; channel 2 freq hi
|
|
&uword FREQ2 = $D407 ; channel 2 freq (word)
|
|
&ubyte PWLO2 = $D409 ; channel 2 pulse width lo (7-0)
|
|
&ubyte PWHI2 = $D40A ; channel 2 pulse width hi (11-8)
|
|
&uword PW2 = $D409 ; channel 2 pulse width (word)
|
|
&ubyte CR2 = $D40B ; channel 2 voice control register
|
|
&ubyte AD2 = $D40C ; channel 2 attack & decay
|
|
&ubyte SR2 = $D40D ; channel 2 sustain & release
|
|
&ubyte FREQLO3 = $D40E ; channel 3 freq lo
|
|
&ubyte FREQHI3 = $D40F ; channel 3 freq hi
|
|
&uword FREQ3 = $D40E ; channel 3 freq (word)
|
|
&ubyte PWLO3 = $D410 ; channel 3 pulse width lo (7-0)
|
|
&ubyte PWHI3 = $D411 ; channel 3 pulse width hi (11-8)
|
|
&uword PW3 = $D410 ; channel 3 pulse width (word)
|
|
&ubyte CR3 = $D412 ; channel 3 voice control register
|
|
&ubyte AD3 = $D413 ; channel 3 attack & decay
|
|
&ubyte SR3 = $D414 ; channel 3 sustain & release
|
|
&ubyte FCLO = $D415 ; filter cutoff lo (2-0)
|
|
&ubyte FCHI = $D416 ; filter cutoff hi (10-3)
|
|
&uword FC = $D415 ; filter cutoff (word)
|
|
&ubyte RESFILT = $D417 ; filter resonance and routing
|
|
&ubyte MVOL = $D418 ; filter mode and main volume control
|
|
&ubyte POTX = $D419 ; potentiometer X
|
|
&ubyte POTY = $D41A ; potentiometer Y
|
|
&ubyte OSC3 = $D41B ; channel 3 oscillator value read
|
|
&ubyte ENV3 = $D41C ; channel 3 envelope value read
|
|
|
|
; ---- end of SID registers ----
|
|
|
|
|
|
; ---- C64 ROM kernal routines ----
|
|
|
|
romsub $AB1E = STROUT(uword strptr @ AY) clobbers(A, X, Y) ; print null-terminated string (use txt.print instead)
|
|
romsub $E544 = CLEARSCR() clobbers(A,X,Y) ; clear the screen
|
|
romsub $E566 = HOMECRSR() clobbers(A,X,Y) ; cursor to top left of screen
|
|
romsub $EA31 = IRQDFRT() clobbers(A,X,Y) ; default IRQ routine
|
|
romsub $EA81 = IRQDFEND() clobbers(A,X,Y) ; default IRQ end/cleanup
|
|
romsub $FF81 = CINT() clobbers(A,X,Y) ; (alias: SCINIT) initialize screen editor and video chip
|
|
romsub $FF84 = IOINIT() clobbers(A, X) ; initialize I/O devices (CIA, SID, IRQ)
|
|
romsub $FF87 = RAMTAS() clobbers(A,X,Y) ; initialize RAM, tape buffer, screen
|
|
romsub $FF8A = RESTOR() clobbers(A,X,Y) ; restore default I/O vectors
|
|
romsub $FF8D = VECTOR(uword userptr @ XY, ubyte dir @ Pc) clobbers(A,Y) ; read/set I/O vector table
|
|
romsub $FF90 = SETMSG(ubyte value @ A) ; set Kernal message control flag
|
|
romsub $FF93 = SECOND(ubyte address @ A) clobbers(A) ; (alias: LSTNSA) send secondary address after LISTEN
|
|
romsub $FF96 = TKSA(ubyte address @ A) clobbers(A) ; (alias: TALKSA) send secondary address after TALK
|
|
romsub $FF99 = MEMTOP(uword address @ XY, ubyte dir @ Pc) -> uword @ XY ; read/set top of memory pointer
|
|
romsub $FF9C = MEMBOT(uword address @ XY, ubyte dir @ Pc) -> uword @ XY ; read/set bottom of memory pointer
|
|
romsub $FF9F = SCNKEY() clobbers(A,X,Y) ; scan the keyboard
|
|
romsub $FFA2 = SETTMO(ubyte timeout @ A) ; set time-out flag for IEEE bus
|
|
romsub $FFA5 = ACPTR() -> ubyte @ A ; (alias: IECIN) input byte from serial bus
|
|
romsub $FFA8 = CIOUT(ubyte databyte @ A) ; (alias: IECOUT) output byte to serial bus
|
|
romsub $FFAB = UNTLK() clobbers(A) ; command serial bus device to UNTALK
|
|
romsub $FFAE = UNLSN() clobbers(A) ; command serial bus device to UNLISTEN
|
|
romsub $FFB1 = LISTEN(ubyte device @ A) clobbers(A) ; command serial bus device to LISTEN
|
|
romsub $FFB4 = TALK(ubyte device @ A) clobbers(A) ; command serial bus device to TALK
|
|
romsub $FFB7 = READST() -> ubyte @ A ; read I/O status word
|
|
romsub $FFBA = SETLFS(ubyte logical @ A, ubyte device @ X, ubyte secondary @ Y) ; set logical file parameters
|
|
romsub $FFBD = SETNAM(ubyte namelen @ A, str filename @ XY) ; set filename parameters
|
|
romsub $FFC0 = OPEN() clobbers(X,Y) -> ubyte @Pc, ubyte @A ; (via 794 ($31A)) open a logical file
|
|
romsub $FFC3 = CLOSE(ubyte logical @ A) clobbers(A,X,Y) ; (via 796 ($31C)) close a logical file
|
|
romsub $FFC6 = CHKIN(ubyte logical @ X) clobbers(A,X) -> ubyte @Pc ; (via 798 ($31E)) define an input channel
|
|
romsub $FFC9 = CHKOUT(ubyte logical @ X) clobbers(A,X) ; (via 800 ($320)) define an output channel
|
|
romsub $FFCC = CLRCHN() clobbers(A,X) ; (via 802 ($322)) restore default devices
|
|
romsub $FFCF = CHRIN() clobbers(X, Y) -> ubyte @ A ; (via 804 ($324)) input a character (for keyboard, read a whole line from the screen) A=byte read.
|
|
romsub $FFD2 = CHROUT(ubyte char @ A) ; (via 806 ($326)) output a character
|
|
romsub $FFD5 = LOAD(ubyte verify @ A, uword address @ XY) -> ubyte @Pc, ubyte @ A, uword @ XY ; (via 816 ($330)) load from device
|
|
romsub $FFD8 = SAVE(ubyte zp_startaddr @ A, uword endaddr @ XY) -> ubyte @ Pc, ubyte @ A ; (via 818 ($332)) save to a device
|
|
romsub $FFDB = SETTIM(ubyte low @ A, ubyte middle @ X, ubyte high @ Y) ; set the software clock
|
|
romsub $FFDE = RDTIM() -> ubyte @ A, ubyte @ X, ubyte @ Y ; read the software clock (A=lo,X=mid,Y=high)
|
|
romsub $FFE1 = STOP() clobbers(X) -> ubyte @ Pz, ubyte @ A ; (via 808 ($328)) check the STOP key (and some others in A)
|
|
romsub $FFE4 = GETIN() clobbers(X,Y) -> ubyte @Pc, ubyte @ A ; (via 810 ($32A)) get a character
|
|
romsub $FFE7 = CLALL() clobbers(A,X) ; (via 812 ($32C)) close all files
|
|
romsub $FFEA = UDTIM() clobbers(A,X) ; update the software clock
|
|
romsub $FFED = SCREEN() -> ubyte @ X, ubyte @ Y ; read number of screen rows and columns
|
|
romsub $FFF0 = PLOT(ubyte col @ Y, ubyte row @ X, ubyte dir @ Pc) -> ubyte @ X, ubyte @ Y ; read/set position of cursor on screen. Use txt.plot for a 'safe' wrapper that preserves X.
|
|
romsub $FFF3 = IOBASE() -> uword @ XY ; read base address of I/O devices
|
|
|
|
; ---- end of C64 ROM kernal routines ----
|
|
|
|
; ---- utilities -----
|
|
|
|
asmsub STOP2() -> ubyte @A {
|
|
; -- check if STOP key was pressed, returns true if so. More convenient to use than STOP() because that only sets the carry status flag.
|
|
%asm {{
|
|
txa
|
|
pha
|
|
jsr c64.STOP
|
|
beq +
|
|
pla
|
|
tax
|
|
lda #0
|
|
rts
|
|
+ pla
|
|
tax
|
|
lda #1
|
|
rts
|
|
}}
|
|
}
|
|
|
|
asmsub RDTIM16() -> uword @AY {
|
|
; -- like RDTIM() but only returning the lower 16 bits in AY for convenience
|
|
%asm {{
|
|
stx P8ZP_SCRATCH_REG
|
|
jsr c64.RDTIM
|
|
pha
|
|
txa
|
|
tay
|
|
pla
|
|
ldx P8ZP_SCRATCH_REG
|
|
rts
|
|
}}
|
|
}
|
|
|
|
|
|
|
|
; ---- C64 specific system utility routines: ----
|
|
|
|
asmsub init_system() {
|
|
; Initializes the machine to a sane starting state.
|
|
; Called automatically by the loader program logic.
|
|
; This means that the BASIC, KERNAL and CHARGEN ROMs are banked in,
|
|
; the VIC, SID and CIA chips are reset, screen is cleared, and the default IRQ is set.
|
|
; Also a different color scheme is chosen to identify ourselves a little.
|
|
; Uppercase charset is activated, and all three registers set to 0, status flags cleared.
|
|
%asm {{
|
|
sei
|
|
cld
|
|
lda #%00101111
|
|
sta $00
|
|
lda #%00100111
|
|
sta $01
|
|
jsr c64.IOINIT
|
|
jsr c64.RESTOR
|
|
jsr c64.CINT
|
|
lda #6
|
|
sta c64.EXTCOL
|
|
lda #7
|
|
sta c64.COLOR
|
|
lda #0
|
|
sta c64.BGCOL0
|
|
jsr disable_runstop_and_charsetswitch
|
|
clc
|
|
clv
|
|
cli
|
|
rts
|
|
}}
|
|
}
|
|
|
|
asmsub init_system_phase2() {
|
|
%asm {{
|
|
rts ; no phase 2 steps on the C64
|
|
}}
|
|
}
|
|
|
|
asmsub disable_runstop_and_charsetswitch() clobbers(A) {
|
|
%asm {{
|
|
lda #$80
|
|
sta 657 ; disable charset switching
|
|
lda #239
|
|
sta 808 ; disable run/stop key
|
|
rts
|
|
}}
|
|
}
|
|
|
|
asmsub set_irq(uword handler @AY, ubyte useKernal @Pc) clobbers(A) {
|
|
%asm {{
|
|
sta _modified+1
|
|
sty _modified+2
|
|
lda #0
|
|
adc #0
|
|
sta _use_kernal
|
|
sei
|
|
lda #<_irq_handler
|
|
sta c64.CINV
|
|
lda #>_irq_handler
|
|
sta c64.CINV+1
|
|
cli
|
|
rts
|
|
_irq_handler jsr _irq_handler_init
|
|
_modified jsr $ffff ; modified
|
|
jsr _irq_handler_end
|
|
lda _use_kernal
|
|
bne +
|
|
lda #$ff
|
|
sta c64.VICIRQ ; acknowledge raster irq
|
|
lda c64.CIA1ICR ; acknowledge CIA1 interrupt
|
|
; end irq processing - don't use kernal's irq handling
|
|
pla
|
|
tay
|
|
pla
|
|
tax
|
|
pla
|
|
rti
|
|
+ jmp c64.IRQDFRT ; continue with normal kernal irq routine
|
|
|
|
_use_kernal .byte 0
|
|
|
|
_irq_handler_init
|
|
; save all zp scratch registers and the X register as these might be clobbered by the irq routine
|
|
stx IRQ_X_REG
|
|
lda P8ZP_SCRATCH_B1
|
|
sta IRQ_SCRATCH_ZPB1
|
|
lda P8ZP_SCRATCH_REG
|
|
sta IRQ_SCRATCH_ZPREG
|
|
lda P8ZP_SCRATCH_W1
|
|
sta IRQ_SCRATCH_ZPWORD1
|
|
lda P8ZP_SCRATCH_W1+1
|
|
sta IRQ_SCRATCH_ZPWORD1+1
|
|
lda P8ZP_SCRATCH_W2
|
|
sta IRQ_SCRATCH_ZPWORD2
|
|
lda P8ZP_SCRATCH_W2+1
|
|
sta IRQ_SCRATCH_ZPWORD2+1
|
|
; stack protector; make sure we don't clobber the top of the evaluation stack
|
|
dex
|
|
dex
|
|
dex
|
|
dex
|
|
dex
|
|
dex
|
|
cld
|
|
rts
|
|
|
|
_irq_handler_end
|
|
; restore all zp scratch registers and the X register
|
|
lda IRQ_SCRATCH_ZPB1
|
|
sta P8ZP_SCRATCH_B1
|
|
lda IRQ_SCRATCH_ZPREG
|
|
sta P8ZP_SCRATCH_REG
|
|
lda IRQ_SCRATCH_ZPWORD1
|
|
sta P8ZP_SCRATCH_W1
|
|
lda IRQ_SCRATCH_ZPWORD1+1
|
|
sta P8ZP_SCRATCH_W1+1
|
|
lda IRQ_SCRATCH_ZPWORD2
|
|
sta P8ZP_SCRATCH_W2
|
|
lda IRQ_SCRATCH_ZPWORD2+1
|
|
sta P8ZP_SCRATCH_W2+1
|
|
ldx IRQ_X_REG
|
|
rts
|
|
|
|
IRQ_X_REG .byte 0
|
|
IRQ_SCRATCH_ZPB1 .byte 0
|
|
IRQ_SCRATCH_ZPREG .byte 0
|
|
IRQ_SCRATCH_ZPWORD1 .word 0
|
|
IRQ_SCRATCH_ZPWORD2 .word 0
|
|
|
|
}}
|
|
}
|
|
|
|
asmsub restore_irq() clobbers(A) {
|
|
%asm {{
|
|
sei
|
|
lda #<c64.IRQDFRT
|
|
sta c64.CINV
|
|
lda #>c64.IRQDFRT
|
|
sta c64.CINV+1
|
|
lda #0
|
|
sta c64.IREQMASK ; disable raster irq
|
|
lda #%10000001
|
|
sta c64.CIA1ICR ; restore CIA1 irq
|
|
cli
|
|
rts
|
|
}}
|
|
}
|
|
|
|
asmsub set_rasterirq(uword handler @AY, uword rasterpos @R0, ubyte useKernal @Pc) clobbers(A) {
|
|
%asm {{
|
|
sta _modified+1
|
|
sty _modified+2
|
|
lda #0
|
|
adc #0
|
|
sta set_irq._use_kernal
|
|
lda cx16.r0
|
|
ldy cx16.r0+1
|
|
sei
|
|
jsr _setup_raster_irq
|
|
lda #<_raster_irq_handler
|
|
sta c64.CINV
|
|
lda #>_raster_irq_handler
|
|
sta c64.CINV+1
|
|
cli
|
|
rts
|
|
|
|
_raster_irq_handler
|
|
jsr set_irq._irq_handler_init
|
|
_modified jsr $ffff ; modified
|
|
jsr set_irq._irq_handler_end
|
|
lda #$ff
|
|
sta c64.VICIRQ ; acknowledge raster irq
|
|
lda set_irq._use_kernal
|
|
bne +
|
|
; end irq processing - don't use kernal's irq handling
|
|
pla
|
|
tay
|
|
pla
|
|
tax
|
|
pla
|
|
rti
|
|
+ jmp c64.IRQDFRT ; continue with kernal irq routine
|
|
|
|
_setup_raster_irq
|
|
pha
|
|
lda #%01111111
|
|
sta c64.CIA1ICR ; "switch off" interrupts signals from cia-1
|
|
sta c64.CIA2ICR ; "switch off" interrupts signals from cia-2
|
|
and c64.SCROLY
|
|
sta c64.SCROLY ; clear most significant bit of raster position
|
|
lda c64.CIA1ICR ; ack previous irq
|
|
lda c64.CIA2ICR ; ack previous irq
|
|
pla
|
|
sta c64.RASTER ; set the raster line number where interrupt should occur
|
|
cpy #0
|
|
beq +
|
|
lda c64.SCROLY
|
|
ora #%10000000
|
|
sta c64.SCROLY ; set most significant bit of raster position
|
|
+ lda #%00000001
|
|
sta c64.IREQMASK ;enable raster interrupt signals from vic
|
|
rts
|
|
}}
|
|
}
|
|
|
|
; ---- end of C64 specific system utility routines ----
|
|
|
|
}
|
|
|
|
sys {
|
|
; ------- lowlevel system routines --------
|
|
|
|
const ubyte target = 64 ; compilation target specifier. 64 = C64, 16 = CommanderX16.
|
|
|
|
|
|
asmsub reset_system() {
|
|
; Soft-reset the system back to initial power-on Basic prompt.
|
|
%asm {{
|
|
sei
|
|
lda #14
|
|
sta $01 ; bank the kernal in
|
|
jmp (c64.RESET_VEC)
|
|
}}
|
|
}
|
|
|
|
sub wait(uword jiffies) {
|
|
; --- wait approximately the given number of jiffies (1/60th seconds)
|
|
; note: the system irq handler has to be active for this to work as it depends on the system jiffy clock
|
|
repeat jiffies {
|
|
ubyte jiff = lsb(c64.RDTIM16())
|
|
while jiff==lsb(c64.RDTIM16()) {
|
|
; wait until 1 jiffy has passed
|
|
}
|
|
}
|
|
}
|
|
|
|
asmsub waitvsync() clobbers(A) {
|
|
; --- busy wait till the next vsync has occurred (approximately), without depending on custom irq handling.
|
|
; note: a more accurate way to wait for vsync is to set up a vsync irq handler instead.
|
|
%asm {{
|
|
- bit c64.SCROLY
|
|
bpl -
|
|
- bit c64.SCROLY
|
|
bmi -
|
|
rts
|
|
}}
|
|
}
|
|
|
|
inline asmsub waitrastborder() {
|
|
; --- busy wait till the raster position has reached the bottom screen border (approximately)
|
|
; note: a more accurate way to do this is by using a raster irq handler instead.
|
|
%asm {{
|
|
- bit c64.SCROLY
|
|
bpl -
|
|
}}
|
|
}
|
|
|
|
asmsub memcopy(uword source @R0, uword target @R1, uword count @AY) clobbers(A,X,Y) {
|
|
%asm {{
|
|
ldx cx16.r0
|
|
stx P8ZP_SCRATCH_W1 ; source in ZP
|
|
ldx cx16.r0+1
|
|
stx P8ZP_SCRATCH_W1+1
|
|
ldx cx16.r1
|
|
stx P8ZP_SCRATCH_W2 ; target in ZP
|
|
ldx cx16.r1+1
|
|
stx P8ZP_SCRATCH_W2+1
|
|
cpy #0
|
|
bne _longcopy
|
|
|
|
; copy <= 255 bytes
|
|
tay
|
|
bne _copyshort
|
|
rts ; nothing to copy
|
|
|
|
_copyshort
|
|
; decrease source and target pointers so we can simply index by Y
|
|
lda P8ZP_SCRATCH_W1
|
|
bne +
|
|
dec P8ZP_SCRATCH_W1+1
|
|
+ dec P8ZP_SCRATCH_W1
|
|
lda P8ZP_SCRATCH_W2
|
|
bne +
|
|
dec P8ZP_SCRATCH_W2+1
|
|
+ dec P8ZP_SCRATCH_W2
|
|
|
|
- lda (P8ZP_SCRATCH_W1),y
|
|
sta (P8ZP_SCRATCH_W2),y
|
|
dey
|
|
bne -
|
|
rts
|
|
|
|
_longcopy
|
|
sta P8ZP_SCRATCH_B1 ; lsb(count) = remainder in last page
|
|
tya
|
|
tax ; x = num pages (1+)
|
|
ldy #0
|
|
- lda (P8ZP_SCRATCH_W1),y
|
|
sta (P8ZP_SCRATCH_W2),y
|
|
iny
|
|
bne -
|
|
inc P8ZP_SCRATCH_W1+1
|
|
inc P8ZP_SCRATCH_W2+1
|
|
dex
|
|
bne -
|
|
ldy P8ZP_SCRATCH_B1
|
|
bne _copyshort
|
|
rts
|
|
}}
|
|
}
|
|
|
|
asmsub memset(uword mem @R0, uword numbytes @R1, ubyte value @A) clobbers(A,X,Y) {
|
|
%asm {{
|
|
ldy cx16.r0
|
|
sty P8ZP_SCRATCH_W1
|
|
ldy cx16.r0+1
|
|
sty P8ZP_SCRATCH_W1+1
|
|
ldx cx16.r1
|
|
ldy cx16.r1+1
|
|
jmp prog8_lib.memset
|
|
}}
|
|
}
|
|
|
|
asmsub memsetw(uword mem @R0, uword numwords @R1, uword value @AY) clobbers(A,X,Y) {
|
|
%asm {{
|
|
ldx cx16.r0
|
|
stx P8ZP_SCRATCH_W1
|
|
ldx cx16.r0+1
|
|
stx P8ZP_SCRATCH_W1+1
|
|
ldx cx16.r1
|
|
stx P8ZP_SCRATCH_W2
|
|
ldx cx16.r1+1
|
|
stx P8ZP_SCRATCH_W2+1
|
|
jmp prog8_lib.memsetw
|
|
}}
|
|
}
|
|
|
|
|
|
inline asmsub rsave() {
|
|
; save cpu status flag and all registers A, X, Y.
|
|
; see http://6502.org/tutorials/register_preservation.html
|
|
%asm {{
|
|
php
|
|
sta P8ZP_SCRATCH_REG
|
|
pha
|
|
txa
|
|
pha
|
|
tya
|
|
pha
|
|
lda P8ZP_SCRATCH_REG
|
|
}}
|
|
}
|
|
|
|
inline asmsub rrestore() {
|
|
; restore all registers and cpu status flag
|
|
%asm {{
|
|
pla
|
|
tay
|
|
pla
|
|
tax
|
|
pla
|
|
plp
|
|
}}
|
|
}
|
|
|
|
inline asmsub read_flags() -> ubyte @A {
|
|
%asm {{
|
|
php
|
|
pla
|
|
}}
|
|
}
|
|
|
|
inline asmsub clear_carry() {
|
|
%asm {{
|
|
clc
|
|
}}
|
|
}
|
|
|
|
inline asmsub set_carry() {
|
|
%asm {{
|
|
sec
|
|
}}
|
|
}
|
|
|
|
inline asmsub clear_irqd() {
|
|
%asm {{
|
|
cli
|
|
}}
|
|
}
|
|
|
|
inline asmsub set_irqd() {
|
|
%asm {{
|
|
sei
|
|
}}
|
|
}
|
|
|
|
inline asmsub exit(ubyte returnvalue @A) {
|
|
; -- immediately exit the program with a return code in the A register
|
|
%asm {{
|
|
jsr c64.CLRCHN ; reset i/o channels
|
|
ldx prog8_lib.orig_stackpointer
|
|
txs
|
|
rts ; return to original caller
|
|
}}
|
|
}
|
|
|
|
inline asmsub progend() -> uword @AY {
|
|
%asm {{
|
|
lda #<prog8_program_end
|
|
ldy #>prog8_program_end
|
|
}}
|
|
}
|
|
|
|
}
|
|
|
|
cx16 {
|
|
|
|
; the sixteen virtual 16-bit registers that the CX16 has defined in the zeropage
|
|
; they are simulated on the C64 as well but their location in memory is different
|
|
; (because there's no room for them in the zeropage)
|
|
; they are allocated at the bottom of the eval-stack (should be ample space unless
|
|
; you're doing insane nesting of expressions...)
|
|
&uword r0 = $cf00
|
|
&uword r1 = $cf02
|
|
&uword r2 = $cf04
|
|
&uword r3 = $cf06
|
|
&uword r4 = $cf08
|
|
&uword r5 = $cf0a
|
|
&uword r6 = $cf0c
|
|
&uword r7 = $cf0e
|
|
&uword r8 = $cf10
|
|
&uword r9 = $cf12
|
|
&uword r10 = $cf14
|
|
&uword r11 = $cf16
|
|
&uword r12 = $cf18
|
|
&uword r13 = $cf1a
|
|
&uword r14 = $cf1c
|
|
&uword r15 = $cf1e
|
|
|
|
&word r0s = $cf00
|
|
&word r1s = $cf02
|
|
&word r2s = $cf04
|
|
&word r3s = $cf06
|
|
&word r4s = $cf08
|
|
&word r5s = $cf0a
|
|
&word r6s = $cf0c
|
|
&word r7s = $cf0e
|
|
&word r8s = $cf10
|
|
&word r9s = $cf12
|
|
&word r10s = $cf14
|
|
&word r11s = $cf16
|
|
&word r12s = $cf18
|
|
&word r13s = $cf1a
|
|
&word r14s = $cf1c
|
|
&word r15s = $cf1e
|
|
|
|
&ubyte r0L = $cf00
|
|
&ubyte r1L = $cf02
|
|
&ubyte r2L = $cf04
|
|
&ubyte r3L = $cf06
|
|
&ubyte r4L = $cf08
|
|
&ubyte r5L = $cf0a
|
|
&ubyte r6L = $cf0c
|
|
&ubyte r7L = $cf0e
|
|
&ubyte r8L = $cf10
|
|
&ubyte r9L = $cf12
|
|
&ubyte r10L = $cf14
|
|
&ubyte r11L = $cf16
|
|
&ubyte r12L = $cf18
|
|
&ubyte r13L = $cf1a
|
|
&ubyte r14L = $cf1c
|
|
&ubyte r15L = $cf1e
|
|
|
|
&ubyte r0H = $cf01
|
|
&ubyte r1H = $cf03
|
|
&ubyte r2H = $cf05
|
|
&ubyte r3H = $cf07
|
|
&ubyte r4H = $cf09
|
|
&ubyte r5H = $cf0b
|
|
&ubyte r6H = $cf0d
|
|
&ubyte r7H = $cf0f
|
|
&ubyte r8H = $cf11
|
|
&ubyte r9H = $cf13
|
|
&ubyte r10H = $cf15
|
|
&ubyte r11H = $cf17
|
|
&ubyte r12H = $cf19
|
|
&ubyte r13H = $cf1b
|
|
&ubyte r14H = $cf1d
|
|
&ubyte r15H = $cf1f
|
|
|
|
&byte r0sL = $cf00
|
|
&byte r1sL = $cf02
|
|
&byte r2sL = $cf04
|
|
&byte r3sL = $cf06
|
|
&byte r4sL = $cf08
|
|
&byte r5sL = $cf0a
|
|
&byte r6sL = $cf0c
|
|
&byte r7sL = $cf0e
|
|
&byte r8sL = $cf10
|
|
&byte r9sL = $cf12
|
|
&byte r10sL = $cf14
|
|
&byte r11sL = $cf16
|
|
&byte r12sL = $cf18
|
|
&byte r13sL = $cf1a
|
|
&byte r14sL = $cf1c
|
|
&byte r15sL = $cf1e
|
|
|
|
&byte r0sH = $cf01
|
|
&byte r1sH = $cf03
|
|
&byte r2sH = $cf05
|
|
&byte r3sH = $cf07
|
|
&byte r4sH = $cf09
|
|
&byte r5sH = $cf0b
|
|
&byte r6sH = $cf0d
|
|
&byte r7sH = $cf0f
|
|
&byte r8sH = $cf11
|
|
&byte r9sH = $cf13
|
|
&byte r10sH = $cf15
|
|
&byte r11sH = $cf17
|
|
&byte r12sH = $cf19
|
|
&byte r13sH = $cf1b
|
|
&byte r14sH = $cf1d
|
|
&byte r15sH = $cf1f
|
|
}
|