/* AppleWin : An Apple //e emulator for Windows Copyright (C) 1994-1996, Michael O'Brien Copyright (C) 1999-2001, Oliver Schmidt Copyright (C) 2002-2005, Tom Charlesworth Copyright (C) 2006-2024, Tom Charlesworth, Michael Pohoreski, Nick Westgate AppleWin is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. AppleWin is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with AppleWin; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ /* Description: SSI263 emulation * * Extra "spec" that's not obvious from the datasheet: (GH#175) * . Writes to regs 0,1,2 (and reg3.CTL=1) all de-assert the IRQ (and writes to reg3.CTL=0 and regs 4..7 don't) (GH#1197) * . A phoneme will continue playing back infinitely; unless the phoneme is changed or CTL=1. * . NB. if silenced (Amplitude=0) it's still playing. * . The IRQ is set at the end of the phoneme. * . If IRQ is then cleared, a new IRQ will occur when the phoneme completes again (but need to clear IRQ with a write to reg0, 1 or 2, even for Mockingboard-C). * . CTL=1 sets "PD" (Power Down / "standby") mode, also set at power-on. * . Registers can still be changed in this mode. * . IRQ de-asserted & D7=0. * . CTL=0 brings device out of "PD" mode, the mode will be set to DR1,DR0 and the phoneme P5-P0 will play. * . Setting mode to DR1:0 = %00 just disables A/!R (ie. disables interrupts), but otherwise retains the previous DR1:0 mode. * . If an IRQ was previously asserted then to set DR1:0=%00, you must go via CTL=1, which de-asserts the IRQ. * . Mockingboard-C: CTRL+RESET is not connected to !PD/!RST pin 18. * . Phasor: TODO: check with a 'scope. * . Phasor: with SSI263 ints disabled & reg0's DR1:0 != %00, then CTRL+RESET will cause SSI263 to enable ints & assert IRQ. * . it's as if the SSI263 does a CTL H->L to pick-up the new DR1:0. (Bug in SSI263? Assume it should remain in PD mode.) * . but if CTL=1, then CTRL+RESET has no effect. * . Power-on: PD=1 (so D7=0), reg4 (Filter Freq)=0xFF (other regs are seemingly random?). */ #include "StdAfx.h" #include "6522.h" #include "CardManager.h" #include "Mockingboard.h" #include "Core.h" #include "CPU.h" #include "Log.h" #include "Memory.h" #include "SoundCore.h" #include "SSI263.h" #include "SSI263Phonemes.h" #include "YamlHelper.h" #define LOG_SSI263 0 #define LOG_SSI263B 0 // Alternate SSI263 logging (use in conjunction with CPU.cpp's LOG_IRQ_TAKEN_AND_RTI) #define LOG_SC01 0 // SSI263A registers: #define SSI_DURPHON 0x00 #define SSI_INFLECT 0x01 #define SSI_RATEINF 0x02 #define SSI_CTTRAMP 0x03 #define SSI_FILFREQ 0x04 const DWORD SAMPLE_RATE_SSI263 = 22050; //----------------------------------------------------------------------------- #if LOG_SSI263B static int ssiRegs[5]={-1,-1,-1,-1,-1}; static int totalDuration_ms = 0; void SSI_Output(void) { int ssi0 = ssiRegs[SSI_DURPHON]; int ssi2 = ssiRegs[SSI_RATEINF]; LogOutput("SSI: "); for (int i = 0; i <= 4; i++) { std::string r = (ssiRegs[i] >= 0) ? ByteToHexStr(ssiRegs[i]) : "--"; LogOutput("%s ", r.c_str()); ssiRegs[i] = -1; } if (ssi0 != -1 && ssi2 != -1) { int phonemeDuration_ms = (((16-(ssi2>>4))*4096)/1023) * (4-(ssi0>>6)); totalDuration_ms += phonemeDuration_ms; LogOutput("/ duration = %d (total = %d) ms", phonemeDuration_ms, totalDuration_ms); } LogOutput("\n"); } #endif //----------------------------------------------------------------------------- UINT64 SSI263::GetLastCumulativeCycles(void) { return dynamic_cast(GetCardMgr().GetRef(m_slot)).GetLastCumulativeCycles(); } void SSI263::UpdateIFR(BYTE nDevice, BYTE clr_mask, BYTE set_mask) { dynamic_cast(GetCardMgr().GetRef(m_slot)).UpdateIFR(nDevice, clr_mask, set_mask); } BYTE SSI263::GetPCR(BYTE nDevice) { return dynamic_cast(GetCardMgr().GetRef(m_slot)).GetPCR(nDevice); } //----------------------------------------------------------------------------- BYTE SSI263::Read(ULONG nExecutedCycles) { // Regardless of register, just return inverted A/!R in bit7 // . inverted "A/!R" is high for REQ (ie. Request, as phoneme nearly complete) // NB. this doesn't clear the IRQ return MemReadFloatingBus(m_currentMode.D7, nExecutedCycles); } void SSI263::Write(BYTE nReg, BYTE nValue) { #if LOG_SSI263B _ASSERT(nReg < 5); if (nReg>4) nReg=4; if (ssiRegs[nReg]>=0) SSI_Output(); // overwriting a reg ssiRegs[nReg] = nValue; #endif // SSI263 datasheet is not clear, but a write to DURPHON de-asserts the IRQ and clears D7. // . Empirically writes to regs 0,1,2 (and reg3.CTL=1) all de-assert the IRQ (and writes to reg3.CTL=0 and regs 4..7 don't) (GH#1197) // NB. The same for Mockingboard as there's no automatic handshake from the 6522 (CA2 isn't connected to the SSI263). So writes to regs 0, 1 or 2 complete the "handshake". if (nReg <= SSI_RATEINF) { CpuIrqDeassert(IS_SPEECH); m_currentMode.D7 = 0; } switch(nReg) { case SSI_DURPHON: #if LOG_SSI263 if (g_fh) fprintf(g_fh, "DUR = 0x%02X, PHON = 0x%02X\n\n", nValue>>6, nValue&PHONEME_MASK); LogOutput("DUR = %d, PHON = 0x%02X\n", nValue>>6, nValue&PHONEME_MASK); #endif #if LOG_SSI263B SSI_Output(); #endif m_durationPhoneme = nValue; m_isVotraxPhoneme = false; if ((m_ctrlArtAmp & CONTROL_MASK) == 0) Play(m_durationPhoneme & PHONEME_MASK); // Play phoneme when *not* in power-down / standby mode break; case SSI_INFLECT: #if LOG_SSI263 if (g_fh) fprintf(g_fh, "INF = 0x%02X\n", nValue); #endif m_inflection = nValue; break; case SSI_RATEINF: #if LOG_SSI263 if (g_fh) fprintf(g_fh, "RATE = 0x%02X, INF = 0x%02X\n", nValue>>4, nValue&0x0F); #endif m_rateInflection = nValue; break; case SSI_CTTRAMP: #if LOG_SSI263 if (g_fh) fprintf(g_fh, "CTRL = %d, ART = 0x%02X, AMP=0x%02X\n", nValue>>7, (nValue&ARTICULATION_MASK)>>4, nValue&LITUDE_MASK); // { bool H2L = (m_ctrlArtAmp & CONTROL_MASK) && !(nValue & CONTROL_MASK); std::string newMode = StrFormat(" (new mode=%d)", m_durationPhoneme>>6); LogOutput("CTRL = %d->%d, ART = 0x%02X, AMP=0x%02X%s\n", m_ctrlArtAmp>>7, nValue>>7, (nValue&ARTICULATION_MASK)>>4, nValue&LITUDE_MASK, H2L?newMode.c_str() : ""); } #endif #if LOG_SSI263B if ( ((m_ctrlArtAmp & CONTROL_MASK) && !(nValue & CONTROL_MASK)) || ((nValue&0xF) == 0x0) ) // H->L or amp=0 SSI_Output(); #endif if ((m_ctrlArtAmp & CONTROL_MASK) && !(nValue & CONTROL_MASK)) // H->L { // NB. Just changed from CTL=1 (power-down) - where IRQ was already de-asserted & D7=0 // . So CTL H->L never affects IRQ or D7 SetDeviceModeAndInts(); // Device out of power down / "standby" mode, so play phoneme m_isVotraxPhoneme = false; Play(m_durationPhoneme & PHONEME_MASK); } m_ctrlArtAmp = nValue; // "Setting the Control bit (CTL) to a logic one puts the device into Power Down mode..." (SSI263 datasheet) // . this silences the phoneme - actually "turns off the excitation sources and analog circuits" if (m_ctrlArtAmp & CONTROL_MASK) { CpuIrqDeassert(IS_SPEECH); m_currentMode.D7 = 0; } break; case SSI_FILFREQ: // RegAddr.b2=1 (b1 & b0 are: don't care) default: #if LOG_SSI263 if(g_fh) fprintf(g_fh, "FFREQ = 0x%02X\n", nValue); #endif m_filterFreq = nValue; break; } } void SSI263::SetDeviceModeAndInts(void) { if ((m_durationPhoneme & DURATION_MODE_MASK) != MODE_IRQ_DISABLED) { m_currentMode.function = (m_durationPhoneme & DURATION_MODE_MASK) >> DURATION_MODE_SHIFT; m_currentMode.enableInts = 1; } else { // "Disables A/!R output only; does not change previous A/!R response" (SSI263 datasheet) m_currentMode.enableInts = 0; } } //----------------------------------------------------------------------------- const BYTE SSI263::m_Votrax2SSI263[/*64*/] = { 0x02, // 00: EH3 jackEt -> E1 bEnt 0x0A, // 01: EH2 Enlist -> EH nEst 0x0B, // 02: EH1 hEAvy -> EH1 bElt 0x00, // 03: PA0 no sound -> PA 0x28, // 04: DT buTTer -> T Tart 0x08, // 05: A2 mAde -> A mAde 0x08, // 06: A1 mAde -> A mAde 0x2F, // 07: ZH aZure -> Z Zero 0x0E, // 08: AH2 hOnest -> AH gOt 0x07, // 09: I3 inhibIt -> I sIx 0x07, // 0A: I2 Inhibit -> I sIx 0x07, // 0B: I1 inhIbit -> I sIx 0x37, // 0C: M Mat -> More 0x38, // 0D: N suN -> N NiNe 0x24, // 0E: B Bag -> B Bag 0x33, // 0F: V Van -> V Very // 0x32, // 10: CH* CHip -> SCH SHip (!) 0x32, // 11: SH SHop -> SCH SHip 0x2F, // 12: Z Zoo -> Z Zero 0x10, // 13: AW1 lAWful -> AW Office 0x39, // 14: NG thiNG -> NG raNG 0x0F, // 15: AH1 fAther -> AH1 fAther 0x13, // 16: OO1 lOOking -> OO lOOk 0x13, // 17: OO bOOK -> OO lOOk 0x20, // 18: L Land -> L Lift 0x29, // 19: K triCK -> Kit 0x25, // 1A: J* juDGe -> D paiD (!) 0x2C, // 1B: H Hello -> HF Heart 0x26, // 1C: G Get -> KV taG 0x34, // 1D: F Fast -> F Four 0x25, // 1E: D paiD -> D paiD 0x30, // 1F: S paSS -> S Same // 0x08, // 20: A dAY -> A mAde 0x09, // 21: AY dAY -> AI cAre 0x03, // 22: Y1 Yard -> YI Year 0x1B, // 23: UH3 missIOn -> UH3 nUt 0x0E, // 24: AH mOp -> AH gOt 0x27, // 25: P Past -> P Pen 0x11, // 26: O cOld -> O stOre 0x07, // 27: I pIn -> I sIx 0x16, // 28: U mOve -> U tUne 0x05, // 29: Y anY -> AY plEAse 0x28, // 2A: T Tap -> T Tart 0x1D, // 2B: R Red -> R Roof 0x01, // 2C: E mEEt -> E mEEt 0x23, // 2D: W Win -> W Water 0x0C, // 2E: AE dAd -> AE dAd 0x0D, // 2F: AE1 After -> AE1 After // 0x10, // 30: AW2 sAlty -> AW Office 0x1A, // 31: UH2 About -> UH2 whAt 0x19, // 32: UH1 Uncle -> UH1 lOve 0x18, // 33: UH cUp -> UH wOnder 0x11, // 34: O2 fOr -> O stOre 0x11, // 35: O1 abOArd -> O stOre 0x14, // 36: IU yOU -> IU yOU 0x14, // 37: U1 yOU -> IU yOU 0x35, // 38: THV THe -> THV THere 0x36, // 39: TH THin -> TH wiTH 0x1C, // 3A: ER bIrd -> ER bIrd 0x0A, // 3B: EH gEt -> EH nEst 0x01, // 3C: E1 bE -> E mEEt 0x10, // 3D: AW cAll -> AW Office 0x00, // 3E: PA1 no sound -> PA 0x00, // 3F: STOP no sound -> PA }; void SSI263::Votrax_Write(BYTE value) { #if LOG_SC01 LogOutput("SC01: %02X (= SSI263: %02X)\n", value, m_Votrax2SSI263[value & PHONEME_MASK]); #endif m_isVotraxPhoneme = true; m_votraxPhoneme = value & PHONEME_MASK; // !A/R: Acknowledge receipt of phoneme data (signal goes from high to low) UpdateIFR(m_device, SY6522::IxR_VOTRAX, 0); // NB. Don't set reg0.DUR, as SC01's phoneme duration doesn't change with pitch (empirically determined from MAME's SC01 emulation) //m_durationPhoneme = value; // Set reg0.DUR = I1:0 (inflection or pitch) m_durationPhoneme = 0; Play(m_Votrax2SSI263[m_votraxPhoneme]); } //----------------------------------------------------------------------------- void SSI263::Play(unsigned int nPhoneme) { if (!SSI263SingleVoice.lpDSBvoice) { return; } if (!SSI263SingleVoice.bActive) { bool bRes = DSZeroVoiceBuffer(&SSI263SingleVoice, m_kDSBufferByteSize); LogFileOutput("SSI263::Play: DSZeroVoiceBuffer(), res=%d\n", bRes ? 1 : 0); if (!bRes) return; } if (m_dbgFirst) { m_dbgStartTime = g_nCumulativeCycles; #if LOG_SSI263 || LOG_SSI263B || LOG_SC01 LogOutput("1st phoneme = 0x%02X\n", nPhoneme); #endif } #if LOG_SSI263 || LOG_SSI263B || LOG_SC01 if (m_currentActivePhoneme != -1) LogOutput("Overlapping phonemes: current=%02X, next=%02X\n", m_currentActivePhoneme&0xff, nPhoneme&0xff); #endif m_currentActivePhoneme = nPhoneme; bool bPause = false; if (nPhoneme == 1) nPhoneme = 2; // Missing this sample, so map to phoneme-2 if (nPhoneme == 0) bPause = true; else nPhoneme-=2; // Missing phoneme-1 m_phonemeLengthRemaining = g_nPhonemeInfo[nPhoneme].nLength; m_phonemeAccurateLengthRemaining = m_phonemeLengthRemaining; m_phonemePlaybackAndDebugger = (g_nAppMode == MODE_STEPPING || g_nAppMode == MODE_DEBUG); m_phonemeCompleteByFullSpeed = false; m_phonemeLeadoutLength = m_phonemeLengthRemaining / 10; // Arbitrary! (TODO: determine a more accurate factor) if (bPause) { if (!m_pPhonemeData00) { // 'pause' length is length of 1st phoneme (arbitrary choice, since don't know real length) m_pPhonemeData00 = new short [m_phonemeLengthRemaining]; memset(m_pPhonemeData00, 0x00, m_phonemeLengthRemaining*sizeof(short)); } m_pPhonemeData = m_pPhonemeData00; } else { m_pPhonemeData = (const short*) &g_nPhonemeData[g_nPhonemeInfo[nPhoneme].nOffset]; } m_currSampleSum = 0; m_currNumSamples = 0; m_currSampleMod4 = 0; // Set m_lastUpdateCycle, otherwise UpdateAccurateLength() can immediately complete phoneme! (GH#1104) m_lastUpdateCycle = GetLastCumulativeCycles(); } void SSI263::Stop(void) { if (SSI263SingleVoice.lpDSBvoice && SSI263SingleVoice.bActive) DSVoiceStop(&SSI263SingleVoice); } //----------------------------------------------------------------------------- //#define DBG_SSI263_UPDATE // NB. This outputs for all active SSI263 ring-buffers (eg. for mb-audit this may be 2 or 4) // Called by: // . PeriodicUpdate() void SSI263::Update(void) { UpdateAccurateLength(); if (!SSI263SingleVoice.bActive) return; if (g_bFullSpeed) // ie. only true when IsPhonemeActive() is true { if (m_phonemeLengthRemaining) { // Willy Byte does SSI263 detection with drive motor on m_phonemeLengthRemaining = 0; #if LOG_SSI263 || LOG_SSI263B || LOG_SC01 if (m_dbgFirst) LogOutput("1st phoneme short-circuited by fullspeed\n"); #endif if (m_phonemeAccurateLengthRemaining) m_phonemeCompleteByFullSpeed = true; // Let UpdateAccurateLength() call UpdateIRQ() else UpdateIRQ(); } m_updateWasFullSpeed = true; return; } // const bool nowNormalSpeed = m_updateWasFullSpeed; // Just transitioned from full-speed to normal speed m_updateWasFullSpeed = false; // NB. next call to this function: nowNormalSpeed = false if (nowNormalSpeed) m_byteOffset = (DWORD)-1; // ...which resets m_numSamplesError below //------------- DWORD dwCurrentPlayCursor, dwCurrentWriteCursor; HRESULT hr = SSI263SingleVoice.lpDSBvoice->GetCurrentPosition(&dwCurrentPlayCursor, &dwCurrentWriteCursor); if (FAILED(hr)) return; bool prefillBufferOnInit = false; if (m_byteOffset == (DWORD)-1) { // First time in this func (or transitioned from full-speed to normal speed, or a ring-buffer reset) #ifdef DBG_SSI263_UPDATE double fTicksSecs = (double)GetTickCount() / 1000.0; LogOutput("%010.3f: [SSUpdtInit%1d]PC=%08X, WC=%08X, Diff=%08X, Off=%08X xxx\n", fTicksSecs, m_device, dwCurrentPlayCursor, dwCurrentWriteCursor, dwCurrentWriteCursor - dwCurrentPlayCursor, m_byteOffset); #endif m_byteOffset = dwCurrentWriteCursor; m_numSamplesError = 0; prefillBufferOnInit = true; } else { // Check that our offset isn't between Play & Write positions if (dwCurrentWriteCursor > dwCurrentPlayCursor) { // |-----PxxxxxW-----| if ((m_byteOffset > dwCurrentPlayCursor) && (m_byteOffset < dwCurrentWriteCursor)) { #ifdef DBG_SSI263_UPDATE double fTicksSecs = (double)GetTickCount() / 1000.0; LogOutput("%010.3f: [SSUpdt%1d] PC=%08X, WC=%08X, Diff=%08X, Off=%08X xxx\n", fTicksSecs, m_device, dwCurrentPlayCursor, dwCurrentWriteCursor, dwCurrentWriteCursor - dwCurrentPlayCursor, m_byteOffset); #endif m_byteOffset = dwCurrentWriteCursor; m_numSamplesError = 0; } } else { // |xxW----------Pxxx| if ((m_byteOffset > dwCurrentPlayCursor) || (m_byteOffset < dwCurrentWriteCursor)) { #ifdef DBG_SSI263_UPDATE double fTicksSecs = (double)GetTickCount() / 1000.0; LogOutput("%010.3f: [SSUpdt%1d] PC=%08X, WC=%08X, Diff=%08X, Off=%08X XXX\n", fTicksSecs, m_device, dwCurrentPlayCursor, dwCurrentWriteCursor, dwCurrentWriteCursor - dwCurrentPlayCursor, m_byteOffset); #endif m_byteOffset = dwCurrentWriteCursor; m_numSamplesError = 0; } } } //------------- const UINT kMinBytesInBuffer = m_kDSBufferByteSize / 4; // 25% full int nNumSamples = 0; double updateInterval = 0.0; if (prefillBufferOnInit) { // Just prefill first 25% of buffer with zeros: // . so we have a quarter buffer of silence/lag before the real sample data begins. // . NB. this is fine, since it's the steady state; and it's likely that no actual data will ever occur during this initial time. // This means that the '1st phoneme playback time' (in cycles) will be a bit longer for subsequent times. m_lastUpdateCycle = GetLastCumulativeCycles(); nNumSamples = kMinBytesInBuffer / sizeof(short); memset(&m_mixBufferSSI263[0], 0, nNumSamples); } else { // For small timer periods, wait for a period of 500cy before updating DirectSound ring-buffer. // NB. A timer period of less than 24cy will yield nNumSamplesPerPeriod=0. const double kMinimumUpdateInterval = 500.0; // Arbitary (500 cycles = 21 samples) const double kMaximumUpdateInterval = (double)(0xFFFF + 2); // Max 6522 timer interval (1372 samples) _ASSERT(GetLastCumulativeCycles() >= m_lastUpdateCycle); updateInterval = (double)(GetLastCumulativeCycles() - m_lastUpdateCycle); if (updateInterval < kMinimumUpdateInterval) return; if (updateInterval > kMaximumUpdateInterval) updateInterval = kMaximumUpdateInterval; m_lastUpdateCycle = GetLastCumulativeCycles(); const double nIrqFreq = g_fCurrentCLK6502 / updateInterval + 0.5; // Round-up const int nNumSamplesPerPeriod = (int)((double)(SAMPLE_RATE_SSI263) / nIrqFreq); // Eg. For 60Hz this is 367 nNumSamples = nNumSamplesPerPeriod + m_numSamplesError; // Apply correction if (nNumSamples <= 0) nNumSamples = 0; if (nNumSamples > 2 * nNumSamplesPerPeriod) nNumSamples = 2 * nNumSamplesPerPeriod; if (nNumSamples > m_kDSBufferByteSize / sizeof(short)) nNumSamples = m_kDSBufferByteSize / sizeof(short); // Clamp to prevent buffer overflow // if (nNumSamples) // { /* Generate new sample data - ie. could merge from all the SSI263 sources */ } // int nBytesRemaining = m_byteOffset - dwCurrentPlayCursor; if (nBytesRemaining < 0) nBytesRemaining += m_kDSBufferByteSize; // Calc correction factor so that play-buffer doesn't under/overflow const int nErrorInc = SoundCore_GetErrorInc(); if (nBytesRemaining < kMinBytesInBuffer) m_numSamplesError += nErrorInc; // < 0.25 of buffer remaining else if (nBytesRemaining > m_kDSBufferByteSize / 2) m_numSamplesError -= nErrorInc; // > 0.50 of buffer remaining else m_numSamplesError = 0; // Acceptable amount of data in buffer } #if defined(DBG_SSI263_UPDATE) double fTicksSecs = (double)GetTickCount() / 1000.0; LogOutput("%010.3f: [SSUpdt%1d] PC=%08X, WC=%08X, Diff=%08X, Off=%08X, NS=%08X, NSE=%08X, Interval=%f\n", fTicksSecs, m_device, dwCurrentPlayCursor, dwCurrentWriteCursor, dwCurrentWriteCursor - dwCurrentPlayCursor, m_byteOffset, nNumSamples, m_numSamplesError, updateInterval); #endif if (nNumSamples == 0) { if (m_numSamplesError) { // Reset ring-buffer if we've had a major interruption, eg. F7 (enter debugger), F8 (configure), F11/12 (save-state), Pause, etc // - this can cause Apple II SSI263 detection code to fail (when either timing one or a sequence of phonemes) // When the AppleWin code restarts and reads the ring-buffer position it'll be at a random point, and maybe nearly full (>50% full) // - so the code waits until it drains (nNumSamples=0 each time) // - but it takes a large number of calls to this func to drain to an acceptable level m_byteOffset = (DWORD)-1; #if defined(DBG_SSI263_UPDATE) double fTicksSecs = (double)GetTickCount() / 1000.0; LogOutput("%010.3f: [SSUpdt%1d] Reset ring-buffer\n", fTicksSecs, m_device); #endif } return; } //------------- const double amplitude = m_isVotraxPhoneme ? 1.0 : m_ctrlArtAmp & CONTROL_MASK ? 0.0 // Power-down / standby : m_filterFreq == FILTER_FREQ_SILENCE ? 0.0 : (double)(m_ctrlArtAmp & AMPLITUDE_MASK) / (double)AMPLITUDE_MASK; bool bSpeechIRQ = false; { const BYTE DUR = (m_currentMode.function == (MODE_FRAME_IMMEDIATE_INFLECTION >> DURATION_MODE_SHIFT)) ? 3 // Frame timing mode : m_durationPhoneme >> DURATION_MODE_SHIFT; // Phoneme timing mode const BYTE numSamplesToAvg = (DUR <= 1) ? 1 : (DUR == 2) ? 2 : 4; short* pMixBuffer = &m_mixBufferSSI263[0]; UINT zeroSize = nNumSamples; if (m_phonemeLengthRemaining && !prefillBufferOnInit) { UINT samplesWritten = 0; while (samplesWritten < (UINT)nNumSamples) { double sample = (double)*m_pPhonemeData * amplitude; m_currSampleSum += (int)sample; m_currNumSamples++; m_pPhonemeData++; m_phonemeLengthRemaining--; if (m_currNumSamples == numSamplesToAvg) { *pMixBuffer++ = (short)(m_currSampleSum / numSamplesToAvg); samplesWritten++; m_currSampleSum = 0; m_currNumSamples = 0; } m_currSampleMod4 = (m_currSampleMod4 + 1) & 3; if (DUR == 1 && m_currSampleMod4 == 3 && m_phonemeLengthRemaining) { m_pPhonemeData++; m_phonemeLengthRemaining--; } if (!m_phonemeLengthRemaining) { bSpeechIRQ = true; break; } } zeroSize = nNumSamples - samplesWritten; _ASSERT(zeroSize >= 0); } if (zeroSize) { memset(pMixBuffer, 0, zeroSize * sizeof(short)); if (!prefillBufferOnInit) m_phonemeLeadoutLength -= (m_phonemeLeadoutLength > zeroSize) ? zeroSize : m_phonemeLeadoutLength; } } // DWORD dwDSLockedBufferSize0, dwDSLockedBufferSize1; short *pDSLockedBuffer0, *pDSLockedBuffer1; hr = DSGetLock(SSI263SingleVoice.lpDSBvoice, m_byteOffset, (DWORD)nNumSamples * sizeof(short) * m_kNumChannels, &pDSLockedBuffer0, &dwDSLockedBufferSize0, &pDSLockedBuffer1, &dwDSLockedBufferSize1); if (FAILED(hr)) return; memcpy(pDSLockedBuffer0, &m_mixBufferSSI263[0], dwDSLockedBufferSize0); if(pDSLockedBuffer1) memcpy(pDSLockedBuffer1, &m_mixBufferSSI263[dwDSLockedBufferSize0/sizeof(short)], dwDSLockedBufferSize1); // Commit sound buffer hr = SSI263SingleVoice.lpDSBvoice->Unlock((void*)pDSLockedBuffer0, dwDSLockedBufferSize0, (void*)pDSLockedBuffer1, dwDSLockedBufferSize1); if (FAILED(hr)) return; m_byteOffset = (m_byteOffset + (DWORD)nNumSamples*sizeof(short)*m_kNumChannels) % m_kDSBufferByteSize; // if (bSpeechIRQ) { // NB. if m_phonemePlaybackAndDebugger==true, then "m_phonemeAccurateLengthRemaining!=0" must be true. // Since in UpdateAccurateLength(), (when m_phonemePlaybackAndDebugger==true) then m_phonemeAccurateLengthRemaining decs to zero. #if _DEBUG if (m_phonemePlaybackAndDebugger) { _ASSERT(m_phonemeAccurateLengthRemaining); // Check this! } #endif if (!m_phonemePlaybackAndDebugger /*|| m_phonemeAccurateLengthRemaining*/) // superfluous, so commented out (see above) { UpdateIRQ(); } } if (m_phonemeLeadoutLength == 0) { if (!m_isVotraxPhoneme) Play(m_durationPhoneme & PHONEME_MASK); // Repeat this phoneme again // else // GH#1318 - remove for now, as TR v5.1 can start with repeating phoneme in debugger 'g' mode! // Play(m_Votrax2SSI263[m_votraxPhoneme]); // Votrax phoneme repeats too (tested in MAME 0.262) } } //----------------------------------------------------------------------------- // The primary way for phonemes to generate IRQ is via the ring-buffer in Update(), // but when single-stepping (eg. timing-sensitive SSI263 detection code), then this secondary method is used. void SSI263::UpdateAccurateLength(void) { if (!m_phonemeAccurateLengthRemaining) return; _ASSERT(m_lastUpdateCycle); // Can't be 0, since set in Play() if (m_lastUpdateCycle == 0) return; double updateInterval = (double)(GetLastCumulativeCycles() - m_lastUpdateCycle); const double nIrqFreq = g_fCurrentCLK6502 / updateInterval + 0.5; // Round-up const int nNumSamplesPerPeriod = (int)((double)(SAMPLE_RATE_SSI263) / nIrqFreq); // Eg. For 60Hz this is 367 const BYTE DUR = m_durationPhoneme >> DURATION_MODE_SHIFT; const UINT numSamples = nNumSamplesPerPeriod * (DUR+1); if (m_phonemeAccurateLengthRemaining > numSamples) { m_phonemeAccurateLengthRemaining -= numSamples; } else { m_phonemeAccurateLengthRemaining = 0; if (m_phonemePlaybackAndDebugger || m_phonemeCompleteByFullSpeed) UpdateIRQ(); } } // Called by: // . Update() when m_phonemeLengthRemaining -> 0 // . UpdateAccurateLength() when m_phonemeAccurateLengthRemaining -> 0 // . LoadSnapshot() void SSI263::UpdateIRQ(void) { m_phonemeLengthRemaining = m_phonemeAccurateLengthRemaining = 0; // Prevent an IRQ from the other source _ASSERT(m_currentActivePhoneme != -1); m_currentActivePhoneme = -1; if (m_dbgFirst && m_dbgStartTime) { #if LOG_SSI263 || LOG_SSI263B || LOG_SC01 UINT64 diff = g_nCumulativeCycles - m_dbgStartTime; LogOutput("1st phoneme playback time = 0x%08X cy\n", (UINT32)diff); #endif m_dbgFirst = false; } // Phoneme complete, so generate IRQ if necessary SetSpeechIRQ(); } //----------------------------------------------------------------------------- // Pre: m_isVotraxPhoneme, m_cardMode, m_device void SSI263::SetSpeechIRQ(void) { if (!m_isVotraxPhoneme && (m_ctrlArtAmp & CONTROL_MASK) == 0) { if (m_currentMode.enableInts) { if (m_cardMode == PH_Mockingboard) { if (m_currentMode.D7 == 0) { // 6522's PCR = 0x0C (all SSI263 speech routine use this value, but 0x00 will do equally as well!) // . b3:1 CA2 Control = b#110 (Low output) - not connected // . b0 CA1 Latch/Input = 0 (Negative active edge) - input from SSI263's A/!R if ((GetPCR(m_device) & 1) == 0) // Level change from SSI263's A/!R, latch this as an interrupt UpdateIFR(m_device, 0, SY6522::IxR_SSI263); } } else if (m_cardMode == PH_Phasor) { // Phasor (in native mode): SSI263 IRQ (A/!R) pin is connected directly to the 6502's IRQ // . And Mockingboard mode: A/!R is connected to the 6522's CA1 CpuIrqAssert(IS_SPEECH); } else { _ASSERT(m_cardMode == PH_EchoPlus); // SSI263 not visible from Echo+ mode, but still continues to operate } } // Always set SSI263's D7 pin regardless of SSI263 mode (DR1:0), including when SSI263 ints are disabled (via MODE_IRQ_DISABLED) // NB. Don't set D7 when in power-down / standby mode. m_currentMode.D7 = 1; } // if (m_isVotraxPhoneme && GetPCR(m_device) == 0xB0) { // !A/R: Time-out of old phoneme (signal goes from low to high) UpdateIFR(m_device, 0, SY6522::IxR_VOTRAX); } } //----------------------------------------------------------------------------- void SSI263::SetCardMode(PHASOR_MODE mode) { const PHASOR_MODE oldCardMode = m_cardMode; m_cardMode = mode; if (oldCardMode == m_cardMode) return; // mode change if (m_currentMode.D7 == 1) { m_currentMode.D7 = 0; // So that \PH_Mockingboard\ path sets IFR. Post: D7=1 SetSpeechIRQ(); } if (m_cardMode != PH_Phasor) CpuIrqDeassert(IS_SPEECH); } //----------------------------------------------------------------------------- bool SSI263::DSInit(void) { // // Create single SSI263 voice // HRESULT hr = DSGetSoundBuffer(&SSI263SingleVoice, DSBCAPS_CTRLVOLUME, m_kDSBufferByteSize, SAMPLE_RATE_SSI263, m_kNumChannels, "SSI263"); LogFileOutput("SSI263::DSInit: DSGetSoundBuffer(), hr=0x%08X\n", hr); if (FAILED(hr)) { LogFileOutput("SSI263::DSInit: DSGetSoundBuffer failed (%08X)\n", hr); return false; } // Don't DirectSoundBuffer::Play() via DSZeroVoiceBuffer() - instead wait until this SSI263 is actually first used // . different to Speaker & Mockingboard ring buffers // . NB. we have 2x SSI263 per MB card, and it's rare if 1 is used (and *extremely* rare if 2 are used!) // Volume might've been setup from value in Registry if (!SSI263SingleVoice.nVolume) SSI263SingleVoice.nVolume = DSBVOLUME_MAX; hr = SSI263SingleVoice.lpDSBvoice->SetVolume(SSI263SingleVoice.nVolume); LogFileOutput("SSI263::DSInit: SetVolume(), hr=0x%08X\n", hr); return true; } void SSI263::DSUninit(void) { Stop(); DSReleaseSoundBuffer(&SSI263SingleVoice); } //----------------------------------------------------------------------------- // SSI263 phoneme continues to play after CTRL+RESET (tested on real h/w) // Votrax phoneme continues to play after CTRL+RESET (tested on MAME 0.262) void SSI263::Reset(const bool powerCycle, const bool isPhasorCard) { if (!powerCycle) { if (isPhasorCard) { // Empirically observed it does CTL H->L to enable ints (and set the device mode?) (GH#175) // NB. CTRL+RESET doesn't clear m_ctrlArtAmp.CTL (ie. if the device is in power-down/standby mode then ignore RST) // Speculate that there's a bug in the SSI263 and that RST should put the device into power-down/standby mode (ie. silence the device) // TODO: Stick a 'scope on !PD/!RST pin 18 to see what the Phasor h/w does. if ((m_ctrlArtAmp & CONTROL_MASK) == 0) SetDeviceModeAndInts(); } return; } Stop(); ResetState(powerCycle); CpuIrqDeassert(IS_SPEECH); } //----------------------------------------------------------------------------- void SSI263::Mute(void) { if (SSI263SingleVoice.bActive && !SSI263SingleVoice.bMute) { SSI263SingleVoice.lpDSBvoice->SetVolume(DSBVOLUME_MIN); SSI263SingleVoice.bMute = true; } } void SSI263::Unmute(void) { if (SSI263SingleVoice.bActive && SSI263SingleVoice.bMute) { SSI263SingleVoice.lpDSBvoice->SetVolume(SSI263SingleVoice.nVolume); SSI263SingleVoice.bMute = false; } } void SSI263::SetVolume(DWORD dwVolume, DWORD dwVolumeMax) { SSI263SingleVoice.dwUserVolume = dwVolume; SSI263SingleVoice.nVolume = NewVolume(dwVolume, dwVolumeMax); if (SSI263SingleVoice.bActive && !SSI263SingleVoice.bMute) SSI263SingleVoice.lpDSBvoice->SetVolume(SSI263SingleVoice.nVolume); } //----------------------------------------------------------------------------- void SSI263::PeriodicUpdate(UINT executedCycles) { const UINT kCyclesPerAudioFrame = 1000; m_cyclesThisAudioFrame += executedCycles; if (m_cyclesThisAudioFrame < kCyclesPerAudioFrame) return; m_cyclesThisAudioFrame %= kCyclesPerAudioFrame; Update(); } //============================================================================= #define SS_YAML_KEY_SSI263 "SSI263" // NB. No version - this is determined by the parent "Mockingboard C" or "Phasor" unit #define SS_YAML_KEY_SSI263_REG_DUR_PHON "Duration / Phoneme" #define SS_YAML_KEY_SSI263_REG_INF "Inflection" #define SS_YAML_KEY_SSI263_REG_RATE_INF "Rate / Inflection" #define SS_YAML_KEY_SSI263_REG_CTRL_ART_AMP "Control / Articulation / Amplitude" #define SS_YAML_KEY_SSI263_REG_FILTER_FREQ "Filter Frequency" #define SS_YAML_KEY_SSI263_CURRENT_MODE "Current Mode" #define SS_YAML_KEY_SSI263_ACTIVE_PHONEME "Active Phoneme" void SSI263::SaveSnapshot(YamlSaveHelper& yamlSaveHelper) { YamlSaveHelper::Label label(yamlSaveHelper, "%s:\n", SS_YAML_KEY_SSI263); yamlSaveHelper.SaveHexUint8(SS_YAML_KEY_SSI263_REG_DUR_PHON, m_durationPhoneme); yamlSaveHelper.SaveHexUint8(SS_YAML_KEY_SSI263_REG_INF, m_inflection); yamlSaveHelper.SaveHexUint8(SS_YAML_KEY_SSI263_REG_RATE_INF, m_rateInflection); yamlSaveHelper.SaveHexUint8(SS_YAML_KEY_SSI263_REG_CTRL_ART_AMP, m_ctrlArtAmp); yamlSaveHelper.SaveHexUint8(SS_YAML_KEY_SSI263_REG_FILTER_FREQ, m_filterFreq); yamlSaveHelper.SaveHexUint8(SS_YAML_KEY_SSI263_CURRENT_MODE, m_currentMode.mode); yamlSaveHelper.SaveBool(SS_YAML_KEY_SSI263_ACTIVE_PHONEME, IsPhonemeActive()); } void SSI263::LoadSnapshot(YamlLoadHelper& yamlLoadHelper, PHASOR_MODE mode, UINT version) { if (!yamlLoadHelper.GetSubMap(SS_YAML_KEY_SSI263)) throw std::runtime_error("Card: Expected key: " SS_YAML_KEY_SSI263); m_durationPhoneme = yamlLoadHelper.LoadUint(SS_YAML_KEY_SSI263_REG_DUR_PHON); m_inflection = yamlLoadHelper.LoadUint(SS_YAML_KEY_SSI263_REG_INF); m_rateInflection = yamlLoadHelper.LoadUint(SS_YAML_KEY_SSI263_REG_RATE_INF); m_ctrlArtAmp = yamlLoadHelper.LoadUint(SS_YAML_KEY_SSI263_REG_CTRL_ART_AMP); m_filterFreq = yamlLoadHelper.LoadUint(SS_YAML_KEY_SSI263_REG_FILTER_FREQ); m_currentMode.mode = yamlLoadHelper.LoadUint(SS_YAML_KEY_SSI263_CURRENT_MODE); bool activePhoneme = (version >= 7) ? yamlLoadHelper.LoadBool(SS_YAML_KEY_SSI263_ACTIVE_PHONEME) : false; m_currentActivePhoneme = !activePhoneme ? -1 : 0x00; // Not important which phoneme, since UpdateIRQ() resets this if (version < 12) { if (m_currentMode.function == 0) // invalid function (but in older versions this was accepted) { m_currentMode.function = MODE_PHONEME_TRANSITIONED_INFLECTION >> DURATION_MODE_SHIFT; // Typically this is used m_currentMode.enableInts = 0; } else { m_currentMode.enableInts = 1; } } yamlLoadHelper.PopMap(); // _ASSERT(m_device != BYTE(-1)); SetCardMode(mode); // Only need to directly assert IRQ for Phasor mode (for Mockingboard mode it's done via UpdateIFR() in parent) if (m_cardMode == PH_Phasor && (m_ctrlArtAmp & CONTROL_MASK) == 0 && m_currentMode.enableInts && m_currentMode.D7 == 1) CpuIrqAssert(IS_SPEECH); if (IsPhonemeActive()) UpdateIRQ(); // Pre: m_device, m_cardMode m_lastUpdateCycle = GetLastCumulativeCycles(); } //============================================================================= #define SS_YAML_KEY_SC01 "SC01" // NB. No version - this is determined by the parent "Mockingboard C" or "Phasor" unit #define SS_YAML_KEY_SC01_PHONEME "SC01 Phoneme" #define SS_YAML_KEY_SC01_ACTIVE_PHONEME "SC01 Active Phoneme" void SSI263::SC01_SaveSnapshot(YamlSaveHelper& yamlSaveHelper) { YamlSaveHelper::Label label(yamlSaveHelper, "%s:\n", SS_YAML_KEY_SC01); yamlSaveHelper.SaveHexUint8(SS_YAML_KEY_SC01_PHONEME, m_votraxPhoneme); yamlSaveHelper.SaveBool(SS_YAML_KEY_SC01_ACTIVE_PHONEME, m_isVotraxPhoneme); } void SSI263::SC01_LoadSnapshot(YamlLoadHelper& yamlLoadHelper, UINT version) { if (version < 12) { m_votraxPhoneme = 0; // NB. m_isVotraxPhoneme already set by SetVotraxPhoneme() by parent return; } if (!yamlLoadHelper.GetSubMap(SS_YAML_KEY_SC01)) throw std::runtime_error("Card: Expected key: " SS_YAML_KEY_SC01); m_votraxPhoneme = yamlLoadHelper.LoadUint(SS_YAML_KEY_SC01_PHONEME); m_isVotraxPhoneme = yamlLoadHelper.LoadBool(SS_YAML_KEY_SC01_ACTIVE_PHONEME); yamlLoadHelper.PopMap(); }