#!/usr/bin/env python3 from math import sqrt, sin, cos, acos, pi # Graph is plotted across the entire HGR screen, but only coordinates # - in the left half of the screen, AND # - on even rows, AND # - on even columns # are included. It is assumed that the graph is symmetrical across # the left and half sides of the screen (along an axis at X=140). # # X coordinates are converted to byte+bitmask (but see notes below). # Y coordinates are incremented by 1 so that 0 can terminate the loop. # # 6502 code will be responsible for plotting each of these coordinates # in a 2x2 block. The bitmask usually includes 2 adjacent pixels; # the code will also plot the same 2 adjacent pixels in the adjacent row, # AND mirror both of those plots in the right half of the screen. # # Unfortunately, since bytes are 7 bits across, some blocks will cross a # byte boundary. To simplify the 6502 code, those are simply listed as # separate coordinate pairs, each with a bitmask that includes 1 pixel # instead of 2. max_x = 280 max_y = 192 def f(t, k): r = k/cos(0.4*acos(sin(2.5*(t+pi/2)))) return r*cos(t),r*sin(t) coords = [] for k_mul in range(1000): for t_mul in range(int(pi*1000+1)): a, b = f(float(t_mul/100), float(k_mul)/10.0) x = round(max_x//2+a*1.2) y = round(max_y//2+b) if (x % 2 != 0) or (y % 2 != 0): continue if x < 0 or x >= max_x//2 or y < 0 or y >= max_y: continue coords.append((x,y)) d = {} unique_coords = [] for c in coords: if not d.get(c): unique_coords.append(c) d[c] = 1 unique_vals = [] even_byte_bitmask = (0, 0, 1, 1, 2, 2, 3) odd_byte_bitmask = (5, 5, 6, 6, 7, 7, 4) for x, y in unique_coords: y = y + 1 aval = "$" + hex(y)[2:].rjust(2, "0").upper() byte = x//7 if byte % 2 == 0: # high 3 bits are 0-3, low 5 bits are 0-39 bval = "%" + bin(even_byte_bitmask[x % 7])[2:].rjust(3, "0") + bin(byte)[2:].rjust(5, "0") unique_vals.append((aval, bval)) if x % 7 == 6: # this 2x2 block will be split across bytes, so add an extra coordinate pair with the adjacent byte and high 3 bits = 4 bval = "%100" + bin(byte+1)[2:].rjust(5, "0") + ";" unique_vals.append((aval, bval)) else: # high 3 bits are 5-7 or 4, low 5 bits are 0-39 bval = "%" + bin(odd_byte_bitmask[x % 7])[2:].rjust(3, "0") + bin(byte)[2:].rjust(5, "0") unique_vals.append((aval, bval)) if x % 7 == 6: # this 2x2 block will be split across bytes, so add an extra coordinate pair with the adjacent byte and high 3 bits = 3 bval = "%011" + bin(byte+1)[2:].rjust(5, "0") + ";" unique_vals.append((aval, bval)) with open("../../../src/fx/fx.hgr.star.data.a", "w") as f: for aval, bval in unique_vals: f.write(" !byte %s,%s\n" % (aval, bval)) ripple_vals = [] for i, j, k, l in zip(range(1920), range(1920,3840), range(3840,5760), range(5760,7680)): ripple_vals.append(unique_vals[i]) ripple_vals.append(unique_vals[j]) ripple_vals.append(unique_vals[k]) ripple_vals.append(unique_vals[l]) with open("../../../src/fx/fx.hgr.star.ripple.data.a", "w") as f: for aval, bval in ripple_vals: f.write(" !byte %s,%s\n" % (aval, bval)) unique_vals.reverse() with open("../../../src/fx/fx.hgr.star.in.data.a", "w") as f: for aval, bval in unique_vals: f.write(" !byte %s,%s\n" % (aval, bval))