/* AppleWin : An Apple //e emulator for Windows Copyright (C) 1994-1996, Michael O'Brien Copyright (C) 1999-2001, Oliver Schmidt Copyright (C) 2002-2005, Tom Charlesworth Copyright (C) 2006-2019, Tom Charlesworth, Michael Pohoreski, Nick Westgate AppleWin is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. AppleWin is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with AppleWin; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ /* Description: Disk * * Author: Various * * In comments, UTAIIe is an abbreviation for a reference to "Understanding the Apple //e" by James Sather */ #include "StdAfx.h" #include "Disk.h" #include "Interface.h" #include "Core.h" #include "CardManager.h" #include "CPU.h" #include "DiskImage.h" #include "Log.h" #include "Memory.h" #include "Registry.h" #include "SaveState.h" #include "YamlHelper.h" #include "../resource/resource.h" // About m_enhanceDisk: // . In general m_enhanceDisk==false is used for authentic disk access speed, whereas m_enhanceDisk==true is for enhanced speed. // Details: // . if false: Used by ImageReadTrack() to skew the sectors in a track (for .do, .dsk, .po 5.25" images). // . if true && m_floppyMotorOn, then this is a condition for full-speed (unthrottled) emulation mode. // . if false && I/O ReadWrite($C0EC) && drive is spinning, then advance the track buffer's nibble index (to simulate spinning). // Also m_enhanceDisk is persisted to the save-state, so it's an attribute of the DiskII interface card. // NB. Non-standard 4&4, with Vol=0x00 and Chk=0x00 (only a few match, eg. Wasteland, Legacy of the Ancients, Planetfall, Border Zone & Wizardry). [*1] const BYTE Disk2InterfaceCard::m_T00S00Pattern[] = {0xD5,0xAA,0x96,0xAA,0xAA,0xAA,0xAA,0xAA,0xAA,0xAA,0xAA,0xDE}; Disk2InterfaceCard::Disk2InterfaceCard(UINT slot) : Card(CT_Disk2, slot), m_syncEvent(slot, 0, SyncEventCallback) // use slot# as "unique" id for Disk2InterfaceCards { if (m_slot != 5 && m_slot != 6) // fixme ThrowErrorInvalidSlot(); ResetSwitches(); m_floppyLatch = 0; m_saveDiskImage = true; // Save the DiskImage name to Registry m_diskLastCycle = 0; m_diskLastReadLatchCycle = 0; m_enhanceDisk = true; m_is13SectorFirmware = false; m_force13SectorFirmware = false; m_deferredStepperEvent = false; m_deferredStepperAddress = 0; m_deferredStepperCumulativeCycles = 0; ResetLogicStateSequencer(); // Debug: #if LOG_DISK_NIBBLES_USE_RUNTIME_VAR m_bLogDisk_NibblesRW = false; #endif #if LOG_DISK_NIBBLES_WRITE m_uWriteLastCycle = 0; m_uSyncFFCount = 0; #endif } Disk2InterfaceCard::~Disk2InterfaceCard(void) { EjectDiskInternal(DRIVE_1); EjectDiskInternal(DRIVE_2); if (m_syncEvent.m_active) g_SynchronousEventMgr.Remove(m_syncEvent.m_id); } bool Disk2InterfaceCard::GetEnhanceDisk(void) { return m_enhanceDisk; } void Disk2InterfaceCard::SetEnhanceDisk(bool bEnhanceDisk) { m_enhanceDisk = bEnhanceDisk; } UINT Disk2InterfaceCard::GetCurrentBitOffset (void) { return m_floppyDrive[m_currDrive].m_disk.m_bitOffset; } double Disk2InterfaceCard::GetCurrentExtraCycles(void) { return m_floppyDrive[m_currDrive].m_disk.m_extraCycles; } float Disk2InterfaceCard::GetCurrentPhase (void) { return m_floppyDrive[m_currDrive].m_phasePrecise; } int Disk2InterfaceCard::GetCurrentDrive (void) { return m_currDrive; } BYTE Disk2InterfaceCard::GetCurrentShiftReg (void) { return m_shiftReg; } int Disk2InterfaceCard::GetCurrentTrack (void) { return ImagePhaseToTrack(m_floppyDrive[m_currDrive].m_disk.m_imagehandle, m_floppyDrive[m_currDrive].m_phasePrecise, false); } float Disk2InterfaceCard::GetPhase(const int drive) { return m_floppyDrive[drive].m_phasePrecise; } int Disk2InterfaceCard::GetTrack(const int drive) { return ImagePhaseToTrack(m_floppyDrive[drive].m_disk.m_imagehandle, m_floppyDrive[drive].m_phasePrecise, false); } std::string Disk2InterfaceCard::FormatIntFracString(float phase, bool hex) { const UINT phaseInt = (UINT)phase; const UINT phaseFrac = (UINT)((phase - (float)phaseInt) * 100 + 0.5); if (hex) return StrFormat("%02X.%02d", phaseInt, phaseFrac); // (hex)"NN.nn" else return StrFormat("%02d.%02d", phaseInt, phaseFrac); // (dec)"NN.nn" } std::string Disk2InterfaceCard::GetCurrentTrackString(void) { return FormatIntFracString(m_floppyDrive[m_currDrive].m_phasePrecise / 2, true); } std::string Disk2InterfaceCard::GetCurrentPhaseString(void) { return FormatIntFracString(m_floppyDrive[m_currDrive].m_phasePrecise, true); } LPCTSTR Disk2InterfaceCard::GetCurrentState(Disk_Status_e& eDiskState_) { if (m_floppyDrive[m_currDrive].m_disk.m_imagehandle == NULL) { eDiskState_ = DISK_STATUS_EMPTY; } else if (!m_floppyMotorOn) { if (m_floppyDrive[m_currDrive].m_spinning > 0) { eDiskState_ = DISK_STATUS_SPIN; } else { eDiskState_ = DISK_STATUS_OFF; } } else if (m_seqFunc.writeMode) { if (m_floppyDrive[m_currDrive].m_disk.m_bWriteProtected) { eDiskState_ = DISK_STATUS_PROT; } else { eDiskState_ = DISK_STATUS_WRITE; } } else { /*if (m_seqFunc.loadMode) { if (m_floppyDrive[m_currDrive].disk.bWriteProtected) return "Reading write protect state (write protected)"; else return "Reading write protect state (not write protected)"; } else*/ { eDiskState_ = DISK_STATUS_READ; } } static const char *aDiskStateMiniDesc[NUM_DISK_STATUS] = { "Off" // DISK_STATUS_OFF ,"R" // DISK_STATUS_READ ,"W" // DISK_STATUS_WRITE ,"WP" // DISK_STATUS_PROT ,"n/a" // DISK_STATUS_EMPTY ,"Spin" // DISK_STATUS_SPIN }; return aDiskStateMiniDesc[eDiskState_]; } //=========================================================================== void Disk2InterfaceCard::LoadLastDiskImage(const int drive) { _ASSERT(drive == DRIVE_1 || drive == DRIVE_2); const std::string regKey = (drive == DRIVE_1) ? REGVALUE_LAST_DISK_1 : REGVALUE_LAST_DISK_2; char pathname[MAX_PATH]; std::string regSection = RegGetConfigSlotSection(m_slot); if (RegLoadString(regSection.c_str(), regKey.c_str(), TRUE, pathname, MAX_PATH, TEXT("")) && (pathname[0] != 0)) { m_saveDiskImage = false; ImageError_e error = InsertDisk(drive, pathname, IMAGE_USE_FILES_WRITE_PROTECT_STATUS, IMAGE_DONT_CREATE); m_saveDiskImage = true; if (error != eIMAGE_ERROR_NONE) { NotifyInvalidImage(drive, pathname, error); EjectDisk(drive); } } } //=========================================================================== void Disk2InterfaceCard::SaveLastDiskImage(const int drive) { _ASSERT(drive == DRIVE_1 || drive == DRIVE_2); if (!m_saveDiskImage) return; std::string regSection = RegGetConfigSlotSection(m_slot); RegSaveValue(regSection.c_str(), REGVALUE_CARD_TYPE, TRUE, CT_Disk2); const std::string regKey = (drive == DRIVE_1) ? REGVALUE_LAST_DISK_1 : REGVALUE_LAST_DISK_2; const std::string& pathName = DiskGetFullPathName(drive); RegSaveString(regSection.c_str(), regKey.c_str(), TRUE, pathName); // // For now, only update 'Starting Directory' for slot6 & drive1 // . otherwise you'll get inconsistent results if you set drive1, then drive2 (and the images were in different folders) if (m_slot != SLOT6 || drive != DRIVE_1) return; const size_t slash = pathName.find_last_of(PATH_SEPARATOR); if (slash != std::string::npos) { const std::string dirName = pathName.substr(0, slash + 1); RegSaveString(REG_PREFS, REGVALUE_PREF_START_DIR, 1, dirName); } } //=========================================================================== // Called by ControlMotor() & Enable() void Disk2InterfaceCard::CheckSpinning(const bool stateChanged, const ULONG uExecutedCycles) { bool modeChanged = m_floppyMotorOn && !m_floppyDrive[m_currDrive].m_spinning; if (m_floppyMotorOn && IsDriveConnected(m_currDrive)) m_floppyDrive[m_currDrive].m_spinning = SPINNING_CYCLES; if (modeChanged) GetFrame().FrameDrawDiskLEDS(); if (modeChanged) { // Set m_diskLastCycle when motor changes: not spinning (ie. off for 1 sec) -> on m_diskLastCycle = g_nCumulativeCycles; } if (m_floppyMotorOn && stateChanged) { // Set m_motorOnCycle when: motor changes to on, or the other drive is enabled (and motor is on) m_floppyDrive[m_currDrive].m_motorOnCycle = g_nCumulativeCycles; } } //=========================================================================== bool Disk2InterfaceCard::IsDriveValid(const int drive) { return (drive >= 0 && drive < NUM_DRIVES); } //=========================================================================== void Disk2InterfaceCard::AllocTrack(const int drive, const UINT minSize/*=NIBBLES_PER_TRACK*/) { FloppyDisk* pFloppy = &m_floppyDrive[drive].m_disk; const UINT maxNibblesPerTrack = ImageGetMaxNibblesPerTrack(m_floppyDrive[drive].m_disk.m_imagehandle); pFloppy->m_trackimage = new BYTE[ MAX(minSize,maxNibblesPerTrack) ]; } //=========================================================================== void Disk2InterfaceCard::ReadTrack(const int drive, ULONG uExecutedCycles) { if (!IsDriveValid( drive )) return; FloppyDrive* pDrive = &m_floppyDrive[ drive ]; FloppyDisk* pFloppy = &pDrive->m_disk; if (ImagePhaseToTrack(pFloppy->m_imagehandle, pDrive->m_phasePrecise, false) >= ImageGetNumTracks(pFloppy->m_imagehandle)) { _ASSERT(0); // What can cause this? Add a comment to replace this assert. // Boot with DOS 3.3 Master in D1 // Create a blank disk in D2 // INIT HELLO,D2 // RUN HELLO // F2 to reboot DOS 3.3 Master // RUN HELLO,D2 pFloppy->m_trackimagedata = false; return; } if (!pFloppy->m_trackimage) AllocTrack( drive ); if (pFloppy->m_trackimage && pFloppy->m_imagehandle) { if (ImageIsWOZ(pFloppy->m_imagehandle)) { // Update bitStream position for *current* track before re-calc'ing position for new track UINT bitCellDelta = GetBitCellDelta(uExecutedCycles); UpdateBitStreamPosition(*pFloppy, bitCellDelta); } if (ImageIsWOZ(pFloppy->m_imagehandle) && (pFloppy->m_bitCount == 0)) { // WOZ: m_bitCount only ever 0 on initial power on pFloppy->m_bitOffset = 0; pFloppy->m_bitCount = 8; } const UINT32 currentBitPosition = pFloppy->m_bitOffset; const UINT32 currentBitTrackLength = pFloppy->m_bitCount; ImageReadTrack( pFloppy->m_imagehandle, pDrive->m_phasePrecise, pFloppy->m_trackimage, &pFloppy->m_nibbles, &pFloppy->m_bitCount, m_enhanceDisk); if (!ImageIsWOZ(pFloppy->m_imagehandle)) { pFloppy->m_byte = 0; } else { // NB. This function is only called for a new track when there's a latch read, ie. only for *even* DEVICE SELECT I/O accesses. // . So when seeking across tracks (ie. sequencing through the magnet phases), then not all (quarter) tracks will need reading. // . eg. for 'Balance of Power'(GH#1022), for seek T00->T35: this only reads: 00.00, 00.25, 00.75, 01.25, 01.75, ... 34.25, 34.75, 35.00 (skipping the NN.00, NN.50 tracks). // . And so the bitOffset "round-up" below isn't called for every track. // TODO: consider forcing this function be be called for every track (and appropriately adjust the "round-up" amount - ie. halve it) _ASSERT(pFloppy->m_nibbles && pFloppy->m_bitCount); if (pFloppy->m_nibbles == 0 || pFloppy->m_bitCount == 0) { pFloppy->m_nibbles = 1; pFloppy->m_bitCount = 8; } pFloppy->m_bitOffset = (currentBitPosition * pFloppy->m_bitCount) / currentBitTrackLength; // Ref: WOZ-1.01 pFloppy->m_bitOffset += 7; // Round-up for sensitive cross-track sync check (GH#1022) if (pFloppy->m_bitOffset >= pFloppy->m_bitCount) pFloppy->m_bitOffset = 0; #if LOG_DISK_WOZ_READTRACK LOG_DISK("T%05.2f: %04X->%04X, Len=%04X\n", pDrive->m_phasePrecise / 2, currentBitPosition, pFloppy->m_bitOffset, pFloppy->m_bitCount); #endif pFloppy->m_byte = pFloppy->m_bitOffset / 8; pFloppy->m_bitMask = 1 << (7 - (pFloppy->m_bitOffset % 8)); pFloppy->m_extraCycles = 0.0; pDrive->m_headWindow = 0; FindTrackSeamWOZ(*pFloppy, pDrive->m_phasePrecise/2); } pFloppy->m_trackimagedata = (pFloppy->m_nibbles != 0); pFloppy->m_initialBitOffset = pFloppy->m_bitOffset; pFloppy->m_revs = 0; } } //=========================================================================== void Disk2InterfaceCard::EjectDiskInternal(const int drive) { FloppyDisk* pFloppy = &m_floppyDrive[drive].m_disk; if (pFloppy->m_imagehandle) { FlushCurrentTrack(drive); ImageClose(pFloppy->m_imagehandle); pFloppy->m_imagehandle = NULL; } if (pFloppy->m_trackimage) { delete [] pFloppy->m_trackimage; pFloppy->m_trackimage = NULL; pFloppy->m_trackimagedata = false; } pFloppy->m_imagename.clear(); pFloppy->m_fullname.clear(); pFloppy->m_strFilenameInZip = ""; } void Disk2InterfaceCard::EjectDisk(const int drive) { if (!IsDriveValid(drive)) return; EjectDiskInternal(drive); Snapshot_UpdatePath(); SaveLastDiskImage(drive); GetFrame().Video_ResetScreenshotCounter(""); } void Disk2InterfaceCard::UnplugDrive(const int drive) { if (!IsDriveValid(drive)) return; EjectDisk(drive); m_floppyDrive[drive].m_isConnected = false; } //=========================================================================== void Disk2InterfaceCard::WriteTrack(const int drive) { FloppyDrive* pDrive = &m_floppyDrive[ drive ]; FloppyDisk* pFloppy = &pDrive->m_disk; if (ImagePhaseToTrack(pFloppy->m_imagehandle, pDrive->m_phasePrecise, false) >= ImageGetNumTracks(pFloppy->m_imagehandle)) { _ASSERT(0); // What can cause this? Add a comment to replace this assert. return; } if (pFloppy->m_bWriteProtected) return; if (pFloppy->m_trackimage && pFloppy->m_imagehandle) { #if LOG_DISK_TRACKS LOG_DISK("track $%s write\r\n", GetCurrentTrackString().c_str()); #endif ImageWriteTrack( pFloppy->m_imagehandle, pDrive->m_phasePrecise, pFloppy->m_trackimage, pFloppy->m_nibbles); } pFloppy->m_trackimagedirty = false; } void Disk2InterfaceCard::FlushCurrentTrack(const int drive) { FloppyDisk* pFloppy = &m_floppyDrive[drive].m_disk; if (pFloppy->m_trackimage && pFloppy->m_trackimagedirty) WriteTrack(drive); } //=========================================================================== void Disk2InterfaceCard::Boot(void) { // THIS FUNCTION RELOADS A PROGRAM IMAGE IF ONE IS LOADED IN DRIVE ONE. // IF A DISK IMAGE OR NO IMAGE IS LOADED IN DRIVE ONE, IT DOES NOTHING. if (m_floppyDrive[0].m_disk.m_imagehandle && ImageBoot(m_floppyDrive[0].m_disk.m_imagehandle)) m_floppyMotorOn = 0; } //=========================================================================== void __stdcall Disk2InterfaceCard::ControlMotor(WORD, WORD address, BYTE, BYTE, ULONG uExecutedCycles) { BOOL newState = address & 1; bool stateChanged = (newState != m_floppyMotorOn); // "2. [...] (DRIVES OFF forces the control flipflops to clear.)" (UTAIIe page 9-12) if (newState == FALSE) m_magnetStates = 0; // GH#926, GH#1315 if (stateChanged) { m_floppyMotorOn = newState; m_formatTrack.DriveNotWritingTrack(); } // NB. Motor off doesn't reset the Command Decoder like reset. (UTAIIe figures 9.7 & 9.8 chip C2) // - so it doesn't reset this state: m_seqFunc, m_magnetStates #if LOG_DISK_MOTOR LOG_DISK("%08X: motor %s\r\n", (UINT32)g_nCumulativeCycles, (m_floppyMotorOn) ? "on" : "off"); #endif CheckSpinning(stateChanged, uExecutedCycles); } //=========================================================================== void __stdcall Disk2InterfaceCard::ControlStepper(WORD, WORD address, BYTE, BYTE, ULONG uExecutedCycles) { FloppyDrive* pDrive = &m_floppyDrive[m_currDrive]; if (!m_floppyMotorOn) // GH#525 { if (!pDrive->m_spinning) { #if LOG_DISK_PHASES LOG_DISK("stepper accessed whilst motor is off and not spinning\r\n"); #endif return; } #if LOG_DISK_PHASES LOG_DISK("stepper accessed whilst motor is off, but still spinning\r\n"); #endif } // update phases (magnet states) { const int phase = (address >> 1) & 3; const int phase_bit = (1 << phase); // update the magnet states if (address & 1) m_magnetStates |= phase_bit; // phase on else m_magnetStates &= ~phase_bit; // phase off } if (!GetCardMgr().GetDisk2CardMgr().IsStepperDeferred()) { m_deferredStepperAddress = address; m_deferredStepperCumulativeCycles = g_nCumulativeCycles; ControlStepperDeferred(); return; } if (m_syncEvent.m_active) { // Check for adjacent magnets being turned off/on in a very short interval (10 cycles is purely based on A2osX). (GH#1110) g_SynchronousEventMgr.Remove(m_syncEvent.m_id); m_deferredStepperEvent = false; int addrDelta = (m_deferredStepperAddress & 7) - (address & 7); if (addrDelta < 0) addrDelta = -addrDelta; if (addrDelta == 2 || addrDelta == 6) // adjacent magnets: both turned off or both turned on { if ((address & 1) == 0) // adjacent magnets off { // 2 adjacent magnets off in quick succession don't move the cog (GH#1110) // . also DOS3.2, Pascal and ProDOS rapidly turning off all 4 magnets. ControlStepperLogging(m_deferredStepperAddress, m_deferredStepperCumulativeCycles); ControlStepperLogging(address, g_nCumulativeCycles); return; } else // adjacent magnets turned on { // take no action - can't find any titles that ever do this! const std::string msg = "Disk: ControlStepper() - adjacent magnets turned on\n"; LogOutput("%s", msg.c_str()); LogFileOutput("%s", msg.c_str()); } } // complete the deferred stepper event // eg. Glutton, EDD III - both just combinations of turning off all 4 magnets ControlStepperDeferred(); } // defer the effect of changing the phase m_deferredStepperAddress = address; m_deferredStepperCumulativeCycles = g_nCumulativeCycles; InsertSyncEvent(); m_deferredStepperEvent = true; } void Disk2InterfaceCard::InsertSyncEvent(void) { m_syncEvent.m_cyclesRemaining = 10; // NB. same cycle delay for magnet off and on - but perhaps they take different times? g_SynchronousEventMgr.Insert(&m_syncEvent); } int Disk2InterfaceCard::SyncEventCallback(int id, int cycles, ULONG uExecutedCycles) { Disk2InterfaceCard& disk2Card = dynamic_cast(GetCardMgr().GetRef(id)); disk2Card.ControlStepperDeferred(); return 0; // Don't repeat event } void Disk2InterfaceCard::ControlStepperDeferred(void) { m_deferredStepperEvent = false; const WORD address = m_deferredStepperAddress; FloppyDrive* pDrive = &m_floppyDrive[m_currDrive]; FloppyDisk* pFloppy = &pDrive->m_disk; // check for any stepping effect from a magnet // - move only when the magnet opposite the cog is off // - move in the direction of an adjacent magnet if one is on // - do not move if both adjacent magnets are on (ie. quarter track) // - timing is accounted for in the case when "two phases [are] turned off in rapid sequence" (UTAIIe page 9-13) (GH#1110) // momentum is not accounted for ... maybe one day! int direction = 0; if (m_magnetStates & (1 << ((pDrive->m_phase + 1) & 3))) direction += 1; if (m_magnetStates & (1 << ((pDrive->m_phase + 3) & 3))) direction -= 1; // Only calculate quarterDirection for WOZ, as NIB/DSK don't support half phases. int quarterDirection = 0; if (ImageIsWOZ(pFloppy->m_imagehandle)) { if ((m_magnetStates == 0xC || // 1100 m_magnetStates == 0x6 || // 0110 m_magnetStates == 0x3 || // 0011 m_magnetStates == 0x9)) // 1001 { quarterDirection = direction; direction = 0; } } pDrive->m_phase = MAX(0, MIN(79, pDrive->m_phase + direction)); float newPhasePrecise = (float)(pDrive->m_phase) + (float)quarterDirection * 0.5f; if (newPhasePrecise < 0) newPhasePrecise = 0; // apply magnet step, if any if (newPhasePrecise != pDrive->m_phasePrecise) { FlushCurrentTrack(m_currDrive); pDrive->m_phasePrecise = newPhasePrecise; pFloppy->m_trackimagedata = false; m_formatTrack.DriveNotWritingTrack(); GetFrame().FrameDrawDiskStatus(); // Show track status (GH#201) } ControlStepperLogging(address, m_deferredStepperCumulativeCycles); } void Disk2InterfaceCard::ControlStepperLogging(WORD address, unsigned __int64 cumulativeCycles) { FloppyDrive* pDrive = &m_floppyDrive[m_currDrive]; #if LOG_DISK_PHASES const ULONG cycleDelta = (ULONG)(cumulativeCycles - pDrive->m_lastStepperCycle); #endif pDrive->m_lastStepperCycle = cumulativeCycles; // NB. Persisted to save-state #if LOG_DISK_PHASES LOG_DISK("%08X: track $%s magnet-states %d%d%d%d phase %d %s address $%4X last-stepper %.3fms\r\n", (UINT32)cumulativeCycles, GetCurrentTrackString().c_str(), (m_magnetStates >> 3) & 1, (m_magnetStates >> 2) & 1, (m_magnetStates >> 1) & 1, (m_magnetStates >> 0) & 1, (address >> 1) & 3, // phase (address & 1) ? "on " : "off", address, ((float)cycleDelta) / (CLK_6502_NTSC / 1000.0)); #endif } //=========================================================================== void Disk2InterfaceCard::Destroy(void) { m_saveDiskImage = false; EjectDisk(DRIVE_1); m_saveDiskImage = false; EjectDisk(DRIVE_2); m_saveDiskImage = true; } //=========================================================================== bool __stdcall Disk2InterfaceCard::Enable(WORD, WORD address, BYTE, BYTE, ULONG uExecutedCycles) { WORD newDrive = address & 1; bool stateChanged = (newDrive != m_currDrive); m_currDrive = newDrive; #if LOG_DISK_ENABLE_DRIVE LOG_DISK("%08X: enable drive: %d\r\n", (UINT32)g_nCumulativeCycles, m_currDrive); #endif m_floppyDrive[!m_currDrive].m_spinning = 0; m_floppyDrive[!m_currDrive].m_writelight = 0; CheckSpinning(stateChanged, uExecutedCycles); return ImageIsWOZ(m_floppyDrive[m_currDrive].m_disk.m_imagehandle); // Drive may've changed, so image-type may've changed } //=========================================================================== // Return the filename // . Used by Drive Buttons' tooltips const std::string & Disk2InterfaceCard::GetFullDiskFilename(const int drive) { if (!m_floppyDrive[drive].m_disk.m_strFilenameInZip.empty()) return m_floppyDrive[drive].m_disk.m_strFilenameInZip; return GetFullName(drive); } // Return the file or zip name // . Used by Property Sheet Page (Disk) const std::string & Disk2InterfaceCard::GetFullName(const int drive) { return m_floppyDrive[drive].m_disk.m_fullname; } // Return the imagename // . Used by Drive Button's icons & Property Sheet Page (Save snapshot) const std::string & Disk2InterfaceCard::GetBaseName(const int drive) { return m_floppyDrive[drive].m_disk.m_imagename; } void Disk2InterfaceCard::GetFilenameAndPathForSaveState(std::string& filename, std::string& path) { filename = ""; path = ""; for (UINT i=DRIVE_1; i<=DRIVE_2; i++) { if (IsDriveEmpty(i)) continue; filename = GetBaseName(i); std::string pathname = DiskGetFullPathName(i); int idx = pathname.find_last_of(PATH_SEPARATOR); if (idx >= 0 && idx+1 < (int)pathname.length()) // path exists? { path = pathname.substr(0, idx+1); return; } _ASSERT(0); break; } } const std::string & Disk2InterfaceCard::DiskGetFullPathName(const int drive) { return ImageGetPathname(m_floppyDrive[drive].m_disk.m_imagehandle); } //=========================================================================== Disk_Status_e Disk2InterfaceCard::GetDriveLightStatus(const int drive) { if (IsDriveValid( drive )) { FloppyDrive* pDrive = &m_floppyDrive[ drive ]; if (pDrive->m_spinning) { if (pDrive->m_disk.m_bWriteProtected) return DISK_STATUS_PROT; if (pDrive->m_writelight) return DISK_STATUS_WRITE; else return DISK_STATUS_READ; } else { return DISK_STATUS_OFF; } } return DISK_STATUS_EMPTY; } void Disk2InterfaceCard::GetLightStatus(Disk_Status_e *pDisk1Status, Disk_Status_e *pDisk2Status) { if (pDisk1Status) *pDisk1Status = GetDriveLightStatus(DRIVE_1); if (pDisk2Status) *pDisk2Status = GetDriveLightStatus(DRIVE_2); } //=========================================================================== // Pre: pathname likely to include path (but can also just be filename) ImageError_e Disk2InterfaceCard::InsertDisk(const int drive, const std::string& pathname, const bool bForceWriteProtected, const bool bCreateIfNecessary) { FloppyDrive* pDrive = &m_floppyDrive[drive]; FloppyDisk* pFloppy = &pDrive->m_disk; if (pFloppy->m_imagehandle) EjectDisk(drive); // Reset the disk's attributes, but preserve the drive's attributes (GH#138/Platoon, GH#640) // . Changing the disk (in the drive) doesn't affect the drive's attributes. pFloppy->clear(); const DWORD dwAttributes = GetFileAttributes(pathname.c_str()); if (dwAttributes == INVALID_FILE_ATTRIBUTES) pFloppy->m_bWriteProtected = false; // Assume this is a new file to create (so it must be write-enabled to allow it to be formatted) else pFloppy->m_bWriteProtected = bForceWriteProtected ? true : (dwAttributes & FILE_ATTRIBUTE_READONLY); // Check if image is being used by the other drive, and if so remove it in order so it can be swapped { const std::string & pszOtherPathname = DiskGetFullPathName(!drive); char szCurrentPathname[MAX_PATH]; DWORD uNameLen = GetFullPathName(pathname.c_str(), MAX_PATH, szCurrentPathname, NULL); if (uNameLen == 0 || uNameLen >= MAX_PATH) strcpy_s(szCurrentPathname, MAX_PATH, pathname.c_str()); if (!strcmp(pszOtherPathname.c_str(), szCurrentPathname)) { EjectDisk(!drive); GetFrame().FrameRefreshStatus(DRAW_LEDS | DRAW_BUTTON_DRIVES | DRAW_DISK_STATUS); } } ImageError_e Error = ImageOpen(pathname, &pFloppy->m_imagehandle, &pFloppy->m_bWriteProtected, bCreateIfNecessary, pFloppy->m_strFilenameInZip); if (Error == eIMAGE_ERROR_NONE && ImageIsMultiFileZip(pFloppy->m_imagehandle)) { std::string strText = StrFormat("Only the first file in a multi-file zip is supported\n" "Use disk image '%s' ?", pFloppy->m_strFilenameInZip.c_str()); int nRes = GetFrame().FrameMessageBox(strText.c_str(), "Multi-Zip Warning", MB_ICONWARNING | MB_YESNO | MB_SETFOREGROUND); if (nRes == IDNO) { EjectDisk(drive); Error = eIMAGE_ERROR_REJECTED_MULTI_ZIP; } } if (Error == eIMAGE_ERROR_NONE) { GetImageTitle(pathname.c_str(), pFloppy->m_imagename, pFloppy->m_fullname); Snapshot_UpdatePath(); GetFrame().Video_ResetScreenshotCounter(pFloppy->m_imagename); if (g_nAppMode == MODE_LOGO) InitFirmware(GetCxRomPeripheral()); } else { GetFrame().Video_ResetScreenshotCounter(""); } SaveLastDiskImage(drive); return Error; } //=========================================================================== bool Disk2InterfaceCard::IsConditionForFullSpeed(void) { return m_floppyMotorOn && m_enhanceDisk; } //=========================================================================== void Disk2InterfaceCard::NotifyInvalidImage(const int drive, const std::string & szImageFilename, const ImageError_e Error) { std::string strText; const char * pszImageFilename = szImageFilename.c_str(); switch (Error) { case eIMAGE_ERROR_UNABLE_TO_OPEN: case eIMAGE_ERROR_UNABLE_TO_OPEN_GZ: case eIMAGE_ERROR_UNABLE_TO_OPEN_ZIP: strText = StrFormat("Unable to open the file %s.", pszImageFilename); break; case eIMAGE_ERROR_BAD_SIZE: strText = StrFormat("Unable to use the file %s\n" "because the disk image is an unsupported size.", pszImageFilename); break; case eIMAGE_ERROR_BAD_FILE: strText = StrFormat("Unable to use the file %s\n" "because the OS can't access it.", pszImageFilename); break; case eIMAGE_ERROR_UNSUPPORTED: strText = StrFormat("Unable to use the file %s\n" "because the disk image format is not recognized.", pszImageFilename); break; case eIMAGE_ERROR_UNSUPPORTED_HDV: strText = StrFormat("Unable to use the file %s\n" "because this UniDisk 3.5/Apple IIGS/hard-disk image is not supported.\n" "Try inserting as a hard-disk image instead.", pszImageFilename); break; case eIMAGE_ERROR_GZ: case eIMAGE_ERROR_ZIP: strText = StrFormat("Unable to use the compressed file %s\n" "because the compressed disk image is corrupt/unsupported.", pszImageFilename); break; case eIMAGE_ERROR_FAILED_TO_GET_PATHNAME: strText = StrFormat("Unable to GetFullPathName() for the file: %s.", pszImageFilename); break; case eIMAGE_ERROR_ZEROLENGTH_WRITEPROTECTED: strText = StrFormat("Unsupported zero-length write-protected file: %s.", pszImageFilename); break; case eIMAGE_ERROR_FAILED_TO_INIT_ZEROLENGTH: strText = StrFormat("Failed to resize the zero-length file: %s.", pszImageFilename); break; default: // IGNORE OTHER ERRORS SILENTLY return; } GetFrame().FrameMessageBox(strText.c_str(), g_pAppTitle.c_str(), MB_ICONEXCLAMATION | MB_SETFOREGROUND); } //=========================================================================== bool Disk2InterfaceCard::GetProtect(const int drive) { if (!IsDriveValid(drive)) return true; return m_floppyDrive[drive].m_disk.m_bWriteProtected; } //=========================================================================== void Disk2InterfaceCard::SetProtect(const int drive, const bool bWriteProtect) { if (!IsDriveValid(drive)) return; m_floppyDrive[drive].m_disk.m_bWriteProtected = bWriteProtect; } //=========================================================================== bool Disk2InterfaceCard::IsDriveEmpty(const int drive) { if (!IsDriveValid(drive)) return true; return m_floppyDrive[drive].m_disk.m_imagehandle == NULL; } //=========================================================================== bool Disk2InterfaceCard::IsWozImageInDrive(const int drive) { if (!IsDriveValid(drive)) return false; return ImageIsWOZ(m_floppyDrive[drive].m_disk.m_imagehandle); } //=========================================================================== #if LOG_DISK_NIBBLES_WRITE bool Disk2InterfaceCard::LogWriteCheckSyncFF(ULONG& uCycleDelta) { bool bIsSyncFF = false; if (m_uWriteLastCycle == 0) // Reset to 0 when write mode is enabled { uCycleDelta = 0; if (m_floppyLatch == 0xFF) { m_uSyncFFCount = 0; bIsSyncFF = true; } } else { uCycleDelta = (ULONG) (g_nCumulativeCycles - m_uWriteLastCycle); if (m_floppyLatch == 0xFF && uCycleDelta > 32) { m_uSyncFFCount++; bIsSyncFF = true; } } m_uWriteLastCycle = g_nCumulativeCycles; return bIsSyncFF; } #endif //=========================================================================== void Disk2InterfaceCard::UpdateLatchForEmptyDrive(FloppyDrive* pDrive) { if (!pDrive->m_isConnected) { m_floppyLatch = 0x80; // GH#864 return; } // Drive connected if ((g_nCumulativeCycles - pDrive->m_motorOnCycle) < MOTOR_ON_UNTIL_LSS_STABLE_CYCLES) m_floppyLatch = 0x80; // GH#864 else m_floppyLatch = rand() & 0xFF; // GH#748 } void __stdcall Disk2InterfaceCard::ReadWrite(WORD pc, WORD addr, BYTE bWrite, BYTE d, ULONG uExecutedCycles) { FloppyDrive* pDrive = &m_floppyDrive[m_currDrive]; FloppyDisk* pFloppy = &pDrive->m_disk; if (!pFloppy->m_trackimagedata && pFloppy->m_imagehandle) ReadTrack(m_currDrive, uExecutedCycles); if (!pFloppy->m_trackimagedata) return UpdateLatchForEmptyDrive(pDrive); // Improve precision of "authentic" drive mode - GH#125 UINT uSpinNibbleCount = 0; if (!m_enhanceDisk && pDrive->m_spinning) { const ULONG nCycleDiff = (ULONG) (g_nCumulativeCycles - m_diskLastCycle); m_diskLastCycle = g_nCumulativeCycles; if (nCycleDiff > 40) { // 40 cycles for a write of a 10-bit 0xFF sync byte uSpinNibbleCount = nCycleDiff >> 5; // ...but divide by 32 (not 40) ULONG uWrapOffset = uSpinNibbleCount % pFloppy->m_nibbles; pFloppy->m_byte += uWrapOffset; if (pFloppy->m_byte >= pFloppy->m_nibbles) pFloppy->m_byte -= pFloppy->m_nibbles; #if LOG_DISK_NIBBLES_SPIN UINT uCompleteRevolutions = uSpinNibbleCount / pFloppy->m_nibbles; LOG_DISK("spin: revs=%d, nibbles=%d\r\n", uCompleteRevolutions, uWrapOffset); #endif } } if (!m_seqFunc.writeMode) { // Don't change latch if drive off after 1 second drive-off delay (UTAIIe page 9-13) // "DRIVES OFF forces the data register to hold its present state." (UTAIIe page 9-12) // Note: Sherwood Forest sets shift mode and reads with the drive off. if (!pDrive->m_spinning) // GH#599 return; const ULONG nReadCycleDiff = (ULONG) (g_nCumulativeCycles - m_diskLastReadLatchCycle); // Support partial nibble read if disk reads are very close: (GH#582) // . 6 cycles (1st->2nd read) for DOS 3.3 / $BD34: "read with delays to see if disk is spinning." (Beneath Apple DOS) // . 6 cycles (1st->2nd read) for Curse of the Azure Bonds (loop to see if disk is spinning) // . 25 cycles or higher fails for Legacy of the Ancients (GH#733) // . 31 cycles is the max for a partial 8-bit nibble const ULONG kReadAccessThreshold = 6; // Same for enhanced/authentic modes if (nReadCycleDiff <= kReadAccessThreshold) { UINT invalidBits = 8 - (nReadCycleDiff / 4); // 4 cycles per bit-cell m_floppyLatch = *(pFloppy->m_trackimage + pFloppy->m_byte) >> invalidBits; return; // Early return so don't update: m_diskLastReadLatchCycle & pFloppy->byte } m_floppyLatch = *(pFloppy->m_trackimage + pFloppy->m_byte); m_diskLastReadLatchCycle = g_nCumulativeCycles; #if LOG_DISK_NIBBLES_READ #if LOG_DISK_NIBBLES_USE_RUNTIME_VAR if (m_bLogDisk_NibblesRW) #endif { LOG_DISK("read %04X = %02X\r\n", pFloppy->m_byte, m_floppyLatch); } m_formatTrack.DecodeLatchNibbleRead(m_floppyLatch); #endif } else if (!pFloppy->m_bWriteProtected) // && m_seqFunc.writeMode { if (!pDrive->m_spinning) return; // If not spinning then only 1 bit-cell gets written? *(pFloppy->m_trackimage + pFloppy->m_byte) = m_floppyLatch; pFloppy->m_trackimagedirty = true; bool bIsSyncFF = false; #if LOG_DISK_NIBBLES_WRITE ULONG uCycleDelta = 0; bIsSyncFF = LogWriteCheckSyncFF(uCycleDelta); #endif m_formatTrack.DecodeLatchNibbleWrite(m_floppyLatch, uSpinNibbleCount, pFloppy, bIsSyncFF); // GH#125 #if LOG_DISK_NIBBLES_WRITE #if LOG_DISK_NIBBLES_USE_RUNTIME_VAR if (m_bLogDisk_NibblesRW) #endif { if (!bIsSyncFF) LOG_DISK("write %04X = %02X (cy=+%d)\r\n", pFloppy->m_byte, m_floppyLatch, uCycleDelta); else LOG_DISK("write %04X = %02X (cy=+%d) sync #%d\r\n", pFloppy->m_byte, m_floppyLatch, uCycleDelta, m_uSyncFFCount); } #endif } // GH #1212 We have a non .WOZ disk, mirror so that GetCurrentShiftReg() returns last nibble read m_shiftReg = m_floppyLatch; if (++pFloppy->m_byte >= pFloppy->m_nibbles) pFloppy->m_byte = 0; // Show track status (GH#201) - NB. Prevent flooding of forcing UI to redraw!!! if ((pFloppy->m_byte & 0xFF) == 0) GetFrame().FrameDrawDiskStatus(); } //=========================================================================== void Disk2InterfaceCard::ResetLogicStateSequencer(void) { m_shiftReg = 0; m_latchDelay = 0; m_writeStarted = false; m_dbgLatchDelayedCnt = 0; m_T00S00PatternIdx = 0; m_foundT00S00Pattern = false; } UINT Disk2InterfaceCard::GetBitCellDelta(const ULONG uExecutedCycles) { FloppyDisk& floppy = m_floppyDrive[m_currDrive].m_disk; const BYTE optimalBitTiming = ImageGetOptimalBitTiming(floppy.m_imagehandle); // NB. m_extraCycles is needed to retain accuracy: // . Read latch #1: 0-> 9: cycleDelta= 9, bitCellDelta=2, extraCycles=1 // . Read latch #2: 9->20: cycleDelta=11, bitCellDelta=2, extraCycles=3 // . Overall: 0->20: cycleDelta=20, bitCellDelta=5, extraCycles=0 UINT bitCellDelta; #if 0 if (optimalBitTiming == 32) { const ULONG cycleDelta = (ULONG)(g_nCumulativeCycles - m_diskLastCycle) + (BYTE) floppy.m_extraCycles; bitCellDelta = cycleDelta / 4; // DIV 4 for 4us per bit-cell floppy.m_extraCycles = cycleDelta & 3; // MOD 4 : remainder carried forward for next time } else #endif { const double cycleDelta = (double)(g_nCumulativeCycles - m_diskLastCycle) + floppy.m_extraCycles; const double bitTime = 0.125 * (double)optimalBitTiming; // 125ns units bitCellDelta = (UINT) floor( cycleDelta / bitTime ); floppy.m_extraCycles = (double)cycleDelta - ((double)bitCellDelta * bitTime); } // NB. actual m_diskLastCycle for the last bitCell is minus floppy.m_extraCycles // - but don't need this value; and it's correctly accounted for in this function. m_diskLastCycle = g_nCumulativeCycles; return bitCellDelta; } void Disk2InterfaceCard::UpdateBitStreamPosition(FloppyDisk& floppy, const ULONG bitCellDelta) { if (floppy.m_bitCount == 0) // Repro: Boot DOS3.3(WOZ), eject+reinsert disk, CALL-151, C0E9 N C0ED ; motor-on & LoadWriteProtect() return; floppy.m_bitOffset += bitCellDelta; if (floppy.m_bitOffset >= floppy.m_bitCount) floppy.m_bitOffset %= floppy.m_bitCount; UpdateBitStreamOffsets(floppy); } void Disk2InterfaceCard::UpdateBitStreamOffsets(FloppyDisk& floppy) { floppy.m_byte = floppy.m_bitOffset / 8; const UINT remainder = 7 - (floppy.m_bitOffset & 7); floppy.m_bitMask = 1 << remainder; } __forceinline void Disk2InterfaceCard::IncBitStream(FloppyDisk& floppy) { floppy.m_bitMask >>= 1; if (!floppy.m_bitMask) { floppy.m_bitMask = 1 << 7; floppy.m_byte++; } floppy.m_bitOffset++; if (floppy.m_bitOffset == floppy.m_bitCount) { floppy.m_bitMask = 1 << 7; floppy.m_bitOffset = 0; floppy.m_byte = 0; } if (floppy.m_bitOffset == floppy.m_initialBitOffset) floppy.m_revs++; } void Disk2InterfaceCard::PreJitterCheck(int phase, BYTE latch) { if (phase != 0 || (latch & 0x80) == 0) return; if (latch == m_T00S00Pattern[m_T00S00PatternIdx]) { m_T00S00PatternIdx++; if (m_T00S00PatternIdx == sizeof(m_T00S00Pattern)) m_foundT00S00Pattern = true; // 6502 code has just read latch nibbles for T$00,S$00 address prologue } else { m_T00S00PatternIdx = 0; } } // GH#930: After T$00,S$00 randomly skip 1 bit-cell. // . PreJitterCheck() condition met && skipped a big number of bit-cells. // . Fix is just for 'Wasteland' and 'Legacy of the Ancients' (but shouldn't interfere with any other woz images). // . NB. This is likely to be the transition from DiskII firmware ($C6xx) to user-code ($801), // so skipping 1 bit-cell here shouldn't matter. // . And (see comment [*1]) the T00S00 pattern only matches a handful of titles. void Disk2InterfaceCard::AddJitter(int phase, FloppyDisk& floppy) { if (phase == 0 && m_foundT00S00Pattern) { if (rand() < RAND_THRESHOLD(1, 10)) { LogOutput("Disk: T$00 jitter - slip 1 bitcell (PC=%04X)\n", regs.pc); IncBitStream(floppy); } else { LogOutput("Disk: T$00 jitter - *** SKIP *** (PC=%04X)\n", regs.pc); } } m_T00S00PatternIdx = 0; m_foundT00S00Pattern = false; } // GH#1125: For T$21 (track 33.0) or above (and sufficiently long sync FF/10 run-length), then randomly skip 1 bit-cell at the start of the FF/2 track seam. // Example of high sync FF/10 run-lengths for tracks 33.0+: // . Accolade Comics:114, Silent Service:117, Wings of Fury:140, Wizardry I:127, Wizardry III:283 // NB. Restrict to higher FF/10 run-lengths to limit the titles affected by this jitter. void Disk2InterfaceCard::AddTrackSeamJitter(float phasePrecise, FloppyDisk& floppy) { if (phasePrecise >= (33.0 * 2) && floppy.m_longestSyncFFRunLength > 110) { if (floppy.m_bitOffset == floppy.m_longestSyncFFBitOffsetStart) { if (rand() < RAND_THRESHOLD(5, 10)) { LogOutput("Disk: T%05.2f jitter - slip 1 bitcell (revs=%d) (PC=%04X)\n", phasePrecise / 2, floppy.m_revs, regs.pc); IncBitStream(floppy); } else { LogOutput("Disk: T%05.2f jitter - *** SKIP *** (revs=%d) (PC=%04X)\n", phasePrecise / 2, floppy.m_revs, regs.pc); } } } } void __stdcall Disk2InterfaceCard::DataLatchReadWriteWOZ(WORD pc, WORD addr, BYTE bWrite, ULONG uExecutedCycles) { _ASSERT(m_seqFunc.function != dataShiftWrite); FloppyDrive& drive = m_floppyDrive[m_currDrive]; FloppyDisk& floppy = drive.m_disk; if (!floppy.m_trackimagedata && floppy.m_imagehandle) { ReadTrack(m_currDrive, uExecutedCycles); // NB. ReadTrack() has called GetBitCellDelta(), so the subsequent call to GetBitCellDelta() below just returns bitCellDelta==0 // So could just return at this point. } if (!floppy.m_trackimagedata) { _ASSERT(0); // Can't happen for WOZ - ReadTrack() should return an empty track return UpdateLatchForEmptyDrive(&drive); } // Don't change latch if drive off after 1 second drive-off delay (UTAIIe page 9-13) // "DRIVES OFF forces the data register to hold its present state." (UTAIIe page 9-12) // Note: Sherwood Forest sets shift mode and reads with the drive off. // TODO: And same for a write? if (!drive.m_spinning) // GH#599 return; // Skipping forward a large amount of bitcells means the bitstream will very likely be out-of-sync. // The first 1-bit will produce a latch nibble, and this 1-bit is unlikely to be the nibble's high bit. // So we need to ensure we run enough bits through the sequencer to re-sync. const UINT significantBitCells = 100; // eg. long stream of weak bits and/or 5x 10-bit sync FF nibbles (GH#1020) UINT bitCellDelta = GetBitCellDelta(uExecutedCycles); UINT bitCellRemainder; if (bitCellDelta <= significantBitCells) { bitCellRemainder = bitCellDelta; } else { bitCellRemainder = significantBitCells; bitCellDelta -= significantBitCells; UpdateBitStreamPosition(floppy, bitCellDelta); m_latchDelay = 0; drive.m_headWindow = 0; AddJitter(drive.m_phase, floppy); // Only call when skipping a big number of bit-cells (ie. >significantBitCells) } if (!bWrite) { if (m_seqFunc.function != readSequencing) { _ASSERT(m_seqFunc.function == checkWriteProtAndInitWrite); UpdateBitStreamPosition(floppy, bitCellRemainder); return; } DataLatchReadWOZ(pc, addr, bitCellRemainder); PreJitterCheck(drive.m_phase, m_floppyLatch); // Pre: m_floppyLatch just updated } else { _ASSERT(m_seqFunc.function == dataLoadWrite); DataLoadWriteWOZ(pc, addr, bitCellRemainder); } // Show track status (GH#201) - NB. Prevent flooding of forcing UI to redraw!!! if ((floppy.m_byte & 0xFF) == 0) GetFrame().FrameDrawDiskStatus(); } void Disk2InterfaceCard::DataLatchReadWOZ(WORD pc, WORD addr, UINT bitCellRemainder) { // m_diskLastReadLatchCycle = g_nCumulativeCycles; // Not used by WOZ (only by NIB) #if LOG_DISK_NIBBLES_READ bool newLatchData = false; #endif FloppyDrive& drive = m_floppyDrive[m_currDrive]; FloppyDisk& floppy = drive.m_disk; #if _DEBUG static int dbgWOZ = 0; if (dbgWOZ) { dbgWOZ = 0; DumpTrackWOZ(floppy); // Enable as necessary } #endif for (UINT i = 0; i < bitCellRemainder; i++) { BYTE n = floppy.m_trackimage[floppy.m_byte]; drive.m_headWindow <<= 1; drive.m_headWindow |= (n & floppy.m_bitMask) ? 1 : 0; BYTE outputBit = (drive.m_headWindow & 0xf) ? (drive.m_headWindow >> 1) & 1 : (rand() < RAND_THRESHOLD(3, 10)) ? 1 : 0; // ~30% chance of a 1 bit (Ref: WOZ-2.0) IncBitStream(floppy); AddTrackSeamJitter(drive.m_phasePrecise, floppy); m_shiftReg <<= 1; m_shiftReg |= outputBit; if (m_latchDelay) { m_latchDelay -= 4; if (m_latchDelay < 0) m_latchDelay = 0; if (m_shiftReg) { m_dbgLatchDelayedCnt = 0; } else // m_shiftReg==0 { m_latchDelay += 4; // extend by 4us (so 7us again) - GH#662 m_dbgLatchDelayedCnt++; #if LOG_DISK_NIBBLES_READ if (m_dbgLatchDelayedCnt >= 3) { LOG_DISK("read: latch held due to 0: PC=%04X, cnt=%02X\r\n", regs.pc, m_dbgLatchDelayedCnt); } #endif } } if (!m_latchDelay) { #if LOG_DISK_NIBBLES_READ if (newLatchData) { LOG_DISK("read skipped latch data: %04X = %02X\r\n", floppy.m_byte, m_floppyLatch); newLatchData = false; } #endif m_floppyLatch = m_shiftReg; if (m_shiftReg & 0x80) { m_latchDelay = 7; m_shiftReg = 0; #if LOG_DISK_NIBBLES_READ // May not actually be read by 6502 (eg. Prologue's CHKSUM 4&4 nibble pair), but still pass to the log's nibble reader m_formatTrack.DecodeLatchNibbleRead(m_floppyLatch); newLatchData = true; #endif } } } // for #if LOG_DISK_NIBBLES_READ if (m_floppyLatch & 0x80) { #if LOG_DISK_NIBBLES_USE_RUNTIME_VAR if (m_bLogDisk_NibblesRW) #endif { LOG_DISK("read %04X = %02X\r\n", floppy.m_byte, m_floppyLatch); } } #endif } void Disk2InterfaceCard::DataLoadWriteWOZ(WORD pc, WORD addr, UINT bitCellRemainder) { _ASSERT(m_seqFunc.function == dataLoadWrite); FloppyDrive& drive = m_floppyDrive[m_currDrive]; FloppyDisk& floppy = drive.m_disk; if (floppy.m_bWriteProtected) { _ASSERT(0); // Must be a bug in the 6502 code for this to occur! UpdateBitStreamPosition(floppy, bitCellRemainder); return; } if (!m_writeStarted) UpdateBitStreamPosition(floppy, bitCellRemainder); // skip over bitCells before switching to write mode m_writeStarted = true; #if LOG_DISK_WOZ_LOADWRITE LOG_DISK("load shiftReg with %02X (was: %02X)\n", m_floppyLatch, m_shiftReg); #endif m_shiftReg = m_floppyLatch; floppy.m_longestSyncFFBitOffsetStart = -1; // invalidate the track seam location after a write } void Disk2InterfaceCard::DataShiftWriteWOZ(WORD pc, WORD addr, ULONG uExecutedCycles) { _ASSERT(m_seqFunc.function == dataShiftWrite); FloppyDrive& drive = m_floppyDrive[m_currDrive]; FloppyDisk& floppy = drive.m_disk; const UINT bitCellRemainder = GetBitCellDelta(uExecutedCycles); if (floppy.m_bWriteProtected) { _ASSERT(0); // Must be a bug in the 6502 code for this to occur! UpdateBitStreamPosition(floppy, bitCellRemainder); return; } if (!drive.m_spinning) return; if (!floppy.m_trackimagedata) // GH#1126 return; #if LOG_DISK_WOZ_SHIFTWRITE LOG_DISK("T$%02X, bitOffset=%04X: %02X (%d bits)\n", drive.m_phase/2, floppy.m_bitOffset, m_shiftReg, bitCellRemainder); #endif for (UINT i = 0; i < bitCellRemainder; i++) { BYTE outputBit = m_shiftReg & 0x80; m_shiftReg <<= 1; BYTE n = floppy.m_trackimage[floppy.m_byte]; n &= ~floppy.m_bitMask; if (outputBit) n |= floppy.m_bitMask; floppy.m_trackimage[floppy.m_byte] = n; IncBitStream(floppy); } floppy.m_trackimagedirty = true; } //=========================================================================== // For now all that's needed is this basic case: // . find [start,end] of longest run of FF/10 sync nibbles void Disk2InterfaceCard::FindTrackSeamWOZ(FloppyDisk& floppy, float track) { const UINT oldBitOffset = floppy.m_bitOffset; // Save current state BYTE shiftReg = 0; UINT zeroCount = 0; int startBitOffset = -1; // NB. change this to start of first FF/10 floppy.m_bitOffset = 0; UpdateBitStreamOffsets(floppy); int nibbleStartBitOffset = -1; int syncFFStartBitOffset = -1; int syncFFRunLength = 0; int longestSyncFFStartBitOffset = -1; int longestSyncFFRunLength = 0; floppy.m_longestSyncFFBitOffsetStart = -1; while (1) { BYTE n = floppy.m_trackimage[floppy.m_byte]; BYTE outputBit = (n & floppy.m_bitMask) ? 1 : 0; IncBitStream(floppy); if ((startBitOffset < 0 && floppy.m_bitOffset == 0) || (startBitOffset == floppy.m_bitOffset)) // done complete track? break; if (shiftReg & 0x80) { if (outputBit == 0) // zero, so LSS holds nibble in latch { zeroCount++; continue; } // else: start of next nibble if (shiftReg == 0xff && zeroCount == 2) { if (syncFFStartBitOffset < 0) syncFFStartBitOffset = nibbleStartBitOffset; syncFFRunLength++; } if ((shiftReg != 0xff || zeroCount != 2) && syncFFStartBitOffset >= 0) { // Longest FF/2 run could straddle end/start of track's bit buffer if (startBitOffset < 0) startBitOffset = nibbleStartBitOffset; if (longestSyncFFRunLength < syncFFRunLength) { longestSyncFFStartBitOffset = syncFFStartBitOffset; longestSyncFFRunLength = syncFFRunLength; } syncFFStartBitOffset = -1; syncFFRunLength = 0; } shiftReg = 0; zeroCount = 0; } shiftReg <<= 1; shiftReg |= outputBit; if (shiftReg == 0x01) { nibbleStartBitOffset = floppy.m_bitOffset - 1; if (nibbleStartBitOffset < 0) nibbleStartBitOffset += floppy.m_bitCount; } } if (longestSyncFFRunLength) { const int longestSyncFFBitOffsetEnd = (longestSyncFFStartBitOffset + longestSyncFFRunLength * 10 - 1) % floppy.m_bitCount; #if LOG_DISK_WOZ_TRACK_SEAM LOG_DISK("Track seam: T%05.2f: FF/10 (run=%d), start=%04X, end=%04X\n", track, longestSyncFFRunLength, longestSyncFFStartBitOffset, longestSyncFFBitOffsetEnd); #endif floppy.m_longestSyncFFBitOffsetStart = longestSyncFFStartBitOffset; floppy.m_longestSyncFFRunLength = longestSyncFFRunLength; } else { #if LOG_DISK_WOZ_TRACK_SEAM LOG_DISK("Track seam: T%05.2f: FF/10 (none)\n", track); #endif } // Restore state floppy.m_bitOffset = oldBitOffset; UpdateBitStreamOffsets(floppy); } //=========================================================================== #ifdef _DEBUG // Dump nibbles from current position bitstream wraps to same position // NB. Need to define LOG_DISK_NIBBLES_READ so that GetReadD5AAxxDetectedString() works. void Disk2InterfaceCard::DumpTrackWOZ(FloppyDisk floppy) // pass a copy of m_floppy { FormatTrack formatTrack(true); BYTE shiftReg = 0; UINT zeroCount = 0; UINT nibbleCount = 0; const UINT startBitOffset = 0; // NB. may need to tweak this offset, since the bitstream is a circular buffer floppy.m_bitOffset = startBitOffset; UpdateBitStreamOffsets(floppy); int nibbleStartBitOffset = -1; bool newLine = true; bool doneLastBit = false; while (1) { if (newLine && nibbleStartBitOffset >= 0) { newLine = false; LogOutput("%04X:", nibbleStartBitOffset); nibbleStartBitOffset = -1; } BYTE n = floppy.m_trackimage[floppy.m_byte]; BYTE outputBit = (n & floppy.m_bitMask) ? 1 : 0; IncBitStream(floppy); if (startBitOffset == floppy.m_bitOffset) // done complete track? doneLastBit = true; else if (doneLastBit) break; if (shiftReg & 0x80) { if (outputBit == 0) // zero, so LSS holds nibble in latch { zeroCount++; continue; } // else: start of next nibble nibbleCount++; char syncBits = zeroCount <= 9 ? '0' + zeroCount : '+'; if (zeroCount == 0) LogOutput("%02X ", shiftReg); else LogOutput("%02X(%c)", shiftReg, syncBits); formatTrack.DecodeLatchNibbleRead(shiftReg); if ((nibbleCount % 32) == 0) { std::string strReadDetected = formatTrack.GetReadD5AAxxDetectedString(); if (!strReadDetected.empty()) { OutputDebugString("\t; "); OutputDebugString(strReadDetected.c_str()); } OutputDebugString("\n"); newLine = true; } shiftReg = 0; zeroCount = 0; } shiftReg <<= 1; shiftReg |= outputBit; if (shiftReg == 0x01) { nibbleStartBitOffset = floppy.m_bitOffset - 1; if (nibbleStartBitOffset < 0) nibbleStartBitOffset += floppy.m_bitCount; } } // Output any partial nibble if (shiftReg & 0x80) { LogOutput("%02X", shiftReg); // Output any remaining zeroCount if (zeroCount) { char syncBits = zeroCount <= 9 ? '0' + zeroCount : '+'; LogOutput("(%c)", syncBits); } } else if (shiftReg) { LogOutput("%02X/Partial Nibble", shiftReg); } // Output any remaining "read D5AAxx detected" if (nibbleCount % 32) { std::string strReadDetected = formatTrack.GetReadD5AAxxDetectedString(); if (!strReadDetected.empty()) { OutputDebugString("\t; "); OutputDebugString(strReadDetected.c_str()); } OutputDebugString("\n"); } } #endif //=========================================================================== void Disk2InterfaceCard::Reset(const bool bIsPowerCycle) { // RESET forces all switches off (UTAIIe Table 9.1) ResetSwitches(); m_formatTrack.Reset(); ResetLogicStateSequencer(); if (bIsPowerCycle) // GH#460 { // NB. This doesn't affect the drive head (ie. drive's track position) // . The initial machine start-up state is track=0, but after a power-cycle the track could be any value. // . (For DiskII firmware, this results in a subtle extra latch read in this latter case, for the track!=0 case) m_floppyDrive[DRIVE_1].m_spinning = 0; m_floppyDrive[DRIVE_1].m_writelight = 0; m_floppyDrive[DRIVE_2].m_spinning = 0; m_floppyDrive[DRIVE_2].m_writelight = 0; GetFrame().FrameRefreshStatus(DRAW_LEDS); } InitFirmware(GetCxRomPeripheral()); GetFrame().FrameRefreshStatus(DRAW_TITLE); } void Disk2InterfaceCard::ResetSwitches(void) { m_currDrive = 0; m_floppyMotorOn = 0; m_magnetStates = 0; m_seqFunc.function = readSequencing; } //=========================================================================== bool Disk2InterfaceCard::UserSelectNewDiskImage(const int drive, LPCSTR pszFilename/*=""*/) { if (!IsDriveConnected(drive)) { GetFrame().FrameMessageBox("Drive not connected!", "Insert disk", MB_ICONEXCLAMATION|MB_SETFOREGROUND|MB_OK); return false; } TCHAR directory[MAX_PATH]; TCHAR filename[MAX_PATH]; StringCbCopy(filename, MAX_PATH, pszFilename); RegLoadString(TEXT(REG_PREFS), TEXT(REGVALUE_PREF_START_DIR), 1, directory, MAX_PATH, TEXT("")); std::string title = StrFormat("Select Disk Image For Drive %d", drive + 1); OPENFILENAME ofn; memset(&ofn, 0, sizeof(OPENFILENAME)); ofn.lStructSize = sizeof(OPENFILENAME); ofn.hwndOwner = GetFrame().g_hFrameWindow; ofn.hInstance = GetFrame().g_hInstance; ofn.lpstrFilter = TEXT("All Images\0*.bin;*.do;*.dsk;*.nib;*.po;*.gz;*.woz;*.zip;*.2mg;*.2img;*.iie;*.apl\0") TEXT("Disk Images (*.bin,*.do,*.dsk,*.nib,*.po,*.gz,*.woz,*.zip,*.2mg,*.2img,*.iie)\0*.bin;*.do;*.dsk;*.nib;*.po;*.gz;*.woz;*.zip;*.2mg;*.2img;*.iie\0") TEXT("All Files\0*.*\0"); ofn.lpstrFile = filename; ofn.nMaxFile = MAX_PATH; ofn.lpstrInitialDir = directory; ofn.Flags = OFN_PATHMUSTEXIST; ofn.lpstrTitle = title.c_str(); bool bRes = false; if (GetOpenFileName(&ofn)) { std::string openFilename = filename; if ((!ofn.nFileExtension) || !filename[ofn.nFileExtension]) openFilename += TEXT(".dsk"); ImageError_e Error = InsertDisk(drive, openFilename, ofn.Flags & OFN_READONLY, IMAGE_CREATE); if (Error == eIMAGE_ERROR_NONE) { bRes = true; } else { NotifyInvalidImage(drive, openFilename, Error); } } return bRes; } //=========================================================================== void __stdcall Disk2InterfaceCard::LoadWriteProtect(WORD, WORD, BYTE write, BYTE value, ULONG uExecutedCycles) { // Don't change latch if drive off after 1 second drive-off delay (UTAIIe page 9-13) // "DRIVES OFF forces the data register to hold its present state." (UTAIIe page 9-12) // Note: Gemstone Warrior sets load mode with the drive off. if (!m_floppyDrive[m_currDrive].m_spinning) // GH#599 return; // Notes: // . Only READ-LOAD mode ($C08E,X & $C08D,X) can issue the SR (shift write-protect) operation - UTAIIe page 9-20, fig 9.11 // . Phase 1 on also forces write protect in the Disk II drive (UTAIIe page 9-7) but we don't implement that. // . write mode doesn't prevent reading write protect (GH#537): // "If for some reason the above write protect check were entered with the READ/WRITE switch in WRITE, // the write protect switch would still be read correctly" (UTAIIe page 9-21) // . Sequencer "SR" (Shift Right) command shifts the data register right and loads QA (bit7) with write protect (UTAIIe page 9-21) // . A read or write will shift 'write protect' in QA. // . The LSS saturates the data register before the CPU can read an intermediate value: so set to 0xFF or 0x00 (GH#1078) FloppyDisk& floppy = m_floppyDrive[m_currDrive].m_disk; if (floppy.m_bWriteProtected) m_floppyLatch = 0xFF; else m_floppyLatch = 0x00; if (m_writeStarted) // Prevent ResetLogicStateSequencer() from resetting m_writeStarted return; if (ImageIsWOZ(floppy.m_imagehandle)) { #if LOG_DISK_NIBBLES_READ LOG_DISK("%08X: reset LSS: ~PC=%04X\r\n", (UINT32)g_nCumulativeCycles, regs.pc); #endif const UINT bitCellDelta = GetBitCellDelta(uExecutedCycles); UpdateBitStreamPosition(floppy, bitCellDelta); // Fix E7-copy protection ResetLogicStateSequencer(); // "Set the sequencer to State 0" (UTAIIe page 9-21) } } //=========================================================================== void __stdcall Disk2InterfaceCard::SetReadMode(WORD, WORD, BYTE, BYTE, ULONG uExecutedCycles) { m_formatTrack.DriveSwitchedToReadMode(&m_floppyDrive[m_currDrive].m_disk); #if LOG_DISK_RW_MODE LOG_DISK("%08X: rw mode: read\r\n", (UINT32)g_nCumulativeCycles); #endif } //=========================================================================== void __stdcall Disk2InterfaceCard::SetWriteMode(WORD, WORD, BYTE, BYTE, ULONG uExecutedCycles) { m_formatTrack.DriveSwitchedToWriteMode(m_floppyDrive[m_currDrive].m_disk.m_byte); BOOL modechange = !m_floppyDrive[m_currDrive].m_writelight; #if LOG_DISK_RW_MODE LOG_DISK("rw mode: write (mode changed=%d)\r\n", modechange ? 1 : 0); #endif #if LOG_DISK_NIBBLES_WRITE m_uWriteLastCycle = 0; #endif m_floppyDrive[m_currDrive].m_writelight = WRITELIGHT_CYCLES; if (modechange) GetFrame().FrameDrawDiskLEDS(); } //=========================================================================== void Disk2InterfaceCard::Update(const ULONG cycles) { int loop = NUM_DRIVES; while (loop--) { FloppyDrive* pDrive = &m_floppyDrive[loop]; if (pDrive->m_spinning && !m_floppyMotorOn) { if (!(pDrive->m_spinning -= MIN(pDrive->m_spinning, cycles))) { GetFrame().FrameDrawDiskLEDS(); GetFrame().FrameDrawDiskStatus(); } } if (m_seqFunc.writeMode && (m_currDrive == loop) && pDrive->m_spinning) { pDrive->m_writelight = WRITELIGHT_CYCLES; } else if (pDrive->m_writelight) { if (!(pDrive->m_writelight -= MIN(pDrive->m_writelight, cycles))) { GetFrame().FrameDrawDiskLEDS(); GetFrame().FrameDrawDiskStatus(); } } } } //=========================================================================== bool Disk2InterfaceCard::DriveSwap(void) { // Refuse to swap if either Disk][ is active // TODO: if Shift-Click then FORCE drive swap to bypass message if (m_floppyDrive[DRIVE_1].m_spinning || m_floppyDrive[DRIVE_2].m_spinning) { // 1.26.2.4 Prompt when trying to swap disks while drive is on instead of silently failing int status = GetFrame().FrameMessageBox( "WARNING:\n" "\n" "\tAttempting to swap a disk while a drive is on\n" "\t\t--> is NOT recommended <--\n" "\tas this will most likely read/write incorrect data!\n" "\n" "If the other drive is empty then swapping is harmless. The" " computer will appear to 'hang' trying to read non-existent data but" " you can safely swap disks once more to restore the original disk.\n" "\n" "Do you still wish to swap disks?", "Trying to swap a disk while a drive is on ...", MB_ICONWARNING | MB_YESNOCANCEL ); switch( status ) { case IDNO: case IDCANCEL: return false; default: break; // User is OK with swapping disks so let them proceed at their own risk } } FlushCurrentTrack(DRIVE_1); FlushCurrentTrack(DRIVE_2); // Swap disks between drives // . NB. We swap trackimage ptrs (so don't need to swap the buffers' data) std::swap(m_floppyDrive[DRIVE_1].m_disk, m_floppyDrive[DRIVE_2].m_disk); // Invalidate the trackimage so that a read latch will re-read the track for the new floppy (GH#543) m_floppyDrive[DRIVE_1].m_disk.m_trackimagedata = false; m_floppyDrive[DRIVE_2].m_disk.m_trackimagedata = false; SaveLastDiskImage(DRIVE_1); SaveLastDiskImage(DRIVE_2); GetFrame().FrameRefreshStatus(DRAW_LEDS | DRAW_BUTTON_DRIVES); return true; } //=========================================================================== bool Disk2InterfaceCard::GetFirmware(WORD lpNameId, BYTE* pDst) { BYTE* pData = GetFrame().GetResource(lpNameId, "FIRMWARE", DISK2_FW_SIZE); if (!pData) return false; memcpy(pDst, pData, DISK2_FW_SIZE); return true; } void Disk2InterfaceCard::InitFirmware(LPBYTE pCxRomPeripheral) { if (pCxRomPeripheral == NULL) return; ImageInfo* pImage = m_floppyDrive[DRIVE_1].m_disk.m_imagehandle; if (m_force13SectorFirmware) m_is13SectorFirmware = true; else m_is13SectorFirmware = ImageIsBootSectorFormatSector13(pImage); if (m_is13SectorFirmware) memcpy(pCxRomPeripheral + m_slot*APPLE_SLOT_SIZE, m_13SectorFirmware, DISK2_FW_SIZE); else memcpy(pCxRomPeripheral + m_slot*APPLE_SLOT_SIZE, m_16SectorFirmware, DISK2_FW_SIZE); } void Disk2InterfaceCard::InitializeIO(LPBYTE pCxRomPeripheral) { bool res = GetFirmware(IDR_DISK2_13SECTOR_FW, m_13SectorFirmware); _ASSERT(res); res = GetFirmware(IDR_DISK2_16SECTOR_FW, m_16SectorFirmware); _ASSERT(res); // Note: We used to disable the track stepping delay in the Disk II controller firmware by // patching $C64C with $A9,$00,$EA. Now not doing this since: // . Authentic Speed should be authentic // . Enhanced Speed runs emulation unthrottled, so removing the delay has negligible effect // . Patching the firmware breaks the ADC checksum used by "The CIA Files" (Tricky Dick) // . In this case we can patch to compensate for an ADC or EOR checksum but not both (nickw) RegisterIoHandler(m_slot, &Disk2InterfaceCard::IORead, &Disk2InterfaceCard::IOWrite, NULL, NULL, this, NULL); InitFirmware(pCxRomPeripheral); } //=========================================================================== void Disk2InterfaceCard::SetSequencerFunction(WORD addr, ULONG executedCycles) { if ((addr & 0xf) < 0xc) return; const SEQFUNC oldSeqFunc = m_seqFunc.function; switch ((addr & 3) ^ 2) { case 0: m_seqFunc.writeMode = 0; break; // $C08E,X (sequence addr A3 input) case 1: m_seqFunc.writeMode = 1; break; // $C08F,X (sequence addr A3 input) case 2: m_seqFunc.loadMode = 0; break; // $C08C,X (sequence addr A2 input) case 3: m_seqFunc.loadMode = 1; break; // $C08D,X (sequence addr A2 input) } if (!m_seqFunc.writeMode) m_writeStarted = false; if (oldSeqFunc == checkWriteProtAndInitWrite && m_seqFunc.function != checkWriteProtAndInitWrite) { // Use up remaining cycles before switching out of "checkWriteProtAndInitWrite" mode // Done when checking write-protect, but also for bit-slip (eg. E7) copy-protections FloppyDisk& floppy = m_floppyDrive[m_currDrive].m_disk; if (ImageIsWOZ(floppy.m_imagehandle)) { const UINT bitCellDelta = GetBitCellDelta(executedCycles); UpdateBitStreamPosition(floppy, bitCellDelta); } } } BYTE __stdcall Disk2InterfaceCard::IORead(WORD pc, WORD addr, BYTE bWrite, BYTE d, ULONG nExecutedCycles) { CpuCalcCycles(nExecutedCycles); // g_nCumulativeCycles needed by most Disk I/O functions UINT uSlot = ((addr & 0xff) >> 4) - 8; Disk2InterfaceCard* pCard = (Disk2InterfaceCard*) MemGetSlotParameters(uSlot); ImageInfo* pImage = pCard->m_floppyDrive[pCard->m_currDrive].m_disk.m_imagehandle; bool isWOZ = ImageIsWOZ(pImage); if (isWOZ && pCard->m_seqFunc.function == dataShiftWrite) // Occurs at end of sector write ($C0EE) pCard->DataShiftWriteWOZ(pc, addr, nExecutedCycles); // Finish any previous write pCard->SetSequencerFunction(addr, nExecutedCycles); switch (addr & 0xF) { case 0x0: pCard->ControlStepper(pc, addr, bWrite, d, nExecutedCycles); break; case 0x1: pCard->ControlStepper(pc, addr, bWrite, d, nExecutedCycles); break; case 0x2: pCard->ControlStepper(pc, addr, bWrite, d, nExecutedCycles); break; case 0x3: pCard->ControlStepper(pc, addr, bWrite, d, nExecutedCycles); break; case 0x4: pCard->ControlStepper(pc, addr, bWrite, d, nExecutedCycles); break; case 0x5: pCard->ControlStepper(pc, addr, bWrite, d, nExecutedCycles); break; case 0x6: pCard->ControlStepper(pc, addr, bWrite, d, nExecutedCycles); break; case 0x7: pCard->ControlStepper(pc, addr, bWrite, d, nExecutedCycles); break; case 0x8: pCard->ControlMotor(pc, addr, bWrite, d, nExecutedCycles); break; case 0x9: pCard->ControlMotor(pc, addr, bWrite, d, nExecutedCycles); break; case 0xA: isWOZ = pCard->Enable(pc, addr, bWrite, d, nExecutedCycles); break; case 0xB: isWOZ = pCard->Enable(pc, addr, bWrite, d, nExecutedCycles); break; case 0xC: if (!isWOZ) pCard->ReadWrite(pc, addr, bWrite, d, nExecutedCycles); break; case 0xD: pCard->LoadWriteProtect(pc, addr, bWrite, d, nExecutedCycles); break; case 0xE: pCard->SetReadMode(pc, addr, bWrite, d, nExecutedCycles); break; case 0xF: pCard->SetWriteMode(pc, addr, bWrite, d, nExecutedCycles); break; } // only even addresses return the latch (UTAIIe Table 9.1) if (!(addr & 1)) { if (isWOZ && pCard->m_seqFunc.function != dataShiftWrite) pCard->DataLatchReadWriteWOZ(pc, addr, bWrite, nExecutedCycles); return pCard->m_floppyLatch; } return MemReadFloatingBus(nExecutedCycles); } BYTE __stdcall Disk2InterfaceCard::IOWrite(WORD pc, WORD addr, BYTE bWrite, BYTE d, ULONG nExecutedCycles) { CpuCalcCycles(nExecutedCycles); // g_nCumulativeCycles needed by most Disk I/O functions UINT uSlot = ((addr & 0xff) >> 4) - 8; Disk2InterfaceCard* pCard = (Disk2InterfaceCard*) MemGetSlotParameters(uSlot); ImageInfo* pImage = pCard->m_floppyDrive[pCard->m_currDrive].m_disk.m_imagehandle; bool isWOZ = ImageIsWOZ(pImage); if (isWOZ && pCard->m_seqFunc.function == dataShiftWrite) pCard->DataShiftWriteWOZ(pc, addr, nExecutedCycles); // Finish any previous write pCard->SetSequencerFunction(addr, nExecutedCycles); switch (addr & 0xF) { case 0x0: pCard->ControlStepper(pc, addr, bWrite, d, nExecutedCycles); break; case 0x1: pCard->ControlStepper(pc, addr, bWrite, d, nExecutedCycles); break; case 0x2: pCard->ControlStepper(pc, addr, bWrite, d, nExecutedCycles); break; case 0x3: pCard->ControlStepper(pc, addr, bWrite, d, nExecutedCycles); break; case 0x4: pCard->ControlStepper(pc, addr, bWrite, d, nExecutedCycles); break; case 0x5: pCard->ControlStepper(pc, addr, bWrite, d, nExecutedCycles); break; case 0x6: pCard->ControlStepper(pc, addr, bWrite, d, nExecutedCycles); break; case 0x7: pCard->ControlStepper(pc, addr, bWrite, d, nExecutedCycles); break; case 0x8: pCard->ControlMotor(pc, addr, bWrite, d, nExecutedCycles); break; case 0x9: pCard->ControlMotor(pc, addr, bWrite, d, nExecutedCycles); break; case 0xA: isWOZ = pCard->Enable(pc, addr, bWrite, d, nExecutedCycles); break; case 0xB: isWOZ = pCard->Enable(pc, addr, bWrite, d, nExecutedCycles); break; case 0xC: if (!isWOZ) pCard->ReadWrite(pc, addr, bWrite, d, nExecutedCycles); break; case 0xD: pCard->LoadWriteProtect(pc, addr, bWrite, d, nExecutedCycles); break; case 0xE: pCard->SetReadMode(pc, addr, bWrite, d, nExecutedCycles); break; case 0xF: pCard->SetWriteMode(pc, addr, bWrite, d, nExecutedCycles); break; } // any address writes the latch via sequencer LD command (74LS323 datasheet) if (pCard->m_seqFunc.function == dataLoadWrite) { pCard->m_floppyLatch = d; if (isWOZ) pCard->DataLatchReadWriteWOZ(pc, addr, bWrite, nExecutedCycles); } return 0; } //=========================================================================== // Unit version history: // 2: Added: Format Track state & DiskLastCycle // 3: Added: DiskLastReadLatchCycle // 4: Added: WOZ state // Split up 'Unit' putting some state into a new 'Floppy' // 5: Added: Sequencer Function // 6: Added: Drive Connected & Motor On Cycle // 7: Deprecated SS_YAML_KEY_LSS_RESET_SEQUENCER, SS_YAML_KEY_DISK_ACCESSED // 8: Added: deferred stepper: event, address & cycle static const UINT kUNIT_VERSION = 8; #define SS_YAML_VALUE_CARD_DISK2 "Disk][" #define SS_YAML_KEY_PHASES "Phases" #define SS_YAML_KEY_CURRENT_DRIVE "Current Drive" #define SS_YAML_KEY_DISK_ACCESSED "Disk Accessed" // deprecated at v7 #define SS_YAML_KEY_ENHANCE_DISK "Enhance Disk" #define SS_YAML_KEY_FLOPPY_LATCH "Floppy Latch" #define SS_YAML_KEY_FLOPPY_MOTOR_ON "Floppy Motor On" #define SS_YAML_KEY_FLOPPY_WRITE_MODE "Floppy Write Mode" // deprecated at v5 #define SS_YAML_KEY_LAST_CYCLE "Last Cycle" #define SS_YAML_KEY_LAST_READ_LATCH_CYCLE "Last Read Latch Cycle" #define SS_YAML_KEY_LSS_SHIFT_REG "LSS Shift Reg" #define SS_YAML_KEY_LSS_LATCH_DELAY "LSS Latch Delay" #define SS_YAML_KEY_LSS_RESET_SEQUENCER "LSS Reset Sequencer" // deprecated at v7 #define SS_YAML_KEY_LSS_SEQUENCER_FUNCTION "LSS Sequencer Function" #define SS_YAML_KEY_DEFERRED_STEPPER_EVENT "Deferred Stepper Event" #define SS_YAML_KEY_DEFERRED_STEPPER_ADDRESS "Deferred Stepper Address" #define SS_YAML_KEY_DEFERRED_STEPPER_CYCLE "Deferred Stepper Cycle" #define SS_YAML_KEY_DISK2UNIT "Unit" #define SS_YAML_KEY_DRIVE_CONNECTED "Drive Connected" #define SS_YAML_KEY_PHASE "Phase" #define SS_YAML_KEY_PHASE_PRECISE "Phase (precise)" #define SS_YAML_KEY_TRACK "Track" // deprecated at v4 #define SS_YAML_KEY_HEAD_WINDOW "Head Window" #define SS_YAML_KEY_LAST_STEPPER_CYCLE "Last Stepper Cycle" #define SS_YAML_KEY_MOTOR_ON_CYCLE "Motor On Cycle" #define SS_YAML_KEY_FLOPPY "Floppy" #define SS_YAML_KEY_FILENAME "Filename" #define SS_YAML_KEY_BYTE "Byte" #define SS_YAML_KEY_NIBBLES "Nibbles" #define SS_YAML_KEY_BIT_OFFSET "Bit Offset" #define SS_YAML_KEY_BIT_COUNT "Bit Count" #define SS_YAML_KEY_EXTRA_CYCLES "Extra Cycles" #define SS_YAML_KEY_WRITE_PROTECTED "Write Protected" #define SS_YAML_KEY_SPINNING "Spinning" #define SS_YAML_KEY_WRITE_LIGHT "Write Light" #define SS_YAML_KEY_TRACK_IMAGE_DATA "Track Image Data" #define SS_YAML_KEY_TRACK_IMAGE_DIRTY "Track Image Dirty" #define SS_YAML_KEY_TRACK_IMAGE "Track Image" const std::string& Disk2InterfaceCard::GetSnapshotCardName(void) { static const std::string name(SS_YAML_VALUE_CARD_DISK2); return name; } void Disk2InterfaceCard::SaveSnapshotFloppy(YamlSaveHelper& yamlSaveHelper, UINT unit) { YamlSaveHelper::Label label(yamlSaveHelper, "%s:\n", SS_YAML_KEY_FLOPPY); yamlSaveHelper.SaveString(SS_YAML_KEY_FILENAME, m_floppyDrive[unit].m_disk.m_fullname); yamlSaveHelper.SaveHexUint16(SS_YAML_KEY_BYTE, m_floppyDrive[unit].m_disk.m_byte); yamlSaveHelper.SaveHexUint16(SS_YAML_KEY_NIBBLES, m_floppyDrive[unit].m_disk.m_nibbles); yamlSaveHelper.SaveHexUint32(SS_YAML_KEY_BIT_OFFSET, m_floppyDrive[unit].m_disk.m_bitOffset); // v4 yamlSaveHelper.SaveHexUint32(SS_YAML_KEY_BIT_COUNT, m_floppyDrive[unit].m_disk.m_bitCount); // v4 yamlSaveHelper.SaveDouble(SS_YAML_KEY_EXTRA_CYCLES, m_floppyDrive[unit].m_disk.m_extraCycles); // v4 yamlSaveHelper.SaveBool(SS_YAML_KEY_WRITE_PROTECTED, m_floppyDrive[unit].m_disk.m_bWriteProtected); yamlSaveHelper.SaveUint(SS_YAML_KEY_TRACK_IMAGE_DATA, m_floppyDrive[unit].m_disk.m_trackimagedata); yamlSaveHelper.SaveUint(SS_YAML_KEY_TRACK_IMAGE_DIRTY, m_floppyDrive[unit].m_disk.m_trackimagedirty); if (m_floppyDrive[unit].m_disk.m_trackimage) { YamlSaveHelper::Label image(yamlSaveHelper, "%s:\n", SS_YAML_KEY_TRACK_IMAGE); yamlSaveHelper.SaveMemory(m_floppyDrive[unit].m_disk.m_trackimage, ImageGetMaxNibblesPerTrack(m_floppyDrive[unit].m_disk.m_imagehandle)); } } void Disk2InterfaceCard::SaveSnapshotDriveUnit(YamlSaveHelper& yamlSaveHelper, UINT unit) { YamlSaveHelper::Label label(yamlSaveHelper, "%s%d:\n", SS_YAML_KEY_DISK2UNIT, unit); yamlSaveHelper.SaveBool(SS_YAML_KEY_DRIVE_CONNECTED, m_floppyDrive[unit].m_isConnected); yamlSaveHelper.SaveUint(SS_YAML_KEY_PHASE, m_floppyDrive[unit].m_phase); yamlSaveHelper.SaveFloat(SS_YAML_KEY_PHASE_PRECISE, m_floppyDrive[unit].m_phasePrecise); // v4 yamlSaveHelper.SaveHexUint4(SS_YAML_KEY_HEAD_WINDOW, m_floppyDrive[unit].m_headWindow); // v4 yamlSaveHelper.SaveHexUint64(SS_YAML_KEY_LAST_STEPPER_CYCLE, m_floppyDrive[unit].m_lastStepperCycle); // v4 yamlSaveHelper.SaveHexUint64(SS_YAML_KEY_MOTOR_ON_CYCLE, m_floppyDrive[unit].m_motorOnCycle); // v6 yamlSaveHelper.SaveUint(SS_YAML_KEY_SPINNING, m_floppyDrive[unit].m_spinning); yamlSaveHelper.SaveUint(SS_YAML_KEY_WRITE_LIGHT, m_floppyDrive[unit].m_writelight); SaveSnapshotFloppy(yamlSaveHelper, unit); } void Disk2InterfaceCard::SaveSnapshot(YamlSaveHelper& yamlSaveHelper) { YamlSaveHelper::Slot slot(yamlSaveHelper, GetSnapshotCardName(), m_slot, kUNIT_VERSION); YamlSaveHelper::Label state(yamlSaveHelper, "%s:\n", SS_YAML_KEY_STATE); yamlSaveHelper.SaveUint(SS_YAML_KEY_CURRENT_DRIVE, m_currDrive); yamlSaveHelper.SaveHexUint4(SS_YAML_KEY_PHASES, m_magnetStates); yamlSaveHelper.SaveBool(SS_YAML_KEY_ENHANCE_DISK, m_enhanceDisk); yamlSaveHelper.SaveHexUint8(SS_YAML_KEY_FLOPPY_LATCH, m_floppyLatch); yamlSaveHelper.SaveBool(SS_YAML_KEY_FLOPPY_MOTOR_ON, m_floppyMotorOn == TRUE); yamlSaveHelper.SaveHexUint64(SS_YAML_KEY_LAST_CYCLE, m_diskLastCycle); // v2 yamlSaveHelper.SaveHexUint64(SS_YAML_KEY_LAST_READ_LATCH_CYCLE, m_diskLastReadLatchCycle); // v3 yamlSaveHelper.SaveHexUint8(SS_YAML_KEY_LSS_SHIFT_REG, m_shiftReg); // v4 yamlSaveHelper.SaveInt(SS_YAML_KEY_LSS_LATCH_DELAY, m_latchDelay); // v4 yamlSaveHelper.SaveInt(SS_YAML_KEY_LSS_SEQUENCER_FUNCTION, m_seqFunc.function); // v5 yamlSaveHelper.SaveBool(SS_YAML_KEY_DEFERRED_STEPPER_EVENT, m_deferredStepperEvent); // v8 yamlSaveHelper.SaveHexUint16(SS_YAML_KEY_DEFERRED_STEPPER_ADDRESS, m_deferredStepperAddress); // v8 yamlSaveHelper.SaveHexUint64(SS_YAML_KEY_DEFERRED_STEPPER_CYCLE, m_deferredStepperCumulativeCycles); // v8 m_formatTrack.SaveSnapshot(yamlSaveHelper); // v2 SaveSnapshotDriveUnit(yamlSaveHelper, DRIVE_1); SaveSnapshotDriveUnit(yamlSaveHelper, DRIVE_2); } bool Disk2InterfaceCard::LoadSnapshotFloppy(YamlLoadHelper& yamlLoadHelper, UINT unit, UINT version, std::vector& track) { std::string filename = yamlLoadHelper.LoadString(SS_YAML_KEY_FILENAME); bool bImageError = filename.empty(); if (!bImageError) { DWORD dwAttributes = GetFileAttributes(filename.c_str()); if (dwAttributes == INVALID_FILE_ATTRIBUTES) { // Get user to browse for file UserSelectNewDiskImage(unit, filename.c_str()); dwAttributes = GetFileAttributes(filename.c_str()); } bImageError = (dwAttributes == INVALID_FILE_ATTRIBUTES); if (!bImageError) { if (InsertDisk(unit, filename, dwAttributes & FILE_ATTRIBUTE_READONLY, IMAGE_DONT_CREATE) != eIMAGE_ERROR_NONE) bImageError = true; // InsertDisk() zeros m_floppyDrive[unit], then sets up: // . m_imagename // . m_fullname // . m_bWriteProtected } } yamlLoadHelper.LoadBool(SS_YAML_KEY_WRITE_PROTECTED); // Consume m_floppyDrive[unit].m_disk.m_byte = yamlLoadHelper.LoadUint(SS_YAML_KEY_BYTE); m_floppyDrive[unit].m_disk.m_nibbles = yamlLoadHelper.LoadUint(SS_YAML_KEY_NIBBLES); m_floppyDrive[unit].m_disk.m_trackimagedata = yamlLoadHelper.LoadUint(SS_YAML_KEY_TRACK_IMAGE_DATA) ? true : false; m_floppyDrive[unit].m_disk.m_trackimagedirty = yamlLoadHelper.LoadUint(SS_YAML_KEY_TRACK_IMAGE_DIRTY) ? true : false; if (version >= 4) { m_floppyDrive[unit].m_disk.m_bitOffset = yamlLoadHelper.LoadUint(SS_YAML_KEY_BIT_OFFSET); m_floppyDrive[unit].m_disk.m_bitCount = yamlLoadHelper.LoadUint(SS_YAML_KEY_BIT_COUNT); m_floppyDrive[unit].m_disk.m_extraCycles = yamlLoadHelper.LoadDouble(SS_YAML_KEY_EXTRA_CYCLES); if (m_floppyDrive[unit].m_disk.m_bitCount && (m_floppyDrive[unit].m_disk.m_bitOffset >= m_floppyDrive[unit].m_disk.m_bitCount)) throw std::runtime_error("Disk image: bitOffset >= bitCount"); if (ImageIsWOZ(m_floppyDrive[unit].m_disk.m_imagehandle)) UpdateBitStreamOffsets(m_floppyDrive[unit].m_disk); // overwrites m_byte, inits m_bitMask } if (yamlLoadHelper.GetSubMap(SS_YAML_KEY_TRACK_IMAGE)) { yamlLoadHelper.LoadMemory(track, ImageGetMaxNibblesPerTrack(m_floppyDrive[unit].m_disk.m_imagehandle)); yamlLoadHelper.PopMap(); } return bImageError; } bool Disk2InterfaceCard::LoadSnapshotDriveUnitv3(YamlLoadHelper& yamlLoadHelper, UINT unit, UINT version, std::vector& track) { _ASSERT(version <= 3); std::string disk2UnitName = std::string(SS_YAML_KEY_DISK2UNIT) + (unit == DRIVE_1 ? std::string("0") : std::string("1")); if (!yamlLoadHelper.GetSubMap(disk2UnitName)) throw std::runtime_error("Card: Expected key: " + disk2UnitName); bool bImageError = LoadSnapshotFloppy(yamlLoadHelper, unit, version, track); yamlLoadHelper.LoadUint(SS_YAML_KEY_TRACK); // consume m_floppyDrive[unit].m_phase = yamlLoadHelper.LoadUint(SS_YAML_KEY_PHASE); m_floppyDrive[unit].m_phasePrecise = (float) m_floppyDrive[unit].m_phase; m_floppyDrive[unit].m_spinning = yamlLoadHelper.LoadUint(SS_YAML_KEY_SPINNING); m_floppyDrive[unit].m_writelight = yamlLoadHelper.LoadUint(SS_YAML_KEY_WRITE_LIGHT); yamlLoadHelper.PopMap(); return bImageError; } bool Disk2InterfaceCard::LoadSnapshotDriveUnitv4(YamlLoadHelper& yamlLoadHelper, UINT unit, UINT version, std::vector& track) { _ASSERT(version >= 4); std::string disk2UnitName = std::string(SS_YAML_KEY_DISK2UNIT) + (unit == DRIVE_1 ? std::string("0") : std::string("1")); if (!yamlLoadHelper.GetSubMap(disk2UnitName)) throw std::runtime_error("Card: Expected key: " + disk2UnitName); if (!yamlLoadHelper.GetSubMap(SS_YAML_KEY_FLOPPY)) throw std::runtime_error("Card: Expected key: " SS_YAML_KEY_FLOPPY); bool bImageError = LoadSnapshotFloppy(yamlLoadHelper, unit, version, track); yamlLoadHelper.PopMap(); // m_floppyDrive[unit].m_phase = yamlLoadHelper.LoadUint(SS_YAML_KEY_PHASE); m_floppyDrive[unit].m_phasePrecise = yamlLoadHelper.LoadFloat(SS_YAML_KEY_PHASE_PRECISE); m_floppyDrive[unit].m_headWindow = yamlLoadHelper.LoadUint(SS_YAML_KEY_HEAD_WINDOW) & 0xf; m_floppyDrive[unit].m_lastStepperCycle = yamlLoadHelper.LoadUint64(SS_YAML_KEY_LAST_STEPPER_CYCLE); m_floppyDrive[unit].m_spinning = yamlLoadHelper.LoadUint(SS_YAML_KEY_SPINNING); m_floppyDrive[unit].m_writelight = yamlLoadHelper.LoadUint(SS_YAML_KEY_WRITE_LIGHT); if (version >= 6) { m_floppyDrive[unit].m_isConnected = yamlLoadHelper.LoadBool(SS_YAML_KEY_DRIVE_CONNECTED); m_floppyDrive[unit].m_motorOnCycle = yamlLoadHelper.LoadUint64(SS_YAML_KEY_MOTOR_ON_CYCLE); } yamlLoadHelper.PopMap(); return bImageError; } void Disk2InterfaceCard::LoadSnapshotDriveUnit(YamlLoadHelper& yamlLoadHelper, UINT unit, UINT version) { bool bImageError = false; std::vector track(NIBBLES_PER_TRACK); // Default size - may expand vector after loading disk image (eg. WOZ Info.largestTrack) if (version <= 3) bImageError = LoadSnapshotDriveUnitv3(yamlLoadHelper, unit, version, track); else bImageError = LoadSnapshotDriveUnitv4(yamlLoadHelper, unit, version, track); if (!bImageError) { if ((m_floppyDrive[unit].m_disk.m_trackimage == NULL) && m_floppyDrive[unit].m_disk.m_nibbles) AllocTrack(unit, track.size()); if (m_floppyDrive[unit].m_disk.m_trackimage == NULL) bImageError = true; else memcpy(m_floppyDrive[unit].m_disk.m_trackimage, &track[0], track.size()); } if (bImageError) { m_floppyDrive[unit].m_disk.m_trackimagedata = false; m_floppyDrive[unit].m_disk.m_trackimagedirty = false; m_floppyDrive[unit].m_disk.m_nibbles = 0; } } bool Disk2InterfaceCard::LoadSnapshot(YamlLoadHelper& yamlLoadHelper, UINT version) { if (version < 1 || version > kUNIT_VERSION) ThrowErrorInvalidVersion(version); m_currDrive = yamlLoadHelper.LoadUint(SS_YAML_KEY_CURRENT_DRIVE); m_magnetStates = yamlLoadHelper.LoadUint(SS_YAML_KEY_PHASES); m_enhanceDisk = yamlLoadHelper.LoadBool(SS_YAML_KEY_ENHANCE_DISK); m_floppyLatch = yamlLoadHelper.LoadUint(SS_YAML_KEY_FLOPPY_LATCH); m_floppyMotorOn = yamlLoadHelper.LoadBool(SS_YAML_KEY_FLOPPY_MOTOR_ON); if (version >= 2) { m_diskLastCycle = yamlLoadHelper.LoadUint64(SS_YAML_KEY_LAST_CYCLE); m_formatTrack.LoadSnapshot(yamlLoadHelper); } if (version >= 3) { m_diskLastReadLatchCycle = yamlLoadHelper.LoadUint64(SS_YAML_KEY_LAST_READ_LATCH_CYCLE); } if (version >= 4) { m_shiftReg = yamlLoadHelper.LoadUint(SS_YAML_KEY_LSS_SHIFT_REG) & 0xff; m_latchDelay = yamlLoadHelper.LoadInt(SS_YAML_KEY_LSS_LATCH_DELAY); } if (version >= 4 && version <= 6) { (void) yamlLoadHelper.LoadBool(SS_YAML_KEY_LSS_RESET_SEQUENCER); // deprecated } if (version >= 5) { m_seqFunc.function = (SEQFUNC) yamlLoadHelper.LoadInt(SS_YAML_KEY_LSS_SEQUENCER_FUNCTION); } else { m_seqFunc.writeMode = yamlLoadHelper.LoadBool(SS_YAML_KEY_FLOPPY_WRITE_MODE) ? 1 : 0; m_seqFunc.loadMode = 0; // Wasn't saved until v5 } if (version <= 6) { (void) yamlLoadHelper.LoadBool(SS_YAML_KEY_DISK_ACCESSED); // deprecated - but retrieve the value to avoid the "State: Unknown key (Disk Accessed)" warning } if (version >= 8) { m_deferredStepperEvent = yamlLoadHelper.LoadBool(SS_YAML_KEY_DEFERRED_STEPPER_EVENT); m_deferredStepperAddress = yamlLoadHelper.LoadUint(SS_YAML_KEY_DEFERRED_STEPPER_ADDRESS); m_deferredStepperCumulativeCycles = yamlLoadHelper.LoadUint64(SS_YAML_KEY_DEFERRED_STEPPER_CYCLE); } // Eject all disks first in case Drive-2 contains disk to be inserted into Drive-1 for (UINT i=0; i