/* AppleWin : An Apple //e emulator for Windows Copyright (C) 1994-1996, Michael O'Brien Copyright (C) 1999-2001, Oliver Schmidt Copyright (C) 2002-2005, Tom Charlesworth Copyright (C) 2006-2007, Tom Charlesworth, Michael Pohoreski AppleWin is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. AppleWin is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with AppleWin; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ /* Description: Mockingboard/Phasor emulation * * Author: Copyright (c) 2002-2006, Tom Charlesworth */ // History: // // v1.12.07.1 (30 Dec 2005) // - Update 6522 TIMERs after every 6502 opcode, giving more precise IRQs // - Minimum TIMER freq is now 0x100 cycles // - Added Phasor support // // v1.12.06.1 (16 July 2005) // - Reworked 6522's ORB -> AY8910 decoder // - Changed MB output so L=All voices from AY0 & AY2 & R=All voices from AY1 & AY3 // - Added crude support for Votrax speech chip (by using SSI263 phonemes) // // v1.12.04.1 (14 Sep 2004) // - Switch MB output from dual-mono to stereo. // - Relaxed TIMER1 freq from ~62Hz (period=0x4000) to ~83Hz (period=0x3000). // // 25 Apr 2004: // - Added basic support for the SSI263 speech chip // // 15 Mar 2004: // - Switched to MAME's AY8910 emulation (includes envelope support) // // v1.12.03 (11 Jan 2004) // - For free-running 6522 timer1 IRQ, reload with current ACCESS_TIMER1 value. // (Fixes Ultima 4/5 playback speed problem.) // // v1.12.01 (24 Nov 2002) // - Shaped the tone waveform more logarithmically // - Added support for MB ena/dis switch on Config dialog // - Added log file support // // v1.12.00 (17 Nov 2002) // - Initial version (no AY8910 envelope support) // // Notes on Votrax chip (on original Mockingboards): // From Crimewave (Penguin Software): // . Init: // . DDRB = 0xFF // . PCR = 0xB0 // . IER = 0x90 // . ORB = 0x03 (PAUSE0) or 0x3F (STOP) // . IRQ: // . ORB = Phoneme value // . IRQ last phoneme complete: // . IER = 0x10 // . ORB = 0x3F (STOP) // #include "StdAfx.h" #include "SaveState_Structs_v1.h" #include "Applewin.h" #include "CPU.h" #include "Log.h" #include "Memory.h" #include "Mockingboard.h" #include "SoundCore.h" #include "YamlHelper.h" #include "AY8910.h" #include "SSI263Phonemes.h" #define LOG_SSI263 0 #define SY6522_DEVICE_A 0 #define SY6522_DEVICE_B 1 #define SLOT4 4 #define SLOT5 5 #define NUM_MB 2 #define NUM_DEVS_PER_MB 2 #define NUM_AY8910 (NUM_MB*NUM_DEVS_PER_MB) #define NUM_SY6522 NUM_AY8910 #define NUM_VOICES_PER_AY8910 3 #define NUM_VOICES (NUM_AY8910*NUM_VOICES_PER_AY8910) // Chip offsets from card base. #define SY6522A_Offset 0x00 #define SY6522B_Offset 0x80 #define SSI263_Offset 0x40 #define Phasor_SY6522A_CS 4 #define Phasor_SY6522B_CS 7 #define Phasor_SY6522A_Offset (1<bTimer1Active = true; // 6522 CLK runs at same speed as 6502 CLK g_n6522TimerPeriod = pMB->sy6522.TIMER1_LATCH.w; if (pMB->sy6522.IER & IxR_TIMER1) // Using 6522 interrupt g_nMBTimerDevice = pMB->nAY8910Number; else if (pMB->sy6522.ACR & RM_FREERUNNING) // Polling 6522 IFR (GH#496) g_nMBTimerDevice = pMB->nAY8910Number; } // The assumption was that timer1 was only active if IER.TIMER1=1 // . Not true, since IFR can be polled (with IER.TIMER1=0) static void StartTimer1_LoadStateV1(SY6522_AY8910* pMB) { if ((pMB->sy6522.IER & IxR_TIMER1) == 0x00) return; pMB->bTimer1Active = true; // 6522 CLK runs at same speed as 6502 CLK g_n6522TimerPeriod = pMB->sy6522.TIMER1_LATCH.w; g_nMBTimerDevice = pMB->nAY8910Number; } static void StopTimer1(SY6522_AY8910* pMB) { pMB->bTimer1Active = false; g_nMBTimerDevice = kTIMERDEVICE_INVALID; } //----------------------------------------------------------------------------- static void StartTimer2(SY6522_AY8910* pMB) { pMB->bTimer2Active = true; // NB. Can't mimic StartTimer1() as that would stomp on global state // TODO: Switch to per-device state } static void StopTimer2(SY6522_AY8910* pMB) { pMB->bTimer2Active = false; } //----------------------------------------------------------------------------- static void ResetSY6522(SY6522_AY8910* pMB) { memset(&pMB->sy6522,0,sizeof(SY6522)); StopTimer1(pMB); StopTimer2(pMB); pMB->nAYCurrentRegister = 0; pMB->state = AY_INACTIVE; } //----------------------------------------------------------------------------- static void AY8910_Write(BYTE nDevice, BYTE nReg, BYTE nValue, BYTE nAYDevice) { g_bMB_RegAccessedFlag = true; SY6522_AY8910* pMB = &g_MB[nDevice]; if ((nValue & 4) == 0) { // RESET: Reset AY8910 only AY8910_reset(nDevice+2*nAYDevice); } else { // Determine the AY8910 inputs int nBDIR = (nValue & 2) ? 1 : 0; const int nBC2 = 1; // Hardwired to +5V int nBC1 = nValue & 1; MockingboardUnitState_e nAYFunc = (MockingboardUnitState_e) ((nBDIR<<2) | (nBC2<<1) | nBC1); if (pMB->state == AY_INACTIVE) // GH#320: functions only work from inactive state { switch (nAYFunc) { case AY_INACTIVE: // 4: INACTIVE break; case AY_READ: // 5: READ FROM PSG (need to set DDRA to input) break; case AY_WRITE: // 6: WRITE TO PSG _AYWriteReg(nDevice+2*nAYDevice, pMB->nAYCurrentRegister, pMB->sy6522.ORA); break; case AY_LATCH: // 7: LATCH ADDRESS // http://www.worldofspectrum.org/forums/showthread.php?t=23327 // Selecting an unused register number above 0x0f puts the AY into a state where // any values written to the data/address bus are ignored, but can be read back // within a few tens of thousands of cycles before they decay to zero. if(pMB->sy6522.ORA <= 0x0F) pMB->nAYCurrentRegister = pMB->sy6522.ORA & 0x0F; // else Pro-Mockingboard (clone from HK) break; } } pMB->state = nAYFunc; } } static void UpdateIFR(SY6522_AY8910* pMB, BYTE clr_ifr, BYTE set_ifr=0) { // Need critical section to avoid data-race: main thread & SSI263Thread can both access IFR // . NB. Loading a save-state just directly writes into 6522.IFR (which is fine) _ASSERT(g_bCritSectionValid); if (g_bCritSectionValid) EnterCriticalSection(&g_CriticalSection); { pMB->sy6522.IFR &= ~clr_ifr; pMB->sy6522.IFR |= set_ifr; if (pMB->sy6522.IFR & pMB->sy6522.IER & 0x7F) pMB->sy6522.IFR |= 0x80; else pMB->sy6522.IFR &= 0x7F; } if (g_bCritSectionValid) LeaveCriticalSection(&g_CriticalSection); // Now update the IRQ signal from all 6522s // . OR-sum of all active TIMER1, TIMER2 & SPEECH sources (from all 6522s) UINT bIRQ = 0; for (UINT i=0; isy6522.DDRB; pMB->sy6522.ORB = nValue; if( (pMB->sy6522.DDRB == 0xFF) && (pMB->sy6522.PCR == 0xB0) ) { // Votrax speech data Votrax_Write(nDevice, nValue); break; } if (g_waitFirstAYWriteAfterTimer1Int) // GH#685: Multiple TIMER1 interrupts { g_waitFirstAYWriteAfterTimer1Int = false; //CpuCalcCycles(uExecutedCycles); // Done in parent MB_Write() via MB_UpdateCycles() g_AYWriteAccessTimer1IntPeriod = g_nCumulativeCycles - g_lastAY8910cycleAccess; if (g_AYWriteAccessTimer1IntPeriod > 0xffff) g_AYWriteAccessTimer1IntPeriod = (UINT64)g_f6522TimerPeriod_NoIRQ; g_lastAY8910cycleAccess = g_nCumulativeCycles; MB_Update(); } if(g_bPhasorEnable) { int nAY_CS = (g_nPhasorMode & 1) ? (~(nValue >> 3) & 3) : 1; if(nAY_CS & 1) AY8910_Write(nDevice, nReg, nValue, 0); if(nAY_CS & 2) AY8910_Write(nDevice, nReg, nValue, 1); } else { AY8910_Write(nDevice, nReg, nValue, 0); } break; } case 0x01: // ORA pMB->sy6522.ORA = nValue & pMB->sy6522.DDRA; break; case 0x02: // DDRB pMB->sy6522.DDRB = nValue; break; case 0x03: // DDRA pMB->sy6522.DDRA = nValue; break; case 0x04: // TIMER1L_COUNTER case 0x06: // TIMER1L_LATCH pMB->sy6522.TIMER1_LATCH.l = nValue; break; case 0x05: // TIMER1H_COUNTER /* Initiates timer1 & clears time-out of timer1 */ // Clear Timer Interrupt Flag. UpdateIFR(pMB, IxR_TIMER1); pMB->sy6522.TIMER1_LATCH.h = nValue; pMB->sy6522.TIMER1_COUNTER.w = pMB->sy6522.TIMER1_LATCH.w; StartTimer1(pMB); CpuAdjustIrqCheck(pMB->sy6522.TIMER1_LATCH.w); // Sync IRQ check timeout with 6522 counter underflow - GH#608 break; case 0x07: // TIMER1H_LATCH // Clear Timer1 Interrupt Flag. UpdateIFR(pMB, IxR_TIMER1); pMB->sy6522.TIMER1_LATCH.h = nValue; break; case 0x08: // TIMER2L pMB->sy6522.TIMER2_LATCH.l = nValue; break; case 0x09: // TIMER2H // Clear Timer2 Interrupt Flag. UpdateIFR(pMB, IxR_TIMER2); pMB->sy6522.TIMER2_LATCH.h = nValue; pMB->sy6522.TIMER2_COUNTER.w = pMB->sy6522.TIMER2_LATCH.w; StartTimer2(pMB); CpuAdjustIrqCheck(pMB->sy6522.TIMER2_LATCH.w); // Sync IRQ check timeout with 6522 counter underflow - GH#608 break; case 0x0a: // SERIAL_SHIFT break; case 0x0b: // ACR pMB->sy6522.ACR = nValue; break; case 0x0c: // PCR - Used for Speech chip only pMB->sy6522.PCR = nValue; break; case 0x0d: // IFR // - Clear those bits which are set in the lower 7 bits. // - Can't clear bit 7 directly. UpdateIFR(pMB, nValue); break; case 0x0e: // IER if(!(nValue & 0x80)) { // Clear those bits which are set in the lower 7 bits. nValue ^= 0x7F; pMB->sy6522.IER &= nValue; UpdateIFR(pMB, 0); // Check if active timer has been disabled: if (((pMB->sy6522.IER & IxR_TIMER1) == 0) && pMB->bTimer1Active) StopTimer1(pMB); if (((pMB->sy6522.IER & IxR_TIMER2) == 0) && pMB->bTimer2Active) StopTimer2(pMB); } else { // Set those bits which are set in the lower 7 bits. nValue &= 0x7F; pMB->sy6522.IER |= nValue; UpdateIFR(pMB, 0); // Check if a timer interrupt has been enabled (regardless of if there's an active timer or not): GH#567 if (pMB->sy6522.IER & IxR_TIMER1) StartTimer1(pMB); if (pMB->sy6522.IER & IxR_TIMER2) StartTimer2(pMB); } break; case 0x0f: // ORA_NO_HS break; } } //----------------------------------------------------------------------------- static BYTE SY6522_Read(BYTE nDevice, BYTE nReg) { // g_bMB_RegAccessedFlag = true; g_bMB_Active = true; SY6522_AY8910* pMB = &g_MB[nDevice]; BYTE nValue = 0x00; switch (nReg) { case 0x00: // ORB nValue = pMB->sy6522.ORB; break; case 0x01: // ORA nValue = pMB->sy6522.ORA; break; case 0x02: // DDRB nValue = pMB->sy6522.DDRB; break; case 0x03: // DDRA nValue = pMB->sy6522.DDRA; break; case 0x04: // TIMER1L_COUNTER nValue = pMB->sy6522.TIMER1_COUNTER.l; UpdateIFR(pMB, IxR_TIMER1); break; case 0x05: // TIMER1H_COUNTER nValue = pMB->sy6522.TIMER1_COUNTER.h; break; case 0x06: // TIMER1L_LATCH nValue = pMB->sy6522.TIMER1_LATCH.l; break; case 0x07: // TIMER1H_LATCH nValue = pMB->sy6522.TIMER1_LATCH.h; break; case 0x08: // TIMER2L nValue = pMB->sy6522.TIMER2_COUNTER.l; UpdateIFR(pMB, IxR_TIMER2); break; case 0x09: // TIMER2H nValue = pMB->sy6522.TIMER2_COUNTER.h; break; case 0x0a: // SERIAL_SHIFT break; case 0x0b: // ACR nValue = pMB->sy6522.ACR; break; case 0x0c: // PCR nValue = pMB->sy6522.PCR; break; case 0x0d: // IFR nValue = pMB->sy6522.IFR; break; case 0x0e: // IER nValue = 0x80 | pMB->sy6522.IER; // GH#567 break; case 0x0f: // ORA_NO_HS nValue = pMB->sy6522.ORA; break; } return nValue; } //--------------------------------------------------------------------------- void SSI263_Play(unsigned int nPhoneme); #if 0 typedef struct { BYTE DurationPhoneme; BYTE Inflection; // I10..I3 BYTE RateInflection; BYTE CtrlArtAmp; BYTE FilterFreq; // BYTE CurrentMode; } SSI263A; #endif //static SSI263A nSpeechChip; // Duration/Phonome const BYTE DURATION_MODE_MASK = 0xC0; const BYTE PHONEME_MASK = 0x3F; const BYTE MODE_PHONEME_TRANSITIONED_INFLECTION = 0xC0; // IRQ active const BYTE MODE_PHONEME_IMMEDIATE_INFLECTION = 0x80; // IRQ active const BYTE MODE_FRAME_IMMEDIATE_INFLECTION = 0x40; // IRQ active const BYTE MODE_IRQ_DISABLED = 0x00; // Rate/Inflection const BYTE RATE_MASK = 0xF0; const BYTE INFLECTION_MASK_H = 0x08; // I11 const BYTE INFLECTION_MASK_L = 0x07; // I2..I0 // Ctrl/Art/Amp const BYTE CONTROL_MASK = 0x80; const BYTE ARTICULATION_MASK = 0x70; const BYTE AMPLITUDE_MASK = 0x0F; static BYTE SSI263_Read(BYTE nDevice, BYTE nReg) { SY6522_AY8910* pMB = &g_MB[nDevice]; // Regardless of register, just return inverted A/!R in bit7 // . A/!R is low for IRQ return pMB->SpeechChip.CurrentMode << 7; } static void SSI263_Write(BYTE nDevice, BYTE nReg, BYTE nValue) { SY6522_AY8910* pMB = &g_MB[nDevice]; switch(nReg) { case SSI_DURPHON: #if LOG_SSI263 if(g_fh) fprintf(g_fh, "DUR = 0x%02X, PHON = 0x%02X\n\n", nValue>>6, nValue&PHONEME_MASK); #endif // Datasheet is not clear, but a write to DURPHON must clear the IRQ if(g_bPhasorEnable) { CpuIrqDeassert(IS_SPEECH); } else { UpdateIFR(pMB, IxR_PERIPHERAL); } pMB->SpeechChip.CurrentMode &= ~1; // Clear SSI263's D7 pin pMB->SpeechChip.DurationPhoneme = nValue; g_nSSI263Device = nDevice; // Phoneme output not dependent on CONTROL bit if(g_bPhasorEnable) { if(nValue || (g_nCurrentActivePhoneme<0)) SSI263_Play(nValue & PHONEME_MASK); } else { SSI263_Play(nValue & PHONEME_MASK); } break; case SSI_INFLECT: #if LOG_SSI263 if(g_fh) fprintf(g_fh, "INF = 0x%02X\n", nValue); #endif pMB->SpeechChip.Inflection = nValue; break; case SSI_RATEINF: #if LOG_SSI263 if(g_fh) fprintf(g_fh, "RATE = 0x%02X, INF = 0x%02X\n", nValue>>4, nValue&0x0F); #endif pMB->SpeechChip.RateInflection = nValue; break; case SSI_CTTRAMP: #if LOG_SSI263 if(g_fh) fprintf(g_fh, "CTRL = %d, ART = 0x%02X, AMP=0x%02X\n", nValue>>7, (nValue&ARTICULATION_MASK)>>4, nValue&LITUDE_MASK); #endif if((pMB->SpeechChip.CtrlArtAmp & CONTROL_MASK) && !(nValue & CONTROL_MASK)) // H->L pMB->SpeechChip.CurrentMode = pMB->SpeechChip.DurationPhoneme & DURATION_MODE_MASK; pMB->SpeechChip.CtrlArtAmp = nValue; break; case SSI_FILFREQ: #if LOG_SSI263 if(g_fh) fprintf(g_fh, "FFREQ = 0x%02X\n", nValue); #endif pMB->SpeechChip.FilterFreq = nValue; break; default: break; } } //------------------------------------- static BYTE Votrax2SSI263[64] = { 0x02, // 00: EH3 jackEt -> E1 bEnt 0x0A, // 01: EH2 Enlist -> EH nEst 0x0B, // 02: EH1 hEAvy -> EH1 bElt 0x00, // 03: PA0 no sound -> PA 0x28, // 04: DT buTTer -> T Tart 0x08, // 05: A2 mAde -> A mAde 0x08, // 06: A1 mAde -> A mAde 0x2F, // 07: ZH aZure -> Z Zero 0x0E, // 08: AH2 hOnest -> AH gOt 0x07, // 09: I3 inhibIt -> I sIx 0x07, // 0A: I2 Inhibit -> I sIx 0x07, // 0B: I1 inhIbit -> I sIx 0x37, // 0C: M Mat -> More 0x38, // 0D: N suN -> N NiNe 0x24, // 0E: B Bag -> B Bag 0x33, // 0F: V Van -> V Very // 0x32, // 10: CH* CHip -> SCH SHip (!) 0x32, // 11: SH SHop -> SCH SHip 0x2F, // 12: Z Zoo -> Z Zero 0x10, // 13: AW1 lAWful -> AW Office 0x39, // 14: NG thiNG -> NG raNG 0x0F, // 15: AH1 fAther -> AH1 fAther 0x13, // 16: OO1 lOOking -> OO lOOk 0x13, // 17: OO bOOK -> OO lOOk 0x20, // 18: L Land -> L Lift 0x29, // 19: K triCK -> Kit 0x25, // 1A: J* juDGe -> D paiD (!) 0x2C, // 1B: H Hello -> HF Heart 0x26, // 1C: G Get -> KV taG 0x34, // 1D: F Fast -> F Four 0x25, // 1E: D paiD -> D paiD 0x30, // 1F: S paSS -> S Same // 0x08, // 20: A dAY -> A mAde 0x09, // 21: AY dAY -> AI cAre 0x03, // 22: Y1 Yard -> YI Year 0x1B, // 23: UH3 missIOn -> UH3 nUt 0x0E, // 24: AH mOp -> AH gOt 0x27, // 25: P Past -> P Pen 0x11, // 26: O cOld -> O stOre 0x07, // 27: I pIn -> I sIx 0x16, // 28: U mOve -> U tUne 0x05, // 29: Y anY -> AY plEAse 0x28, // 2A: T Tap -> T Tart 0x1D, // 2B: R Red -> R Roof 0x01, // 2C: E mEEt -> E mEEt 0x23, // 2D: W Win -> W Water 0x0C, // 2E: AE dAd -> AE dAd 0x0D, // 2F: AE1 After -> AE1 After // 0x10, // 30: AW2 sAlty -> AW Office 0x1A, // 31: UH2 About -> UH2 whAt 0x19, // 32: UH1 Uncle -> UH1 lOve 0x18, // 33: UH cUp -> UH wOnder 0x11, // 34: O2 fOr -> O stOre 0x11, // 35: O1 abOArd -> O stOre 0x14, // 36: IU yOU -> IU yOU 0x14, // 37: U1 yOU -> IU yOU 0x35, // 38: THV THe -> THV THere 0x36, // 39: TH THin -> TH wiTH 0x1C, // 3A: ER bIrd -> ER bIrd 0x0A, // 3B: EH gEt -> EH nEst 0x01, // 3C: E1 bE -> E mEEt 0x10, // 3D: AW cAll -> AW Office 0x00, // 3E: PA1 no sound -> PA 0x00, // 3F: STOP no sound -> PA }; static void Votrax_Write(BYTE nDevice, BYTE nValue) { g_bVotraxPhoneme = true; // !A/R: Acknowledge receipt of phoneme data (signal goes from high to low) SY6522_AY8910* pMB = &g_MB[nDevice]; UpdateIFR(pMB, IxR_VOTRAX); g_nSSI263Device = nDevice; SSI263_Play(Votrax2SSI263[nValue & PHONEME_MASK]); } //=========================================================================== // Called by: // . MB_UpdateCycles() - when g_nMBTimerDevice == {0,1,2,3} // . MB_EndOfVideoFrame() - when g_nMBTimerDevice == kTIMERDEVICE_INVALID // . SY6522_Write() - when multiple TIMER1s (interrupt sources) are active static void MB_Update(void) { //char szDbg[200]; if (!MockingboardVoice.bActive) return; if (g_bFullSpeed) { // Keep AY reg writes relative to the current 'frame' // - Required for Ultima3: // . Tune ends // . g_bFullSpeed:=true (disk-spinning) for ~50 frames // . U3 sets AY_ENABLE:=0xFF (as a side-effect, this sets g_bFullSpeed:=false) // o Without this, the write to AY_ENABLE gets ignored (since AY8910's /g_uLastCumulativeCycles/ was last set 50 frame ago) AY8910UpdateSetCycles(); // TODO: // If any AY regs have changed then push them out to the AY chip return; } // if (!g_bMB_RegAccessedFlag) { if(!g_nMB_InActiveCycleCount) { g_nMB_InActiveCycleCount = g_nCumulativeCycles; } else if(g_nCumulativeCycles - g_nMB_InActiveCycleCount > (unsigned __int64)g_fCurrentCLK6502/10) { // After 0.1 sec of Apple time, assume MB is not active g_bMB_Active = false; } } else { g_nMB_InActiveCycleCount = 0; g_bMB_RegAccessedFlag = false; g_bMB_Active = true; } // static DWORD dwByteOffset = (DWORD)-1; static int nNumSamplesError = 0; const double n6522TimerPeriod = MB_GetFramePeriod(); const double nIrqFreq = g_fCurrentCLK6502 / n6522TimerPeriod + 0.5; // Round-up const int nNumSamplesPerPeriod = (int) ((double)SAMPLE_RATE / nIrqFreq); // Eg. For 60Hz this is 735 int nNumSamples = nNumSamplesPerPeriod + nNumSamplesError; // Apply correction if(nNumSamples <= 0) nNumSamples = 0; if(nNumSamples > 2*nNumSamplesPerPeriod) nNumSamples = 2*nNumSamplesPerPeriod; if(nNumSamples) for(int nChip=0; nChipGetCurrentPosition(&dwCurrentPlayCursor, &dwCurrentWriteCursor); if(FAILED(hr)) return; if(dwByteOffset == (DWORD)-1) { // First time in this func dwByteOffset = dwCurrentWriteCursor; } else { // Check that our offset isn't between Play & Write positions if(dwCurrentWriteCursor > dwCurrentPlayCursor) { // |-----PxxxxxW-----| if((dwByteOffset > dwCurrentPlayCursor) && (dwByteOffset < dwCurrentWriteCursor)) { double fTicksSecs = (double)GetTickCount() / 1000.0; //sprintf(szDbg, "%010.3f: [MBUpdt] PC=%08X, WC=%08X, Diff=%08X, Off=%08X, NS=%08X xxx\n", fTicksSecs, dwCurrentPlayCursor, dwCurrentWriteCursor, dwCurrentWriteCursor-dwCurrentPlayCursor, dwByteOffset, nNumSamples); //OutputDebugString(szDbg); //if (g_fh) fprintf(g_fh, "%s", szDbg); dwByteOffset = dwCurrentWriteCursor; } } else { // |xxW----------Pxxx| if((dwByteOffset > dwCurrentPlayCursor) || (dwByteOffset < dwCurrentWriteCursor)) { double fTicksSecs = (double)GetTickCount() / 1000.0; //sprintf(szDbg, "%010.3f: [MBUpdt] PC=%08X, WC=%08X, Diff=%08X, Off=%08X, NS=%08X XXX\n", fTicksSecs, dwCurrentPlayCursor, dwCurrentWriteCursor, dwCurrentWriteCursor-dwCurrentPlayCursor, dwByteOffset, nNumSamples); //OutputDebugString(szDbg); //if (g_fh) fprintf(g_fh, "%s", szDbg); dwByteOffset = dwCurrentWriteCursor; } } } int nBytesRemaining = dwByteOffset - dwCurrentPlayCursor; if(nBytesRemaining < 0) nBytesRemaining += g_dwDSBufferSize; // Calc correction factor so that play-buffer doesn't under/overflow const int nErrorInc = SoundCore_GetErrorInc(); if(nBytesRemaining < g_dwDSBufferSize / 4) nNumSamplesError += nErrorInc; // < 0.25 of buffer remaining else if(nBytesRemaining > g_dwDSBufferSize / 2) nNumSamplesError -= nErrorInc; // > 0.50 of buffer remaining else nNumSamplesError = 0; // Acceptable amount of data in buffer if(nNumSamples == 0) return; // const double fAttenuation = g_bPhasorEnable ? 2.0/3.0 : 1.0; for(int i=0; i nWaveDataMax) nDataL = nWaveDataMax; if(nDataR < nWaveDataMin) nDataR = nWaveDataMin; else if(nDataR > nWaveDataMax) nDataR = nWaveDataMax; g_nMixBuffer[i*g_nMB_NumChannels+0] = (short)nDataL; // L g_nMixBuffer[i*g_nMB_NumChannels+1] = (short)nDataR; // R } // if(!DSGetLock(MockingboardVoice.lpDSBvoice, dwByteOffset, (DWORD)nNumSamples*sizeof(short)*g_nMB_NumChannels, &pDSLockedBuffer0, &dwDSLockedBufferSize0, &pDSLockedBuffer1, &dwDSLockedBufferSize1)) return; memcpy(pDSLockedBuffer0, &g_nMixBuffer[0], dwDSLockedBufferSize0); if(pDSLockedBuffer1) memcpy(pDSLockedBuffer1, &g_nMixBuffer[dwDSLockedBufferSize0/sizeof(short)], dwDSLockedBufferSize1); // Commit sound buffer hr = MockingboardVoice.lpDSBvoice->Unlock((void*)pDSLockedBuffer0, dwDSLockedBufferSize0, (void*)pDSLockedBuffer1, dwDSLockedBufferSize1); dwByteOffset = (dwByteOffset + (DWORD)nNumSamples*sizeof(short)*g_nMB_NumChannels) % g_dwDSBufferSize; #ifdef RIFF_MB RiffPutSamples(&g_nMixBuffer[0], nNumSamples); #endif } //----------------------------------------------------------------------------- static DWORD WINAPI SSI263Thread(LPVOID lpParameter) { while(1) { DWORD dwWaitResult = WaitForMultipleObjects( g_nNumEvents, // number of handles in array g_hSSI263Event, // array of event handles FALSE, // wait until any one is signaled INFINITE); if((dwWaitResult < WAIT_OBJECT_0) || (dwWaitResult > WAIT_OBJECT_0+g_nNumEvents-1)) continue; dwWaitResult -= WAIT_OBJECT_0; // Determine event # that signaled if(dwWaitResult == (g_nNumEvents-1)) // Termination event break; // Phoneme completed playing if (g_bStopPhoneme) { g_bStopPhoneme = false; continue; } #if LOG_SSI263 //if(g_fh) fprintf(g_fh, "IRQ: Phoneme complete (0x%02X)\n\n", g_nCurrentActivePhoneme); #endif SSI263Voice[g_nCurrentActivePhoneme].bActive = false; g_nCurrentActivePhoneme = -1; // Phoneme complete, so generate IRQ if necessary SY6522_AY8910* pMB = &g_MB[g_nSSI263Device]; if(g_bPhasorEnable) { if((pMB->SpeechChip.CurrentMode != MODE_IRQ_DISABLED)) { pMB->SpeechChip.CurrentMode |= 1; // Set SSI263's D7 pin // Phasor's SSI263.IRQ line appears to be wired directly to IRQ (Bypassing the 6522) CpuIrqAssert(IS_SPEECH); } } else { if((pMB->SpeechChip.CurrentMode != MODE_IRQ_DISABLED) && (pMB->sy6522.PCR == 0x0C)) { UpdateIFR(pMB, 0, IxR_PERIPHERAL); pMB->SpeechChip.CurrentMode |= 1; // Set SSI263's D7 pin } } // if(g_bVotraxPhoneme && (pMB->sy6522.PCR == 0xB0)) { // !A/R: Time-out of old phoneme (signal goes from low to high) UpdateIFR(pMB, 0, IxR_VOTRAX); g_bVotraxPhoneme = false; } } return 0; } //----------------------------------------------------------------------------- static void SSI263_Play(unsigned int nPhoneme) { #if 1 HRESULT hr; { int nCurrPhoneme = g_nCurrentActivePhoneme; // local copy in case SSI263Thread sets it to -1 if (nCurrPhoneme >= 0) { // A write to DURPHON before previous phoneme has completed g_bStopPhoneme = true; hr = SSI263Voice[nCurrPhoneme].lpDSBvoice->Stop(); // Busy-wait until ACK from SSI263Thread // . required to avoid data-race while ( g_bStopPhoneme && // wait for SSI263Thread to ACK the lpDSBVoice->Stop() g_nCurrentActivePhoneme >= 0) // wait for SSI263Thread to get end of sample event ; g_bStopPhoneme = false; } } g_nCurrentActivePhoneme = nPhoneme; hr = SSI263Voice[g_nCurrentActivePhoneme].lpDSBvoice->SetCurrentPosition(0); if(FAILED(hr)) return; hr = SSI263Voice[g_nCurrentActivePhoneme].lpDSBvoice->Play(0,0,0); // Not looping if(FAILED(hr)) return; SSI263Voice[g_nCurrentActivePhoneme].bActive = true; #else HRESULT hr; bool bPause; if(nPhoneme == 1) nPhoneme = 2; // Missing this sample, so map to phoneme-2 if(nPhoneme == 0) { bPause = true; } else { // nPhoneme--; nPhoneme-=2; // Missing phoneme-1 bPause = false; } DWORD dwDSLockedBufferSize = 0; // Size of the locked DirectSound buffer SHORT* pDSLockedBuffer; hr = SSI263Voice.lpDSBvoice->Stop(); if(!DSGetLock(SSI263Voice.lpDSBvoice, 0, 0, &pDSLockedBuffer, &dwDSLockedBufferSize, NULL, 0)) return; unsigned int nPhonemeShortLength = g_nPhonemeInfo[nPhoneme].nLength; unsigned int nPhonemeByteLength = g_nPhonemeInfo[nPhoneme].nLength * sizeof(SHORT); if(bPause) { // 'pause' length is length of 1st phoneme (arbitrary choice, since don't know real length) memset(pDSLockedBuffer, 0, g_dwMaxPhonemeLen); } else { memcpy(pDSLockedBuffer, &g_nPhonemeData[g_nPhonemeInfo[nPhoneme].nOffset], nPhonemeByteLength); memset(&pDSLockedBuffer[nPhonemeShortLength], 0, g_dwMaxPhonemeLen-nPhonemeByteLength); } #if 0 DSBPOSITIONNOTIFY PositionNotify; PositionNotify.dwOffset = nPhonemeByteLength - 1; // End of phoneme PositionNotify.hEventNotify = g_hSSI263Event[0]; hr = SSI263Voice.lpDSNotify->SetNotificationPositions(1, &PositionNotify); if(FAILED(hr)) { DirectSound_ErrorText(hr); return; } #endif hr = SSI263Voice.lpDSBvoice->Unlock((void*)pDSLockedBuffer, dwDSLockedBufferSize, NULL, 0); if(FAILED(hr)) return; hr = SSI263Voice.lpDSBvoice->Play(0,0,0); // Not looping if(FAILED(hr)) return; SSI263Voice.bActive = true; #endif } //----------------------------------------------------------------------------- static bool MB_DSInit() { LogFileOutput("MB_DSInit\n", g_bMBAvailable); #ifdef NO_DIRECT_X return false; #else // NO_DIRECT_X // // Create single Mockingboard voice // DWORD dwDSLockedBufferSize = 0; // Size of the locked DirectSound buffer SHORT* pDSLockedBuffer; if(!g_bDSAvailable) return false; HRESULT hr = DSGetSoundBuffer(&MockingboardVoice, DSBCAPS_CTRLVOLUME, g_dwDSBufferSize, SAMPLE_RATE, 2); LogFileOutput("MB_DSInit: DSGetSoundBuffer(), hr=0x%08X\n", hr); if(FAILED(hr)) { if(g_fh) fprintf(g_fh, "MB: DSGetSoundBuffer failed (%08X)\n",hr); return false; } bool bRes = DSZeroVoiceBuffer(&MockingboardVoice, "MB", g_dwDSBufferSize); LogFileOutput("MB_DSInit: DSZeroVoiceBuffer(), res=%d\n", bRes ? 1 : 0); if (!bRes) return false; MockingboardVoice.bActive = true; // Volume might've been setup from value in Registry if(!MockingboardVoice.nVolume) MockingboardVoice.nVolume = DSBVOLUME_MAX; hr = MockingboardVoice.lpDSBvoice->SetVolume(MockingboardVoice.nVolume); LogFileOutput("MB_DSInit: SetVolume(), hr=0x%08X\n", hr); //--------------------------------- // // Create SSI263 voice // #if 0 g_dwMaxPhonemeLen = 0; for(int i=0; iQueryInterface(IID_IDirectSoundNotify, (LPVOID *)&SSI263Voice[i].lpDSNotify); //LogFileOutput("MB_DSInit: (%02d) QueryInterface(), hr=0x%08X\n", i, hr); // WARNING: Lock acquired && doing heavy-weight logging if(FAILED(hr)) { if(g_fh) fprintf(g_fh, "SSI263: QueryInterface failed (%08X)\n",hr); return false; } DSBPOSITIONNOTIFY PositionNotify; // PositionNotify.dwOffset = nPhonemeByteLength - 1; // End of buffer PositionNotify.dwOffset = DSBPN_OFFSETSTOP; // End of buffer PositionNotify.hEventNotify = g_hSSI263Event[0]; hr = SSI263Voice[i].lpDSNotify->SetNotificationPositions(1, &PositionNotify); //LogFileOutput("MB_DSInit: (%02d) SetNotificationPositions(), hr=0x%08X\n", i, hr); // WARNING: Lock acquired && doing heavy-weight logging if(FAILED(hr)) { if(g_fh) fprintf(g_fh, "SSI263: SetNotifyPos failed (%08X)\n",hr); return false; } hr = SSI263Voice[i].lpDSBvoice->Unlock((void*)pDSLockedBuffer, dwDSLockedBufferSize, NULL, 0); LogFileOutput("MB_DSInit: (%02d) Unlock(),hr=0x%08X\n", i, hr); if(FAILED(hr)) { if(g_fh) fprintf(g_fh, "SSI263: DSUnlock failed (%08X)\n",hr); return false; } SSI263Voice[i].bActive = false; SSI263Voice[i].nVolume = MockingboardVoice.nVolume; // Use same volume as MB hr = SSI263Voice[i].lpDSBvoice->SetVolume(SSI263Voice[i].nVolume); LogFileOutput("MB_DSInit: (%02d) SetVolume(), hr=0x%08X\n", i, hr); } // DWORD dwThreadId; g_hThread = CreateThread(NULL, // lpThreadAttributes 0, // dwStackSize SSI263Thread, NULL, // lpParameter 0, // dwCreationFlags : 0 = Run immediately &dwThreadId); // lpThreadId LogFileOutput("MB_DSInit: CreateThread(), g_hThread=0x%08X\n", (UINT32)g_hThread); BOOL bRes2 = SetThreadPriority(g_hThread, THREAD_PRIORITY_TIME_CRITICAL); LogFileOutput("MB_DSInit: SetThreadPriority(), bRes=%d\n", bRes2 ? 1 : 0); return true; #endif // NO_DIRECT_X } static void MB_DSUninit() { if(g_hThread) { DWORD dwExitCode; SetEvent(g_hSSI263Event[g_nNumEvents-1]); // Signal to thread that it should exit do { if(GetExitCodeThread(g_hThread, &dwExitCode)) { if(dwExitCode == STILL_ACTIVE) Sleep(10); else break; } } while(1); CloseHandle(g_hThread); g_hThread = NULL; } // if(MockingboardVoice.lpDSBvoice && MockingboardVoice.bActive) { MockingboardVoice.lpDSBvoice->Stop(); MockingboardVoice.bActive = false; } DSReleaseSoundBuffer(&MockingboardVoice); // for(int i=0; i<64; i++) { if(SSI263Voice[i].lpDSBvoice && SSI263Voice[i].bActive) { SSI263Voice[i].lpDSBvoice->Stop(); SSI263Voice[i].bActive = false; } DSReleaseSoundBuffer(&SSI263Voice[i]); } // if(g_hSSI263Event[0]) { CloseHandle(g_hSSI263Event[0]); g_hSSI263Event[0] = NULL; } if(g_hSSI263Event[1]) { CloseHandle(g_hSSI263Event[1]); g_hSSI263Event[1] = NULL; } } //============================================================================= // // ----- ALL GLOBALLY ACCESSIBLE FUNCTIONS ARE BELOW THIS LINE ----- // //============================================================================= static void InitSoundcardType(void) { g_SoundcardType = CT_Empty; // Use CT_Empty to mean: no soundcard g_bPhasorEnable = false; } void MB_Initialize() { InitSoundcardType(); LogFileOutput("MB_Initialize: g_bDisableDirectSound=%d, g_bDisableDirectSoundMockingboard=%d\n", g_bDisableDirectSound, g_bDisableDirectSoundMockingboard); if (g_bDisableDirectSound || g_bDisableDirectSoundMockingboard) { MockingboardVoice.bMute = true; } else { memset(&g_MB,0,sizeof(g_MB)); int i; for(i=0; iStop(); // Reason: 'MB voice is playing' then loading a save-state where 'no MB present' } //----------------------------------------------------------------------------- // NB. Called when /g_fCurrentCLK6502/ changes void MB_Reinitialize() { AY8910_InitClock((int)g_fCurrentCLK6502); // todo: account for g_PhasorClockScaleFactor? // NB. Other calls to AY8910_InitClock() use the constant CLK_6502 } //----------------------------------------------------------------------------- void MB_Destroy() { MB_DSUninit(); for (int i=0; iMB_Reset() // g_bPhasorEnable = false; } void MB_Reset() // CTRL+RESET or power-cycle { if(!g_bDSAvailable) return; for(int i=0; i>8)&0xf - SLOT4; BYTE nOffset = nAddr&0xff; if(g_bPhasorEnable) { if(nMB != 0) // Slot4 only return MemReadFloatingBus(nExecutedCycles); int CS; if(g_nPhasorMode & 1) CS = ( ( nAddr & 0x80 ) >> 6 ) | ( ( nAddr & 0x10 ) >> 4 ); // 0, 1, 2 or 3 else // Mockingboard Mode CS = ( ( nAddr & 0x80 ) >> 7 ) + 1; // 1 or 2 BYTE nRes = 0; if(CS & 1) nRes |= SY6522_Read(nMB*NUM_DEVS_PER_MB + SY6522_DEVICE_A, nAddr&0xf); if(CS & 2) nRes |= SY6522_Read(nMB*NUM_DEVS_PER_MB + SY6522_DEVICE_B, nAddr&0xf); bool bAccessedDevice = (CS & 3) ? true : false; if((nOffset >= SSI263_Offset) && (nOffset <= (SSI263_Offset+0x05))) { nRes |= SSI263_Read(nMB, nAddr&0xf); bAccessedDevice = true; } return bAccessedDevice ? nRes : MemReadFloatingBus(nExecutedCycles); } if(nOffset <= (SY6522A_Offset+0x0F)) return SY6522_Read(nMB*NUM_DEVS_PER_MB + SY6522_DEVICE_A, nAddr&0xf); else if((nOffset >= SY6522B_Offset) && (nOffset <= (SY6522B_Offset+0x0F))) return SY6522_Read(nMB*NUM_DEVS_PER_MB + SY6522_DEVICE_B, nAddr&0xf); else if((nOffset >= SSI263_Offset) && (nOffset <= (SSI263_Offset+0x05))) return SSI263_Read(nMB, nAddr&0xf); else return MemReadFloatingBus(nExecutedCycles); } //----------------------------------------------------------------------------- static BYTE __stdcall MB_Write(WORD PC, WORD nAddr, BYTE bWrite, BYTE nValue, ULONG nExecutedCycles) { MB_UpdateCycles(nExecutedCycles); #ifdef _DEBUG if(!IS_APPLE2 && MemCheckINTCXROM()) { _ASSERT(0); // Card ROM disabled, so IO_Cxxx() returns the internal ROM return 0; } if(g_SoundcardType == CT_Empty) { _ASSERT(0); // Card unplugged, so IO_Cxxx() returns the floating bus return 0; } #endif BYTE nMB = (nAddr>>8)&0xf - SLOT4; BYTE nOffset = nAddr&0xff; if(g_bPhasorEnable) { if(nMB != 0) // Slot4 only return 0; int CS; if(g_nPhasorMode & 1) CS = ( ( nAddr & 0x80 ) >> 6 ) | ( ( nAddr & 0x10 ) >> 4 ); // 0, 1, 2 or 3 else // Mockingboard Mode CS = ( ( nAddr & 0x80 ) >> 7 ) + 1; // 1 or 2 if(CS & 1) SY6522_Write(nMB*NUM_DEVS_PER_MB + SY6522_DEVICE_A, nAddr&0xf, nValue); if(CS & 2) SY6522_Write(nMB*NUM_DEVS_PER_MB + SY6522_DEVICE_B, nAddr&0xf, nValue); if((nOffset >= SSI263_Offset) && (nOffset <= (SSI263_Offset+0x05))) SSI263_Write(nMB*2+1, nAddr&0xf, nValue); // Second 6522 is used for speech chip return 0; } if(nOffset <= (SY6522A_Offset+0x0F)) SY6522_Write(nMB*NUM_DEVS_PER_MB + SY6522_DEVICE_A, nAddr&0xf, nValue); else if((nOffset >= SY6522B_Offset) && (nOffset <= (SY6522B_Offset+0x0F))) SY6522_Write(nMB*NUM_DEVS_PER_MB + SY6522_DEVICE_B, nAddr&0xf, nValue); else if((nOffset >= SSI263_Offset) && (nOffset <= (SSI263_Offset+0x05))) SSI263_Write(nMB*2+1, nAddr&0xf, nValue); // Second 6522 is used for speech chip return 0; } //----------------------------------------------------------------------------- static BYTE __stdcall PhasorIO(WORD PC, WORD nAddr, BYTE bWrite, BYTE nValue, ULONG nExecutedCycles) { if(!g_bPhasorEnable) return MemReadFloatingBus(nExecutedCycles); if(g_nPhasorMode < 2) g_nPhasorMode = nAddr & 1; g_PhasorClockScaleFactor = (nAddr & 4) ? 2 : 1; AY8910_InitClock((int)(Get6502BaseClock() * g_PhasorClockScaleFactor)); return MemReadFloatingBus(nExecutedCycles); } //----------------------------------------------------------------------------- SS_CARDTYPE MB_GetSoundcardType() { return g_SoundcardType; } static void MB_SetSoundcardType(const SS_CARDTYPE NewSoundcardType) { if (NewSoundcardType == g_SoundcardType) return; if (NewSoundcardType == CT_Empty) MB_Mute(); // Call MB_Mute() before setting g_SoundcardType = CT_Empty g_SoundcardType = NewSoundcardType; g_bPhasorEnable = (g_SoundcardType == CT_Phasor); } //----------------------------------------------------------------------------- void MB_InitializeIO(LPBYTE pCxRomPeripheral, UINT uSlot4, UINT uSlot5) { // Mockingboard: Slot 4 & 5 // Phasor : Slot 4 // : Slot 4 & 5 if (g_Slot4 != CT_MockingboardC && g_Slot4 != CT_Phasor) { MB_SetSoundcardType(CT_Empty); return; } if (g_Slot4 == CT_MockingboardC) RegisterIoHandler(uSlot4, IO_Null, IO_Null, MB_Read, MB_Write, NULL, NULL); else // Phasor RegisterIoHandler(uSlot4, PhasorIO, PhasorIO, MB_Read, MB_Write, NULL, NULL); if (g_Slot5 == CT_MockingboardC) RegisterIoHandler(uSlot5, IO_Null, IO_Null, MB_Read, MB_Write, NULL, NULL); MB_SetSoundcardType(g_Slot4); // Sound buffer may have been stopped by MB_InitializeForLoadingSnapshot(). // NB. DSZeroVoiceBuffer() also zeros the sound buffer, so it's better than directly calling IDirectSoundBuffer::Play(): // - without zeroing, then the previous sound buffer can be heard for a fraction of a second // - eg. when doing Mockingboard playback, then loading a save-state which is also doing Mockingboard playback DSZeroVoiceBuffer(&MockingboardVoice, "MB", g_dwDSBufferSize); } //----------------------------------------------------------------------------- void MB_Mute() { if(g_SoundcardType == CT_Empty) return; if(MockingboardVoice.bActive && !MockingboardVoice.bMute) { MockingboardVoice.lpDSBvoice->SetVolume(DSBVOLUME_MIN); MockingboardVoice.bMute = true; } if(g_nCurrentActivePhoneme >= 0) SSI263Voice[g_nCurrentActivePhoneme].lpDSBvoice->SetVolume(DSBVOLUME_MIN); } //----------------------------------------------------------------------------- void MB_Demute() { if(g_SoundcardType == CT_Empty) return; if(MockingboardVoice.bActive && MockingboardVoice.bMute) { MockingboardVoice.lpDSBvoice->SetVolume(MockingboardVoice.nVolume); MockingboardVoice.bMute = false; } if(g_nCurrentActivePhoneme >= 0) SSI263Voice[g_nCurrentActivePhoneme].lpDSBvoice->SetVolume(SSI263Voice[g_nCurrentActivePhoneme].nVolume); } //----------------------------------------------------------------------------- // Called by CpuExecute() before doing CPU emulation void MB_StartOfCpuExecute() { g_uLastCumulativeCycles = g_nCumulativeCycles; } // Called by ContinueExecution() at the end of every video frame void MB_EndOfVideoFrame() { if (g_SoundcardType == CT_Empty) return; if (g_nMBTimerDevice == kTIMERDEVICE_INVALID) MB_Update(); } //----------------------------------------------------------------------------- static bool CheckTimerUnderflowAndIrq(USHORT& timerCounter, int& timerIrqDelay, const USHORT nClocks, bool* pTimerUnderflow=NULL) { int oldTimer = timerCounter; // Catch the case for 0x0000 -> -ve, as this isn't an underflow int timer = timerCounter; timer -= nClocks; timerCounter = (USHORT)timer; bool timerIrq = false; if (timerIrqDelay) // Deal with any previous counter underflow which didn't yet result in an IRQ { timerIrqDelay -= nClocks; if (timerIrqDelay <= 0) { timerIrqDelay = 0; timerIrq = true; } // don't re-underflow if TIMER = 0x0000 or 0xFFFF (so just return) } else if (oldTimer > 0 && timer <= 0) // Underflow occurs for 0x0001 -> 0x0000 { if (pTimerUnderflow) *pTimerUnderflow = true; // Just for Willy Byte! if (timer <= -2) timerIrq = true; else // TIMER = 0x0000 or 0xFFFF timerIrqDelay = 2 + timer; // ...so 2 or 1 cycles until IRQ } return timerIrq; } // Called by: // . CpuExecute() every ~1000 @ 1MHz // . CheckInterruptSources() every opcode (or every 40 opcodes at full-speed) // . MB_Read() / MB_Write() void MB_UpdateCycles(ULONG uExecutedCycles) { if (g_SoundcardType == CT_Empty) return; CpuCalcCycles(uExecutedCycles); UINT64 uCycles = g_nCumulativeCycles - g_uLastCumulativeCycles; g_uLastCumulativeCycles = g_nCumulativeCycles; _ASSERT(uCycles < 0x10000); USHORT nClocks = (USHORT) uCycles; UINT numActiveTimer1s = 0; for (int i=0; isy6522.TIMER1_COUNTER.w, pMB->sy6522.timer1IrqDelay, nClocks, &bTimer1Underflow); const bool bTimer2Irq = CheckTimerUnderflowAndIrq(pMB->sy6522.TIMER2_COUNTER.w, pMB->sy6522.timer2IrqDelay, nClocks); if (!pMB->bTimer1Active && bTimer1Underflow) { if ( (g_nMBTimerDevice == kTIMERDEVICE_INVALID) // StopTimer1() has been called && (pMB->sy6522.IFR & IxR_TIMER1) // Counter underflowed && ((pMB->sy6522.ACR & RUNMODE) == RM_ONESHOT) ) // One-shot mode { // Fix for Willy Byte - need to confirm that 6522 really does this! // . It never accesses IER/IFR/TIMER1 regs to clear IRQ // . NB. Willy Byte doesn't work with Phasor. UpdateIFR(pMB, IxR_TIMER1); // Deassert the TIMER IRQ } } if (pMB->bTimer1Active && bTimer1Irq) { UpdateIFR(pMB, 0, IxR_TIMER1); if (numActiveTimer1s == 1) { // Do MB_Update() before StopTimer1() if (g_nMBTimerDevice == i) MB_Update(); } else // GH#685: Multiple TIMER1 interrupts { // Only allow when not in interrupt handler (ie. only allow when interrupts are enabled) if (Is6502InterruptEnabled()) g_waitFirstAYWriteAfterTimer1Int = true; // Defer MB_Update() until MB_Write() } if ((pMB->sy6522.ACR & RUNMODE) == RM_ONESHOT) { // One-shot mode // - Phasor's playback code uses one-shot mode // - Willy Byte sets to one-shot to stop the timer IRQ StopTimer1(pMB); } else { // Free-running mode // - Ultima4/5 change ACCESS_TIMER1 after a couple of IRQs into tune pMB->sy6522.TIMER1_COUNTER.w += pMB->sy6522.TIMER1_LATCH.w; // GH#651: account for underflowed cycles too pMB->sy6522.TIMER1_COUNTER.w += 2; // GH#652: account for extra 2 cycles (Rockwell, Fig.16: period=N+2cycles) // - or maybe the counter doesn't count down during these 2 cycles? if (pMB->sy6522.TIMER1_COUNTER.w > pMB->sy6522.TIMER1_LATCH.w) { if (pMB->sy6522.TIMER1_LATCH.w) pMB->sy6522.TIMER1_COUNTER.w %= pMB->sy6522.TIMER1_LATCH.w; // Only occurs if LATCH.w<0x0007 (# cycles for longest opcode) else pMB->sy6522.TIMER1_COUNTER.w = 0; } StartTimer1(pMB); } } if (pMB->bTimer2Active && bTimer2Irq) { UpdateIFR(pMB, 0, IxR_TIMER2); if((pMB->sy6522.ACR & RUNMODE) == RM_ONESHOT) { StopTimer2(pMB); } else { pMB->sy6522.TIMER2_COUNTER.w += pMB->sy6522.TIMER2_LATCH.w; if (pMB->sy6522.TIMER2_COUNTER.w > pMB->sy6522.TIMER2_LATCH.w) { if (pMB->sy6522.TIMER2_LATCH.w) pMB->sy6522.TIMER2_COUNTER.w %= pMB->sy6522.TIMER2_LATCH.w; else pMB->sy6522.TIMER2_COUNTER.w = 0; } StartTimer2(pMB); } } } } //----------------------------------------------------------------------------- static double MB_GetFramePeriod(void) { // TODO: Ideally remove this (slot-4) Phasor-IFR check: [*1] // . It's for Phasor music player, which runs in one-shot mode: // . MB_UpdateCycles() // -> Timer1 underflows & StopTimer1() is called, which sets g_nMBTimerDevice == kTIMERDEVICE_INVALID // . MB_EndOfVideoFrame(), and g_nMBTimerDevice == kTIMERDEVICE_INVALID // -> MB_Update() // -> MB_GetFramePeriod() // NB. Removing this Phasor-IFR check means the occasional 'g_f6522TimerPeriod_NoIRQ' gets returned. if (g_AYWriteAccessTimer1IntPeriod) return (double)g_AYWriteAccessTimer1IntPeriod; if ((g_nMBTimerDevice != kTIMERDEVICE_INVALID) || (g_bPhasorEnable && (g_MB[0].sy6522.IFR & IxR_TIMER1))) // [*1] { return (double)g_n6522TimerPeriod; } else { return g_f6522TimerPeriod_NoIRQ; } } bool MB_IsActive() { if (!MockingboardVoice.bActive) return false; return g_bMB_Active; } //----------------------------------------------------------------------------- DWORD MB_GetVolume() { return MockingboardVoice.dwUserVolume; } void MB_SetVolume(DWORD dwVolume, DWORD dwVolumeMax) { MockingboardVoice.dwUserVolume = dwVolume; MockingboardVoice.nVolume = NewVolume(dwVolume, dwVolumeMax); if(MockingboardVoice.bActive) MockingboardVoice.lpDSBvoice->SetVolume(MockingboardVoice.nVolume); } //=========================================================================== // Called by debugger - Debugger_Display.cpp void MB_GetSnapshot_v1(SS_CARD_MOCKINGBOARD_v1* const pSS, const DWORD dwSlot) { pSS->Hdr.UnitHdr.hdr.v2.Length = sizeof(SS_CARD_MOCKINGBOARD_v1); pSS->Hdr.UnitHdr.hdr.v2.Type = UT_Card; pSS->Hdr.UnitHdr.hdr.v2.Version = 1; pSS->Hdr.Slot = dwSlot; pSS->Hdr.Type = CT_MockingboardC; UINT nMbCardNum = dwSlot - SLOT4; UINT nDeviceNum = nMbCardNum*2; SY6522_AY8910* pMB = &g_MB[nDeviceNum]; for(UINT i=0; iUnit[i].RegsSY6522, &pMB->sy6522, sizeof(SY6522)); memcpy(&pSS->Unit[i].RegsAY8910, AY8910_GetRegsPtr(nDeviceNum), 16); memcpy(&pSS->Unit[i].RegsSSI263, &pMB->SpeechChip, sizeof(SSI263A)); pSS->Unit[i].nAYCurrentRegister = pMB->nAYCurrentRegister; pSS->Unit[i].bTimer1IrqPending = false; pSS->Unit[i].bTimer2IrqPending = false; pSS->Unit[i].bSpeechIrqPending = false; nDeviceNum++; pMB++; } } //=========================================================================== // Unit version history: // 2: Added: Timer1 & Timer2 active // 3: Added: Unit state // 4: Added: 6522 timerIrqDelay const UINT kUNIT_VERSION = 4; const UINT NUM_MB_UNITS = 2; const UINT NUM_PHASOR_UNITS = 2; #define SS_YAML_KEY_MB_UNIT "Unit" #define SS_YAML_KEY_SY6522 "SY6522" #define SS_YAML_KEY_SY6522_REG_ORB "ORB" #define SS_YAML_KEY_SY6522_REG_ORA "ORA" #define SS_YAML_KEY_SY6522_REG_DDRB "DDRB" #define SS_YAML_KEY_SY6522_REG_DDRA "DDRA" #define SS_YAML_KEY_SY6522_REG_T1_COUNTER "Timer1 Counter" #define SS_YAML_KEY_SY6522_REG_T1_LATCH "Timer1 Latch" #define SS_YAML_KEY_SY6522_REG_T2_COUNTER "Timer2 Counter" #define SS_YAML_KEY_SY6522_REG_T2_LATCH "Timer2 Latch" #define SS_YAML_KEY_SY6522_REG_SERIAL_SHIFT "Serial Shift" #define SS_YAML_KEY_SY6522_REG_ACR "ACR" #define SS_YAML_KEY_SY6522_REG_PCR "PCR" #define SS_YAML_KEY_SY6522_REG_IFR "IFR" #define SS_YAML_KEY_SY6522_REG_IER "IER" #define SS_YAML_KEY_SSI263 "SSI263" #define SS_YAML_KEY_SSI263_REG_DUR_PHON "Duration / Phoneme" #define SS_YAML_KEY_SSI263_REG_INF "Inflection" #define SS_YAML_KEY_SSI263_REG_RATE_INF "Rate / Inflection" #define SS_YAML_KEY_SSI263_REG_CTRL_ART_AMP "Control / Articulation / Amplitude" #define SS_YAML_KEY_SSI263_REG_FILTER_FREQ "Filter Frequency" #define SS_YAML_KEY_SSI263_REG_CURRENT_MODE "Current Mode" #define SS_YAML_KEY_AY_CURR_REG "AY Current Register" #define SS_YAML_KEY_MB_UNIT_STATE "Unit State" #define SS_YAML_KEY_TIMER1_IRQ "Timer1 IRQ Pending" #define SS_YAML_KEY_TIMER2_IRQ "Timer2 IRQ Pending" #define SS_YAML_KEY_SPEECH_IRQ "Speech IRQ Pending" #define SS_YAML_KEY_TIMER1_ACTIVE "Timer1 Active" #define SS_YAML_KEY_TIMER2_ACTIVE "Timer2 Active" #define SS_YAML_KEY_SY6522_TIMER1_IRQ_DELAY "Timer1 IRQ Delay" #define SS_YAML_KEY_SY6522_TIMER2_IRQ_DELAY "Timer2 IRQ Delay" #define SS_YAML_KEY_PHASOR_UNIT "Unit" #define SS_YAML_KEY_PHASOR_CLOCK_SCALE_FACTOR "Clock Scale Factor" #define SS_YAML_KEY_PHASOR_MODE "Mode" std::string MB_GetSnapshotCardName(void) { static const std::string name("Mockingboard C"); return name; } std::string Phasor_GetSnapshotCardName(void) { static const std::string name("Phasor"); return name; } static void SaveSnapshotSY6522(YamlSaveHelper& yamlSaveHelper, SY6522& sy6522) { YamlSaveHelper::Label label(yamlSaveHelper, "%s:\n", SS_YAML_KEY_SY6522); yamlSaveHelper.SaveHexUint8(SS_YAML_KEY_SY6522_REG_ORB, sy6522.ORB); yamlSaveHelper.SaveHexUint8(SS_YAML_KEY_SY6522_REG_ORA, sy6522.ORA); yamlSaveHelper.SaveHexUint8(SS_YAML_KEY_SY6522_REG_DDRB, sy6522.DDRB); yamlSaveHelper.SaveHexUint8(SS_YAML_KEY_SY6522_REG_DDRA, sy6522.DDRA); yamlSaveHelper.SaveHexUint16(SS_YAML_KEY_SY6522_REG_T1_COUNTER, sy6522.TIMER1_COUNTER.w); yamlSaveHelper.SaveHexUint16(SS_YAML_KEY_SY6522_REG_T1_LATCH, sy6522.TIMER1_LATCH.w); yamlSaveHelper.SaveUint(SS_YAML_KEY_SY6522_TIMER1_IRQ_DELAY, sy6522.timer1IrqDelay); // v4 yamlSaveHelper.SaveHexUint16(SS_YAML_KEY_SY6522_REG_T2_COUNTER, sy6522.TIMER2_COUNTER.w); yamlSaveHelper.SaveHexUint16(SS_YAML_KEY_SY6522_REG_T2_LATCH, sy6522.TIMER2_LATCH.w); yamlSaveHelper.SaveUint(SS_YAML_KEY_SY6522_TIMER2_IRQ_DELAY, sy6522.timer2IrqDelay); // v4 yamlSaveHelper.SaveHexUint8(SS_YAML_KEY_SY6522_REG_SERIAL_SHIFT, sy6522.SERIAL_SHIFT); yamlSaveHelper.SaveHexUint8(SS_YAML_KEY_SY6522_REG_ACR, sy6522.ACR); yamlSaveHelper.SaveHexUint8(SS_YAML_KEY_SY6522_REG_PCR, sy6522.PCR); yamlSaveHelper.SaveHexUint8(SS_YAML_KEY_SY6522_REG_IFR, sy6522.IFR); yamlSaveHelper.SaveHexUint8(SS_YAML_KEY_SY6522_REG_IER, sy6522.IER); // NB. No need to write ORA_NO_HS, since same data as ORA, just without handshake } static void SaveSnapshotSSI263(YamlSaveHelper& yamlSaveHelper, SSI263A& ssi263) { YamlSaveHelper::Label label(yamlSaveHelper, "%s:\n", SS_YAML_KEY_SSI263); yamlSaveHelper.SaveHexUint8(SS_YAML_KEY_SSI263_REG_DUR_PHON, ssi263.DurationPhoneme); yamlSaveHelper.SaveHexUint8(SS_YAML_KEY_SSI263_REG_INF, ssi263.Inflection); yamlSaveHelper.SaveHexUint8(SS_YAML_KEY_SSI263_REG_RATE_INF, ssi263.RateInflection); yamlSaveHelper.SaveHexUint8(SS_YAML_KEY_SSI263_REG_CTRL_ART_AMP, ssi263.CtrlArtAmp); yamlSaveHelper.SaveHexUint8(SS_YAML_KEY_SSI263_REG_FILTER_FREQ, ssi263.FilterFreq); yamlSaveHelper.SaveHexUint8(SS_YAML_KEY_SSI263_REG_CURRENT_MODE, ssi263.CurrentMode); } void MB_SaveSnapshot(YamlSaveHelper& yamlSaveHelper, const UINT uSlot) { const UINT nMbCardNum = uSlot - SLOT4; UINT nDeviceNum = nMbCardNum*2; SY6522_AY8910* pMB = &g_MB[nDeviceNum]; YamlSaveHelper::Slot slot(yamlSaveHelper, MB_GetSnapshotCardName(), uSlot, kUNIT_VERSION); // fixme: object should be just 1 Mockingboard card & it will know its slot YamlSaveHelper::Label state(yamlSaveHelper, "%s:\n", SS_YAML_KEY_STATE); for(UINT i=0; isy6522); AY8910_SaveSnapshot(yamlSaveHelper, nDeviceNum, std::string("")); SaveSnapshotSSI263(yamlSaveHelper, pMB->SpeechChip); yamlSaveHelper.SaveHexUint4(SS_YAML_KEY_MB_UNIT_STATE, pMB->state); yamlSaveHelper.SaveHexUint4(SS_YAML_KEY_AY_CURR_REG, pMB->nAYCurrentRegister); yamlSaveHelper.Save("%s: %s # Not supported\n", SS_YAML_KEY_TIMER1_IRQ, "false"); yamlSaveHelper.Save("%s: %s # Not supported\n", SS_YAML_KEY_TIMER2_IRQ, "false"); yamlSaveHelper.Save("%s: %s # Not supported\n", SS_YAML_KEY_SPEECH_IRQ, "false"); yamlSaveHelper.SaveBool(SS_YAML_KEY_TIMER1_ACTIVE, pMB->bTimer1Active); yamlSaveHelper.SaveBool(SS_YAML_KEY_TIMER2_ACTIVE, pMB->bTimer2Active); nDeviceNum++; pMB++; } } static void LoadSnapshotSY6522(YamlLoadHelper& yamlLoadHelper, SY6522& sy6522, UINT version) { if (!yamlLoadHelper.GetSubMap(SS_YAML_KEY_SY6522)) throw std::string("Card: Expected key: ") + std::string(SS_YAML_KEY_SY6522); sy6522.ORB = yamlLoadHelper.LoadUint(SS_YAML_KEY_SY6522_REG_ORB); sy6522.ORA = yamlLoadHelper.LoadUint(SS_YAML_KEY_SY6522_REG_ORA); sy6522.DDRB = yamlLoadHelper.LoadUint(SS_YAML_KEY_SY6522_REG_DDRB); sy6522.DDRA = yamlLoadHelper.LoadUint(SS_YAML_KEY_SY6522_REG_DDRA); sy6522.TIMER1_COUNTER.w = yamlLoadHelper.LoadUint(SS_YAML_KEY_SY6522_REG_T1_COUNTER); sy6522.TIMER1_LATCH.w = yamlLoadHelper.LoadUint(SS_YAML_KEY_SY6522_REG_T1_LATCH); sy6522.TIMER2_COUNTER.w = yamlLoadHelper.LoadUint(SS_YAML_KEY_SY6522_REG_T2_COUNTER); sy6522.TIMER2_LATCH.w = yamlLoadHelper.LoadUint(SS_YAML_KEY_SY6522_REG_T2_LATCH); sy6522.SERIAL_SHIFT = yamlLoadHelper.LoadUint(SS_YAML_KEY_SY6522_REG_SERIAL_SHIFT); sy6522.ACR = yamlLoadHelper.LoadUint(SS_YAML_KEY_SY6522_REG_ACR); sy6522.PCR = yamlLoadHelper.LoadUint(SS_YAML_KEY_SY6522_REG_PCR); sy6522.IFR = yamlLoadHelper.LoadUint(SS_YAML_KEY_SY6522_REG_IFR); sy6522.IER = yamlLoadHelper.LoadUint(SS_YAML_KEY_SY6522_REG_IER); sy6522.ORA_NO_HS = 0; // Not saved sy6522.timer1IrqDelay = sy6522.timer2IrqDelay = 0; if (version >= 4) { sy6522.timer1IrqDelay = yamlLoadHelper.LoadUint(SS_YAML_KEY_SY6522_TIMER1_IRQ_DELAY); sy6522.timer2IrqDelay = yamlLoadHelper.LoadUint(SS_YAML_KEY_SY6522_TIMER2_IRQ_DELAY); } yamlLoadHelper.PopMap(); } static void LoadSnapshotSSI263(YamlLoadHelper& yamlLoadHelper, SSI263A& ssi263) { if (!yamlLoadHelper.GetSubMap(SS_YAML_KEY_SSI263)) throw std::string("Card: Expected key: ") + std::string(SS_YAML_KEY_SSI263); ssi263.DurationPhoneme = yamlLoadHelper.LoadUint(SS_YAML_KEY_SSI263_REG_DUR_PHON); ssi263.Inflection = yamlLoadHelper.LoadUint(SS_YAML_KEY_SSI263_REG_INF); ssi263.RateInflection = yamlLoadHelper.LoadUint(SS_YAML_KEY_SSI263_REG_RATE_INF); ssi263.CtrlArtAmp = yamlLoadHelper.LoadUint(SS_YAML_KEY_SSI263_REG_CTRL_ART_AMP); ssi263.FilterFreq = yamlLoadHelper.LoadUint(SS_YAML_KEY_SSI263_REG_FILTER_FREQ); ssi263.CurrentMode = yamlLoadHelper.LoadUint(SS_YAML_KEY_SSI263_REG_CURRENT_MODE); yamlLoadHelper.PopMap(); } bool MB_LoadSnapshot(YamlLoadHelper& yamlLoadHelper, UINT slot, UINT version) { if (slot != 4 && slot != 5) // fixme throw std::string("Card: wrong slot"); if (version < 1 || version > kUNIT_VERSION) throw std::string("Card: wrong version"); AY8910UpdateSetCycles(); const UINT nMbCardNum = slot - SLOT4; UINT nDeviceNum = nMbCardNum*2; SY6522_AY8910* pMB = &g_MB[nDeviceNum]; g_nSSI263Device = 0; g_nCurrentActivePhoneme = -1; for(UINT i=0; isy6522, version); UpdateIFR(pMB, 0, pMB->sy6522.IFR); // Assert any pending IRQs (GH#677) AY8910_LoadSnapshot(yamlLoadHelper, nDeviceNum, std::string("")); LoadSnapshotSSI263(yamlLoadHelper, pMB->SpeechChip); pMB->nAYCurrentRegister = yamlLoadHelper.LoadUint(SS_YAML_KEY_AY_CURR_REG); yamlLoadHelper.LoadBool(SS_YAML_KEY_TIMER1_IRQ); // Consume yamlLoadHelper.LoadBool(SS_YAML_KEY_TIMER2_IRQ); // Consume yamlLoadHelper.LoadBool(SS_YAML_KEY_SPEECH_IRQ); // Consume if (version >= 2) { pMB->bTimer1Active = yamlLoadHelper.LoadBool(SS_YAML_KEY_TIMER1_ACTIVE); pMB->bTimer2Active = yamlLoadHelper.LoadBool(SS_YAML_KEY_TIMER2_ACTIVE); } pMB->state = AY_INACTIVE; if (version >= 3) pMB->state = (MockingboardUnitState_e) (yamlLoadHelper.LoadUint(SS_YAML_KEY_MB_UNIT_STATE) & 7); yamlLoadHelper.PopMap(); // if (version == 1) { StartTimer1_LoadStateV1(pMB); // Attempt to start timer } else // version >= 2 { if (pMB->bTimer1Active) StartTimer1(pMB); // Attempt to start timer } // Crude - currently only support a single speech chip // FIX THIS: // . Speech chip could be Votrax instead // . Is this IRQ compatible with Phasor? if(pMB->SpeechChip.DurationPhoneme) { g_nSSI263Device = nDeviceNum; if((pMB->SpeechChip.CurrentMode != MODE_IRQ_DISABLED) && (pMB->sy6522.PCR == 0x0C) && (pMB->sy6522.IER & IxR_PERIPHERAL)) { UpdateIFR(pMB, 0, IxR_PERIPHERAL); pMB->SpeechChip.CurrentMode |= 1; // Set SSI263's D7 pin } } nDeviceNum++; pMB++; } AY8910_InitClock((int)Get6502BaseClock()); // NB. g_SoundcardType & g_bPhasorEnable setup in MB_InitializeIO() -> MB_SetSoundcardType() return true; } void Phasor_SaveSnapshot(YamlSaveHelper& yamlSaveHelper, const UINT uSlot) { if (uSlot != 4) throw std::string("Card: Phasor only supported in slot-4"); UINT nDeviceNum = 0; SY6522_AY8910* pMB = &g_MB[0]; // fixme: Phasor uses MB's slot4(2x6522), slot4(2xSSI263), but slot4+5(4xAY8910) YamlSaveHelper::Slot slot(yamlSaveHelper, Phasor_GetSnapshotCardName(), uSlot, kUNIT_VERSION); // fixme: object should be just 1 Mockingboard card & it will know its slot YamlSaveHelper::Label state(yamlSaveHelper, "%s:\n", SS_YAML_KEY_STATE); yamlSaveHelper.SaveUint(SS_YAML_KEY_PHASOR_CLOCK_SCALE_FACTOR, g_PhasorClockScaleFactor); yamlSaveHelper.SaveUint(SS_YAML_KEY_PHASOR_MODE, g_nPhasorMode); for(UINT i=0; isy6522); AY8910_SaveSnapshot(yamlSaveHelper, nDeviceNum+0, std::string("-A")); AY8910_SaveSnapshot(yamlSaveHelper, nDeviceNum+1, std::string("-B")); SaveSnapshotSSI263(yamlSaveHelper, pMB->SpeechChip); yamlSaveHelper.SaveHexUint4(SS_YAML_KEY_MB_UNIT_STATE, pMB->state); yamlSaveHelper.SaveHexUint4(SS_YAML_KEY_AY_CURR_REG, pMB->nAYCurrentRegister); yamlSaveHelper.Save("%s: %s # Not supported\n", SS_YAML_KEY_TIMER1_IRQ, "false"); yamlSaveHelper.Save("%s: %s # Not supported\n", SS_YAML_KEY_TIMER2_IRQ, "false"); yamlSaveHelper.Save("%s: %s # Not supported\n", SS_YAML_KEY_SPEECH_IRQ, "false"); yamlSaveHelper.SaveBool(SS_YAML_KEY_TIMER1_ACTIVE, pMB->bTimer1Active); yamlSaveHelper.SaveBool(SS_YAML_KEY_TIMER2_ACTIVE, pMB->bTimer2Active); nDeviceNum += 2; pMB++; } } bool Phasor_LoadSnapshot(YamlLoadHelper& yamlLoadHelper, UINT slot, UINT version) { if (slot != 4) // fixme throw std::string("Card: wrong slot"); if (version < 1 || version > kUNIT_VERSION) throw std::string("Card: wrong version"); g_PhasorClockScaleFactor = yamlLoadHelper.LoadUint(SS_YAML_KEY_PHASOR_CLOCK_SCALE_FACTOR); g_nPhasorMode = yamlLoadHelper.LoadUint(SS_YAML_KEY_PHASOR_MODE); AY8910UpdateSetCycles(); UINT nDeviceNum = 0; SY6522_AY8910* pMB = &g_MB[0]; g_nSSI263Device = 0; g_nCurrentActivePhoneme = -1; for(UINT i=0; isy6522, version); UpdateIFR(pMB, 0, pMB->sy6522.IFR); // Assert any pending IRQs (GH#677) AY8910_LoadSnapshot(yamlLoadHelper, nDeviceNum+0, std::string("-A")); AY8910_LoadSnapshot(yamlLoadHelper, nDeviceNum+1, std::string("-B")); LoadSnapshotSSI263(yamlLoadHelper, pMB->SpeechChip); pMB->nAYCurrentRegister = yamlLoadHelper.LoadUint(SS_YAML_KEY_AY_CURR_REG); yamlLoadHelper.LoadBool(SS_YAML_KEY_TIMER1_IRQ); // Consume yamlLoadHelper.LoadBool(SS_YAML_KEY_TIMER2_IRQ); // Consume yamlLoadHelper.LoadBool(SS_YAML_KEY_SPEECH_IRQ); // Consume if (version >= 2) { pMB->bTimer1Active = yamlLoadHelper.LoadBool(SS_YAML_KEY_TIMER1_ACTIVE); pMB->bTimer2Active = yamlLoadHelper.LoadBool(SS_YAML_KEY_TIMER2_ACTIVE); } pMB->state = AY_INACTIVE; if (version >= 3) pMB->state = (MockingboardUnitState_e) (yamlLoadHelper.LoadUint(SS_YAML_KEY_MB_UNIT_STATE) & 7); yamlLoadHelper.PopMap(); // if (version == 1) { StartTimer1_LoadStateV1(pMB); // Attempt to start timer } else // version >= 2 { if (pMB->bTimer1Active) StartTimer1(pMB); // Attempt to start timer } // Crude - currently only support a single speech chip // FIX THIS: // . Speech chip could be Votrax instead // . Is this IRQ compatible with Phasor? if(pMB->SpeechChip.DurationPhoneme) { g_nSSI263Device = nDeviceNum; if((pMB->SpeechChip.CurrentMode != MODE_IRQ_DISABLED) && (pMB->sy6522.PCR == 0x0C) && (pMB->sy6522.IER & IxR_PERIPHERAL)) { UpdateIFR(pMB, 0, IxR_PERIPHERAL); pMB->SpeechChip.CurrentMode |= 1; // Set SSI263's D7 pin } } nDeviceNum += 2; pMB++; } AY8910_InitClock((int)(Get6502BaseClock() * g_PhasorClockScaleFactor)); // NB. g_SoundcardType & g_bPhasorEnable setup in MB_InitializeIO() -> MB_SetSoundcardType() return true; }