mirror of
https://github.com/irmen/prog8.git
synced 2024-12-17 16:29:50 +00:00
205 lines
8.4 KiB
ReStructuredText
205 lines
8.4 KiB
ReStructuredText
Prog8 documentation - |version|
|
|
===============================
|
|
|
|
.. image:: _static/logo.jpg
|
|
:align: center
|
|
:alt: Prog8 logo
|
|
|
|
.. index:: what is Prog8
|
|
|
|
What is Prog8?
|
|
--------------
|
|
|
|
This is a compiled programming language targeting the 8-bit
|
|
`6502 <https://en.wikipedia.org/wiki/MOS_Technology_6502>`_ /
|
|
`6510 <https://en.wikipedia.org/wiki/MOS_Technology_6510>`_ /
|
|
`65c02 <https://en.wikipedia.org/wiki/MOS_Technology_65C02>`_ microprocessors.
|
|
This CPU is from the late 1970's and early 1980's and was used in many home computers from that era,
|
|
such as the `Commodore-64 <https://en.wikipedia.org/wiki/Commodore_64>`_.
|
|
The language aims to provide many conveniences over raw assembly code (even when using a macro assembler),
|
|
while still being low level enough to create high performance programs.
|
|
|
|
|
|
Prog8 is copyright © Irmen de Jong (irmen@razorvine.net | http://www.razorvine.net).
|
|
The project is on github: https://github.com/irmen/prog8.git
|
|
|
|
|
|
This software is licensed under the GNU GPL 3.0, see https://www.gnu.org/licenses/gpl.html
|
|
|
|
|
|
.. image:: _static/cube3d.png
|
|
:width: 33%
|
|
:alt: 3d rotating sprites
|
|
.. image:: _static/wizzine.png
|
|
:width: 33%
|
|
:alt: Simple wizzine sprite effect
|
|
.. image:: _static/tehtriz.png
|
|
:width: 33%
|
|
:alt: Fully playable tetris clone
|
|
|
|
|
|
Language features
|
|
-----------------
|
|
|
|
- It is a cross-compiler running on modern machines (Linux, MacOS, Windows, ...)
|
|
It generates a machine code program runnable on actual 8-bit 6502 hardware.
|
|
- Fast execution speed due to compilation to native assembly code. It's possible to write certain raster interrupt 'demoscene' effects purely in Prog8.
|
|
- Provides a very convenient edit/compile/run cycle by being able to directly launch
|
|
the compiled program in an emulator and provide debugging information to this emulator.
|
|
- Based on simple and familiar imperative structured programming (it looks like a mix of C and Python)
|
|
- Modular programming and scoping via modules, code blocks, and subroutines.
|
|
- Provide high level programming constructs but at the same time stay close to the metal;
|
|
still able to directly use memory addresses and ROM subroutines,
|
|
and inline assembly to have full control when every register, cycle or byte matters
|
|
- Subroutines with parameters and return values
|
|
- Complex nested expressions are possible
|
|
- Variables are allocated statically
|
|
- Nested subroutines can access variables from outer scopes to avoids the overhead to pass everything via parameters
|
|
- Variable data types include signed and unsigned bytes and words, arrays, strings.
|
|
- Floating point math also supported if the target system provides floating point library routines (C64 and Cx16 both do).
|
|
- Strings can contain escaped characters but also many symbols directly if they have a petscii equivalent, such as "♠♥♣♦π▚●○╳". Characters like ^, _, \\, {, } and | are also accepted and converted to the closest petscii equivalents.
|
|
- High-level code optimizations, such as const-folding, expression and statement simplifications/rewriting.
|
|
- Many built-in functions, such as ``sin``, ``cos``, ``rnd``, ``abs``, ``min``, ``max``, ``sqrt``, ``msb``, ``rol``, ``ror``, ``swap``, ``sort`` and ``reverse``
|
|
- Programs can be run multiple times without reloading because of automatic variable (re)initializations.
|
|
- Supports the sixteen 'virtual' 16-bit registers R0 .. R15 from the Commander X16, also on the C64.
|
|
- If you only use standard kernal and prog8 library routines, it is possible to compile the *exact same program* for both machines (just change the compiler target flag)!
|
|
|
|
|
|
Code example
|
|
------------
|
|
|
|
Here is a hello world program::
|
|
|
|
%import textio
|
|
|
|
main {
|
|
sub start() {
|
|
txt.print("hello world i ♥ prog8\n")
|
|
}
|
|
}
|
|
|
|
This code calculates prime numbers using the Sieve of Eratosthenes algorithm::
|
|
|
|
%import textio
|
|
%zeropage basicsafe
|
|
|
|
main {
|
|
ubyte[256] sieve
|
|
ubyte candidate_prime = 2 ; is increased in the loop
|
|
|
|
sub start() {
|
|
; clear the sieve, to reset starting situation on subsequent runs
|
|
sys.memset(sieve, 256, false)
|
|
; calculate primes
|
|
txt.print("prime numbers up to 255:\n\n")
|
|
ubyte amount=0
|
|
repeat {
|
|
ubyte prime = find_next_prime()
|
|
if prime==0
|
|
break
|
|
txt.print_ub(prime)
|
|
txt.print(", ")
|
|
amount++
|
|
}
|
|
txt.nl()
|
|
txt.print("number of primes (expected 54): ")
|
|
txt.print_ub(amount)
|
|
txt.nl()
|
|
}
|
|
|
|
sub find_next_prime() -> ubyte {
|
|
while sieve[candidate_prime] {
|
|
candidate_prime++
|
|
if candidate_prime==0
|
|
return 0 ; we wrapped; no more primes available in the sieve
|
|
}
|
|
|
|
; found next one, mark the multiples and return it.
|
|
sieve[candidate_prime] = true
|
|
uword multiple = candidate_prime
|
|
|
|
while multiple < len(sieve) {
|
|
sieve[lsb(multiple)] = true
|
|
multiple += candidate_prime
|
|
}
|
|
return candidate_prime
|
|
}
|
|
}
|
|
|
|
|
|
when compiled an ran on a C-64 you get this:
|
|
|
|
.. image:: _static/primes_example.png
|
|
:align: center
|
|
:alt: result when run on C-64
|
|
|
|
when the exact same program is compiled for the Commander X16 target, and run on the emulator, you get this:
|
|
|
|
.. image:: _static/primes_cx16.png
|
|
:align: center
|
|
:alt: result when run on CX16 emulator
|
|
|
|
|
|
Getting the compiler
|
|
--------------------
|
|
|
|
Usually you just download a fat jar of an official released version, but you can also build
|
|
it yourself from source.
|
|
Detailed instructions on how to obtain a version of the compiler are in :ref:`building_compiler`.
|
|
|
|
|
|
.. _requirements:
|
|
|
|
Required additional tools
|
|
-------------------------
|
|
|
|
`64tass <https://sourceforge.net/projects/tass64/>`_ - cross assembler. Install this on your shell path.
|
|
It's very easy to compile yourself.
|
|
A recent precompiled .exe (only for Windows) can be obtained from my `clone <https://github.com/irmen/64tass/releases>`_ of this project.
|
|
*You need at least version 1.55.2257 of this assembler to correctly use the breakpoints feature.*
|
|
It's possible to use older versions, but it is very likely that the automatic Vice breakpoints won't work with them.
|
|
|
|
A **Java runtime (jre or jdk), version 11 or newer** is required to run the prog8 compiler itself.
|
|
If you're scared of Oracle's licensing terms, most Linux distributions ship OpenJDK in their packages repository instead.
|
|
For Windows it's possible to get that as well; check out `AdoptOpenJDK <https://adoptopenjdk.net/>`_ .
|
|
For MacOS you can use the Homebrew system to install a recent version of OpenJDK.
|
|
|
|
Finally: an **emulator** (or a real machine ofcourse) to test and run your programs on.
|
|
In C64 mode, the compiler assumes the presence of the `Vice emulator <http://vice-emu.sourceforge.net/>`_.
|
|
If you're targeting the CommanderX16 instead, there's a choice of the official `x16emu <https://github.com/commanderx16/x16-emulator>`_
|
|
and the unofficial `box16 <https://github.com/indigodarkwolf/box16>`_ (you can select which one you want to launch
|
|
using the ``-emu`` or ``-emu2`` command line options)
|
|
|
|
.. attention:: **Commander-X16 V38 versus V39**
|
|
|
|
Starting with Prog8 7.0 the CX16 compilation target is configured for the upcoming v39 version of the emulator
|
|
and roms, that are most accurately reflecting the current state of the hardware design of the CX16.
|
|
Unfortunately, v39 has not yet been officially released. At the time of writing, v38 is still
|
|
the latest official release. So, you have to either compile the v39 emulator+roms from the source in git yourself
|
|
or obtain a precompiled version from someone else.
|
|
A cx16 program compiled by prog8 7.0 is meant for v39 but *may* still work on the older v38 release of the emulator!
|
|
For this to work you should make sure that the program is not using floating point, nor the ram/rom bank switching logic provided by the libraries.
|
|
You can also choose to just stick with Prog8 6.4 (which still targets cx16 v38) and wait it out till
|
|
the emulator v39 is officially released - but you won't be able to benefit from the compiler improvements
|
|
made since the previous release of prog8.
|
|
|
|
|
|
|
|
.. toctree::
|
|
:maxdepth: 2
|
|
:caption: Contents of this manual:
|
|
|
|
building.rst
|
|
programming.rst
|
|
syntaxreference.rst
|
|
libraries.rst
|
|
targetsystem.rst
|
|
technical.rst
|
|
todo.rst
|
|
|
|
|
|
Index
|
|
=====
|
|
|
|
* :ref:`genindex`
|