503 lines
15 KiB
Lua

; Monochrome Bitmap pixel graphics routines for the Virtual Machine
; Using the full-screen 640x480 and 320x240 screen modes, but just black/white.
;
; NOTE: For sake of speed, NO BOUNDS CHECKING is performed in most routines!
; You'll have to make sure yourself that you're not writing outside of bitmap boundaries!
monogfx {
%option ignore_unused
; read-only control variables:
uword width = 0
uword height = 0
ubyte mode
const ubyte MODE_NORMAL = %00000000
const ubyte MODE_STIPPLE = %00000001
const ubyte MODE_INVERT = %00000010
sub lores() {
; enable 320*240 bitmap mode
sys.gfx_enable(0)
width = 320
height = 240
mode = MODE_NORMAL
clear_screen(false)
}
sub hires() {
; enable 640*480 bitmap mode
sys.gfx_enable(1)
width = 640
height = 480
mode = MODE_NORMAL
clear_screen(false)
}
sub textmode() {
; back to normal text mode
}
sub drawmode(ubyte dm) {
mode = dm
}
sub clear_screen(bool draw) {
ubyte color = 0
if draw
color = 255
sys.gfx_clear(color)
}
sub rect(uword xx, uword yy, uword rwidth, uword rheight, bool draw) {
if rwidth==0 or rheight==0
return
horizontal_line(xx, yy, rwidth, draw)
if rheight==1
return
horizontal_line(xx, yy+rheight-1, rwidth, draw)
vertical_line(xx, yy+1, rheight-2, draw)
if rwidth==1
return
vertical_line(xx+rwidth-1, yy+1, rheight-2, draw)
}
sub fillrect(uword xx, uword yy, uword rwidth, uword rheight, bool draw) {
; Draw a filled rectangle of the given size and color.
; To fill the whole screen, use clear_screen(draw) instead - it is much faster.
if rwidth==0
return
repeat rheight {
horizontal_line(xx, yy, rwidth, draw)
yy++
}
}
sub horizontal_line(uword xx, uword yy, uword length, bool draw) {
uword xpos
for xpos in xx to xx+length-1
plot(xpos, yy, draw)
}
sub safe_horizontal_line(uword xx, uword yy, uword length, bool draw) {
; does bounds checking and clipping
if msb(yy)&$80!=0 or yy>=height
return
if msb(xx)&$80!=0 {
length += xx
xx = 0
}
if xx>=width
return
if xx+length>width
length = width-xx
if length>width
return
horizontal_line(xx, yy, length, draw)
}
sub vertical_line(uword xx, uword yy, uword lheight, bool draw) {
uword ypos
for ypos in yy to yy+lheight-1
plot(xx, ypos, draw)
}
sub line(uword @zp x1, uword @zp y1, uword @zp x2, uword @zp y2, bool draw) {
; Bresenham algorithm.
; This code special-cases various quadrant loops to allow simple ++ and -- operations.
if y1>y2 {
; make sure dy is always positive to have only 4 instead of 8 special cases
cx16.r0 = x1
x1 = x2
x2 = cx16.r0
cx16.r0 = y1
y1 = y2
y2 = cx16.r0
}
word @zp dx = (x2 as word)-x1
word @zp dy = (y2 as word)-y1
if dx==0 {
vertical_line(x1, y1, abs(dy) as uword +1, draw)
return
}
if dy==0 {
if x1>x2
x1=x2
horizontal_line(x1, y1, abs(dx) as uword +1, draw)
return
}
word @zp d = 0
cx16.r1L = 1 ; true ; 'positive_ix'
if dx < 0 {
dx = -dx
cx16.r1L = 0 ; false
}
word @zp dx2 = dx*2
word @zp dy2 = dy*2
cx16.r14 = x1 ; internal plot X
if dx >= dy {
if cx16.r1L!=0 {
repeat {
plot(cx16.r14, y1, draw)
if cx16.r14==x2
return
cx16.r14++
d += dy2
if d > dx {
y1++
d -= dx2
}
}
} else {
repeat {
plot(cx16.r14, y1, draw)
if cx16.r14==x2
return
cx16.r14--
d += dy2
if d > dx {
y1++
d -= dx2
}
}
}
}
else {
if cx16.r1L!=0 {
repeat {
plot(cx16.r14, y1, draw)
if y1 == y2
return
y1++
d += dx2
if d > dy {
cx16.r14++
d -= dy2
}
}
} else {
repeat {
plot(cx16.r14, y1, draw)
if y1 == y2
return
y1++
d += dx2
if d > dy {
cx16.r14--
d -= dy2
}
}
}
}
}
sub circle(uword @zp xcenter, uword @zp ycenter, ubyte radius, bool draw) {
; Warning: NO BOUNDS CHECKS. Make sure circle fits in the screen.
; Midpoint algorithm.
if radius==0
return
ubyte @zp xx = radius
ubyte @zp yy = 0
word @zp decisionOver2 = (1 as word)-xx
; R14 = internal plot X
; R15 = internal plot Y
while xx>=yy {
cx16.r14 = xcenter + xx
cx16.r15 = ycenter + yy
plotq()
cx16.r14 = xcenter - xx
plotq()
cx16.r14 = xcenter + xx
cx16.r15 = ycenter - yy
plotq()
cx16.r14 = xcenter - xx
plotq()
cx16.r14 = xcenter + yy
cx16.r15 = ycenter + xx
plotq()
cx16.r14 = xcenter - yy
plotq()
cx16.r14 = xcenter + yy
cx16.r15 = ycenter - xx
plotq()
cx16.r14 = xcenter - yy
plotq()
yy++
if decisionOver2>=0 {
xx--
decisionOver2 -= xx*$0002
}
decisionOver2 += yy*$0002
decisionOver2++
}
sub plotq() {
; cx16.r14 = x, cx16.r15 = y, draw=draw
plot(cx16.r14, cx16.r15, draw)
}
}
sub safe_circle(uword @zp xcenter, uword @zp ycenter, ubyte radius, bool draw) {
; Does bounds checking and clipping.
; Midpoint algorithm.
if radius==0
return
ubyte @zp xx = radius
ubyte @zp yy = 0
word @zp decisionOver2 = (1 as word)-xx
; R14 = internal plot X
; R15 = internal plot Y
while xx>=yy {
cx16.r14 = xcenter + xx
cx16.r15 = ycenter + yy
plotq()
cx16.r14 = xcenter - xx
plotq()
cx16.r14 = xcenter + xx
cx16.r15 = ycenter - yy
plotq()
cx16.r14 = xcenter - xx
plotq()
cx16.r14 = xcenter + yy
cx16.r15 = ycenter + xx
plotq()
cx16.r14 = xcenter - yy
plotq()
cx16.r14 = xcenter + yy
cx16.r15 = ycenter - xx
plotq()
cx16.r14 = xcenter - yy
plotq()
yy++
if decisionOver2>=0 {
xx--
decisionOver2 -= xx*$0002
}
decisionOver2 += yy*$0002
decisionOver2++
}
sub plotq() {
; cx16.r14 = x, cx16.r15 = y, draw=draw
safe_plot(cx16.r14, cx16.r15, draw)
}
}
sub disc(uword @zp xcenter, uword @zp ycenter, ubyte @zp radius, bool draw) {
; Warning: NO BOUNDS CHECKS. Make sure circle fits in the screen.
; Midpoint algorithm, filled
if radius==0
return
ubyte @zp yy = 0
word @zp decisionOver2 = (1 as word)-radius
uword last_y3 = ycenter+radius
uword last_y4 = ycenter-radius
uword new_y3, new_y4
while radius>=yy {
horizontal_line(xcenter-radius, ycenter+yy, radius*$0002+1, draw)
horizontal_line(xcenter-radius, ycenter-yy, radius*$0002+1, draw)
new_y3 = ycenter+radius
if new_y3 != last_y3 {
horizontal_line(xcenter-yy, last_y3, yy*$0002+1, draw)
last_y3 = new_y3
}
new_y4 = ycenter-radius
if new_y4 != last_y4 {
horizontal_line(xcenter-yy, last_y4, yy*$0002+1, draw)
last_y4 = new_y4
}
yy++
if decisionOver2>=0 {
radius--
decisionOver2 -= radius*$0002
}
decisionOver2 += yy*$0002
decisionOver2++
}
; draw the final two spans
yy--
horizontal_line(xcenter-yy, last_y3, yy*$0002+1, draw)
horizontal_line(xcenter-yy, last_y4, yy*$0002+1, draw)
}
sub safe_disc(uword @zp xcenter, uword @zp ycenter, ubyte @zp radius, bool draw) {
; Warning: NO BOUNDS CHECKS. Make sure circle fits in the screen.
; Midpoint algorithm, filled
if radius==0
return
ubyte @zp yy = 0
word @zp decisionOver2 = (1 as word)-radius
uword last_y3 = ycenter+radius
uword last_y4 = ycenter-radius
uword new_y3, new_y4
while radius>=yy {
safe_horizontal_line(xcenter-radius, ycenter+yy, radius*$0002+1, draw)
safe_horizontal_line(xcenter-radius, ycenter-yy, radius*$0002+1, draw)
new_y3 = ycenter+radius
if new_y3 != last_y3 {
safe_horizontal_line(xcenter-yy, last_y3, yy*$0002+1, draw)
last_y3 = new_y3
}
new_y4 = ycenter-radius
if new_y4 != last_y4 {
safe_horizontal_line(xcenter-yy, last_y4, yy*$0002+1, draw)
last_y4 = new_y4
}
yy++
if decisionOver2>=0 {
radius--
decisionOver2 -= radius*$0002
}
decisionOver2 += yy*$0002
decisionOver2++
}
; draw the final two spans
yy--
safe_horizontal_line(xcenter-yy, last_y3, yy*$0002+1, draw)
safe_horizontal_line(xcenter-yy, last_y4, yy*$0002+1, draw)
}
sub plot(uword @zp xx, uword @zp yy, bool @zp draw) {
if draw {
when mode {
MODE_NORMAL -> {
sys.gfx_plot(xx, yy, 255)
}
MODE_STIPPLE -> {
if (xx ^ yy)&1 !=0
sys.gfx_plot(xx, yy, 255)
else
sys.gfx_plot(xx, yy, 0)
}
MODE_INVERT -> {
sys.gfx_plot(xx, yy, 255 ^ sys.gfx_getpixel(xx, yy))
}
}
}
else
sys.gfx_plot(xx, yy, 0)
}
sub safe_plot(uword xx, uword yy, bool draw) {
; A plot that does bounds checks to see if the pixel is inside the screen.
if msb(xx)&$80!=0 or msb(yy)&$80!=0
return
if xx >= width or yy >= height
return
plot(xx, yy, draw)
}
sub pget(uword @zp xx, uword yy) -> bool {
return sys.gfx_getpixel(xx, yy) as bool
}
sub fill(uword x, uword y, bool draw) {
; Non-recursive scanline flood fill.
; based loosely on code found here https://www.codeproject.com/Articles/6017/QuickFill-An-efficient-flood-fill-algorithm
; with the fixes applied to the seedfill_4 routine as mentioned in the comments.
const ubyte MAXDEPTH = 100
word @zp xx = x as word
word @zp yy = y as word
word[MAXDEPTH] @split @shared stack_xl
word[MAXDEPTH] @split @shared stack_xr
word[MAXDEPTH] @split @shared stack_y
byte[MAXDEPTH] @shared stack_dy
cx16.r12L = 0 ; stack pointer
word x1
word x2
byte dy
cx16.r10L = draw as ubyte
sub push_stack(word sxl, word sxr, word sy, byte sdy) {
if cx16.r12L==MAXDEPTH
return
cx16.r0s = sy+sdy
if cx16.r0s>=0 and cx16.r0s<=height-1 {
stack_xl[cx16.r12L] = sxl
stack_xr[cx16.r12L] = sxr
stack_y[cx16.r12L] = sy
stack_dy[cx16.r12L] = sdy
cx16.r12L++
}
}
sub pop_stack() {
cx16.r12L--
x1 = stack_xl[cx16.r12L]
x2 = stack_xr[cx16.r12L]
yy = stack_y[cx16.r12L]
dy = stack_dy[cx16.r12L]
yy+=dy
}
cx16.r11L = pget(xx as uword, yy as uword) as ubyte ; old_color
if cx16.r11L == cx16.r10L
return
if xx<0 or xx>width-1 or yy<0 or yy>height-1
return
push_stack(xx, xx, yy, 1)
push_stack(xx, xx, yy + 1, -1)
word left = 0
while cx16.r12L!=0 {
pop_stack()
xx = x1
while xx >= 0 {
if pget(xx as uword, yy as uword) as ubyte != cx16.r11L
break
plot(xx as uword, yy as uword, cx16.r10L as bool)
xx--
}
if x1==xx
goto skip
left = xx + 1
if left < x1
push_stack(left, x1 - 1, yy, -dy)
xx = x1 + 1
do {
while xx <= width-1 {
if pget(xx as uword, yy as uword) as ubyte != cx16.r11L
break
plot(xx as uword, yy as uword, cx16.r10L as bool)
xx++
}
push_stack(left, xx - 1, yy, dy)
if xx > x2 + 1
push_stack(x2 + 1, xx - 1, yy, -dy)
skip:
xx++
while xx <= x2 {
if pget(xx as uword, yy as uword) as ubyte == cx16.r11L
break
xx++
}
left = xx
} until xx>x2
}
}
sub text_charset(ubyte charset) {
; -- select the text charset to use with the text() routine
; the charset number is the same as for the cx16.screen_set_charset() ROM function.
; 1 = ISO charset, 2 = PETSCII uppercase+graphs, 3= PETSCII uppercase+lowercase.
; TODO vm bitmap charset
}
sub text(uword @zp xx, uword yy, bool draw, str sctextptr) {
; -- Write some text at the given pixel position. The text string must be in screencode encoding (not petscii!).
; You must also have called text_charset() first to select and prepare the character set to use.
; TODO vm bitmap charset
}
}