2024-03-16 18:48:06 +01:00

179 lines
7.3 KiB
Lua

; Somewhat experimental Vera FX support.
; Docs:
; https://github.com/X16Community/x16-docs/blob/master/X16%20Reference%20-%2010%20-%20VERA%20FX%20Reference.md
; https://docs.google.com/document/d/1q34uWOiM3Be2pnaHRVgSdHySI-qsiQWPTo_gfE54PTg
verafx {
%option no_symbol_prefixing, ignore_unused
sub available() -> bool {
; returns true if Vera FX is available (Vera V0.3.1 or later), false if not.
cx16.r1L = 0
cx16.r0L = cx16.VERA_CTRL
cx16.VERA_CTRL = $7e
if cx16.VERA_DC_VER0 == $56 {
; Vera version number is valid.
; Vera fx is available on Vera version 0.3.1 and later,
; so no need to even check VERA_DC_VER1, which contains 0 (or higher)
cx16.r1L = mkword(cx16.VERA_DC_VER2, cx16.VERA_DC_VER3) >= $0301 as ubyte
}
cx16.VERA_CTRL = cx16.r0L
return cx16.r1L as bool
}
sub clear(ubyte vbank, uword vaddr, ubyte data, uword num_longwords) {
; use cached 4-byte write to quickly clear a portion of the video memory to a given byte value
; this routine is around 3 times faster as gfx2.clear_screen()
cx16.VERA_CTRL = 0
cx16.VERA_ADDR_H = vbank | %00110000 ; 4-byte increment
cx16.VERA_ADDR_M = msb(vaddr)
cx16.VERA_ADDR_L = lsb(vaddr)
cx16.VERA_CTRL = 6<<1 ; dcsel = 6, fill the 32 bits cache
cx16.VERA_FX_CACHE_L = data
cx16.VERA_FX_CACHE_M = data
cx16.VERA_FX_CACHE_H = data
cx16.VERA_FX_CACHE_U = data
cx16.VERA_CTRL = 2<<1 ; dcsel = 2
cx16.VERA_FX_MULT = 0
cx16.VERA_FX_CTRL = %01000000 ; cache write enable
if (num_longwords & %1111110000000011) == 0 {
repeat lsb(num_longwords >> 2)
unroll 4 cx16.VERA_DATA0=0 ; write 4*4 bytes at a time, unrolled
}
else if (num_longwords & %1111111000000001) == 0 {
repeat lsb(num_longwords >> 1)
unroll 2 cx16.VERA_DATA0=0 ; write 2*4 bytes at a time, unrolled
}
else if (lsb(num_longwords) & 3) == 0 {
repeat num_longwords >> 2
unroll 4 cx16.VERA_DATA0=0 ; write 4*4 bytes at a time, unrolled
}
else if (lsb(num_longwords) & 1) == 0 {
repeat num_longwords >> 1
unroll 2 cx16.VERA_DATA0=0 ; write 2*4 bytes at a time, unrolled
}
else {
repeat num_longwords
cx16.VERA_DATA0=0 ; write 4 bytes at a time
}
cx16.VERA_FX_CTRL = 0 ; cache write disable
cx16.VERA_CTRL = 0
}
sub copy(ubyte srcbank, uword srcaddr, ubyte tgtbank, uword tgtaddr, uword num_longwords) {
; use cached 4-byte writes to quickly copy a portion of the video memory to somewhere else
; this routine is about 50% faster as a plain byte-by-byte copy
cx16.VERA_CTRL = 1
cx16.VERA_ADDR_H = srcbank | %00010000 ; source: 1-byte increment
cx16.VERA_ADDR_M = msb(srcaddr)
cx16.VERA_ADDR_L = lsb(srcaddr)
cx16.VERA_CTRL = 0
cx16.VERA_ADDR_H = tgtbank | %00110000 ; target: 4-byte increment
cx16.VERA_ADDR_M = msb(tgtaddr)
cx16.VERA_ADDR_L = lsb(tgtaddr)
cx16.VERA_CTRL = 2<<1 ; dcsel = 2
cx16.VERA_FX_MULT = 0
cx16.VERA_FX_CTRL = %01100000 ; cache write enable + cache fill enable
cx16.r0 = num_longwords
if (cx16.r0L & 1) == 0 {
repeat cx16.r0>>1 {
%asm {{
lda cx16.VERA_DATA1 ; fill cache with 4 source bytes...
lda cx16.VERA_DATA1
lda cx16.VERA_DATA1
lda cx16.VERA_DATA1
stz cx16.VERA_DATA0 ; write 4 bytes at once.
lda cx16.VERA_DATA1 ; fill cache with 4 source bytes...
lda cx16.VERA_DATA1
lda cx16.VERA_DATA1
lda cx16.VERA_DATA1
stz cx16.VERA_DATA0 ; write 4 bytes at once.
}}
}
} else {
repeat cx16.r0 {
%asm {{
lda cx16.VERA_DATA1 ; fill cache with 4 source bytes...
lda cx16.VERA_DATA1
lda cx16.VERA_DATA1
lda cx16.VERA_DATA1
stz cx16.VERA_DATA0 ; write 4 bytes at once.
}}
}
}
cx16.VERA_FX_CTRL = 0 ; cache write disable
cx16.VERA_CTRL = 0
}
; unsigned multiplication just passes the values as signed to muls
; if you do this yourself in your call to muls, it will save a few instructions.
sub mult(uword value1, uword value2) -> uword {
; Returns the lower 16 bits of the 32 bits result,
; the upper 16 bits are stored in cx16.r0 so you can access those separately.
; It's not part of the subroutine's signature to avoid awkward use of multiple returnvalues.
return muls(value1 as word, value2 as word) as uword
}
asmsub muls(word value1 @R0, word value2 @R1) clobbers(X) -> word @AY {
; Returns the lower 16 bits of the 32 bits result in AY,
; the upper 16 bits are stored in cx16.r0 so you can access those separately.
; It's not part of the subroutine's signature to avoid awkward use of multiple returnvalues.
%asm {{
lda #(2 << 1)
sta cx16.VERA_CTRL ; $9F25
stz cx16.VERA_FX_CTRL ; $9F29 (mainly to reset Addr1 Mode to 0)
lda #%00010000
sta cx16.VERA_FX_MULT ; $9F2C
lda #(6 << 1)
sta cx16.VERA_CTRL ; $9F25
lda cx16.r0
ldy cx16.r0+1
sta cx16.VERA_FX_CACHE_L ; $9F29
sty cx16.VERA_FX_CACHE_M ; $9F2A
lda cx16.r1
ldy cx16.r1+1
sta cx16.VERA_FX_CACHE_H ; $9F2B
sty cx16.VERA_FX_CACHE_U ; $9F2C
lda cx16.VERA_FX_ACCUM_RESET ; $9F29 (DCSEL=6)
; Set the ADDR0 pointer to $1f9bc and write our multiplication result there
; (these are the 4 bytes just before the PSG registers start)
lda #(2 << 1)
sta cx16.VERA_CTRL
lda #%01000000 ; Cache Write Enable
sta cx16.VERA_FX_CTRL
lda #$bc
sta cx16.VERA_ADDR_L
lda #$f9
sta cx16.VERA_ADDR_M
lda #$01
sta cx16.VERA_ADDR_H ; no increment
stz cx16.VERA_DATA0 ; multiply and write out result
lda #%00010001 ; $01 with Increment 1
sta cx16.VERA_ADDR_H ; so we can read out the result
lda cx16.VERA_DATA0
ldy cx16.VERA_DATA0
ldx cx16.VERA_DATA0 ; store the upper 16 bits of the result in r0
stx cx16.r0
ldx cx16.VERA_DATA0
stx cx16.r0+1
stz cx16.VERA_FX_CTRL ; Cache write disable
stz cx16.VERA_CTRL ; reset DCSEL
rts
}}
}
sub transparency(bool enable) {
cx16.VERA_CTRL = 2<<1 ; dcsel = 2
if enable
cx16.VERA_FX_CTRL |= %10000000
else
cx16.VERA_FX_CTRL &= %01111111
cx16.VERA_CTRL = 0
}
}