AppleWin/source/Disk.cpp
2019-04-16 21:13:55 +01:00

1441 lines
44 KiB
C++

/*
AppleWin : An Apple //e emulator for Windows
Copyright (C) 1994-1996, Michael O'Brien
Copyright (C) 1999-2001, Oliver Schmidt
Copyright (C) 2002-2005, Tom Charlesworth
Copyright (C) 2006-2019, Tom Charlesworth, Michael Pohoreski, Nick Westgate
AppleWin is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
AppleWin is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with AppleWin; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
/* Description: Disk
*
* Author: Various
*
* In comments, UTAIIe is an abbreviation for a reference to "Understanding the Apple //e" by James Sather
*/
#include "StdAfx.h"
#include "SaveState_Structs_v1.h"
#include "Applewin.h"
#include "CPU.h"
#include "Disk.h"
#include "DiskImage.h"
#include "Frame.h"
#include "Log.h"
#include "Memory.h"
#include "Registry.h"
#include "Video.h"
#include "YamlHelper.h"
#include "../resource/resource.h"
// About m_enhanceDisk:
// . In general m_enhanceDisk==false is used for authentic disk access speed, whereas m_enhanceDisk==true is for enhanced speed.
// Details:
// . if false: Used by ImageReadTrack() to skew the sectors in a track (for .do, .dsk, .po 5.25" images).
// . if true && m_floppyMotorOn, then this is a condition for full-speed (unthrottled) emulation mode.
// . if false && I/O ReadWrite($C0EC) && drive is spinning, then advance the track buffer's nibble index (to simulate spinning).
// . if I/O ReadWrite($C0EC) && read, then depending on true/false support partial nibble reads for different gaps between consecutive accesses.
// Also m_enhanceDisk is persisted to the save-state, so it's an attribute of the DiskII interface card.
Disk2InterfaceCard::Disk2InterfaceCard(void)
{
m_currDrive = 0;
m_floppyLatch = 0;
m_floppyMotorOn = 0;
m_floppyLoadMode = 0;
m_floppyWriteMode = 0;
m_phases = 0;
m_saveDiskImage = true; // Save the DiskImage name to Registry
m_slot = 0;
m_diskLastCycle = 0;
m_diskLastReadLatchCycle = 0;
m_enhanceDisk = true;
// Debug:
#if LOG_DISK_NIBBLES_USE_RUNTIME_VAR
m_bLogDisk_NibblesRW = false;
#endif
#if LOG_DISK_NIBBLES_WRITE
m_uWriteLastCycle = 0;
m_uSyncFFCount = 0;
#endif
}
bool Disk2InterfaceCard::GetEnhanceDisk(void) { return m_enhanceDisk; }
void Disk2InterfaceCard::SetEnhanceDisk(bool bEnhanceDisk) { m_enhanceDisk = bEnhanceDisk; }
int Disk2InterfaceCard::GetCurrentDrive(void) { return m_currDrive; }
int Disk2InterfaceCard::GetCurrentTrack(void) { return m_floppyDrive[m_currDrive].m_track; }
int Disk2InterfaceCard::GetCurrentPhase(void) { return m_floppyDrive[m_currDrive].m_phase; }
int Disk2InterfaceCard::GetCurrentOffset(void) { return m_floppyDrive[m_currDrive].m_disk.m_byte; }
int Disk2InterfaceCard::GetTrack(const int drive) { return m_floppyDrive[drive].m_track; }
LPCTSTR Disk2InterfaceCard::GetCurrentState(void)
{
if (m_floppyDrive[m_currDrive].m_disk.m_imagehandle == NULL)
return "Empty";
if (!m_floppyMotorOn)
{
if (m_floppyDrive[m_currDrive].m_spinning > 0)
return "Off (spinning)";
else
return "Off";
}
else if (m_floppyWriteMode)
{
if (m_floppyDrive[m_currDrive].m_disk.m_bWriteProtected)
return "Writing (write protected)";
else
return "Writing";
}
else
{
/*if (m_floppyLoadMode)
{
if (m_floppyDrive[m_currDrive].disk.bWriteProtected)
return "Reading write protect state (write protected)";
else
return "Reading write protect state (not write protected)";
}
else*/
return "Reading";
}
}
//===========================================================================
void Disk2InterfaceCard::LoadLastDiskImage(const int drive)
{
_ASSERT(drive == DRIVE_1 || drive == DRIVE_2);
char sFilePath[ MAX_PATH + 1];
sFilePath[0] = 0;
const char *pRegKey = (drive == DRIVE_1)
? REGVALUE_PREF_LAST_DISK_1
: REGVALUE_PREF_LAST_DISK_2;
if (RegLoadString(TEXT(REG_PREFS), pRegKey, 1, sFilePath, MAX_PATH))
{
sFilePath[ MAX_PATH ] = 0;
m_saveDiskImage = false;
// Pass in ptr to local copy of filepath, since RemoveDisk() sets DiskPathFilename = ""
InsertDisk(drive, sFilePath, IMAGE_USE_FILES_WRITE_PROTECT_STATUS, IMAGE_DONT_CREATE);
m_saveDiskImage = true;
}
}
//===========================================================================
void Disk2InterfaceCard::SaveLastDiskImage(const int drive)
{
_ASSERT(drive == DRIVE_1 || drive == DRIVE_2);
if (!m_saveDiskImage)
return;
const char *pFileName = m_floppyDrive[drive].m_disk.m_fullname;
if (drive == DRIVE_1)
RegSaveString(TEXT(REG_PREFS), REGVALUE_PREF_LAST_DISK_1, TRUE, pFileName);
else
RegSaveString(TEXT(REG_PREFS), REGVALUE_PREF_LAST_DISK_2, TRUE, pFileName);
//
char szPathName[MAX_PATH];
strcpy(szPathName, DiskGetFullPathName(drive));
if (_tcsrchr(szPathName, TEXT('\\')))
{
char* pPathEnd = _tcsrchr(szPathName, TEXT('\\'))+1;
*pPathEnd = 0;
RegSaveString(TEXT(REG_PREFS), TEXT(REGVALUE_PREF_START_DIR), 1, szPathName);
}
}
//===========================================================================
// Called by ControlMotor() & Enable()
void Disk2InterfaceCard::CheckSpinning(const ULONG nExecutedCycles)
{
DWORD modechange = (m_floppyMotorOn && !m_floppyDrive[m_currDrive].m_spinning);
if (m_floppyMotorOn)
m_floppyDrive[m_currDrive].m_spinning = SPINNING_CYCLES;
if (modechange)
FrameDrawDiskLEDS( (HDC)0 );
if (modechange)
{
// Set m_diskLastCycle when motor changes: not spinning (ie. off for 1 sec) -> on
CpuCalcCycles(nExecutedCycles);
m_diskLastCycle = g_nCumulativeCycles;
}
}
//===========================================================================
Disk_Status_e Disk2InterfaceCard::GetDriveLightStatus(const int drive)
{
if (IsDriveValid( drive ))
{
FloppyDrive* pDrive = &m_floppyDrive[ drive ];
if (pDrive->m_spinning)
{
if (pDrive->m_disk.m_bWriteProtected)
return DISK_STATUS_PROT;
if (pDrive->m_writelight)
return DISK_STATUS_WRITE;
else
return DISK_STATUS_READ;
}
else
{
return DISK_STATUS_OFF;
}
}
return DISK_STATUS_OFF;
}
//===========================================================================
bool Disk2InterfaceCard::IsDriveValid(const int drive)
{
return (drive >= 0 && drive < NUM_DRIVES);
}
//===========================================================================
void Disk2InterfaceCard::AllocTrack(const int drive)
{
FloppyDisk* pFloppy = &m_floppyDrive[drive].m_disk;
pFloppy->m_trackimage = (LPBYTE)VirtualAlloc(NULL, NIBBLES_PER_TRACK, MEM_COMMIT, PAGE_READWRITE);
}
//===========================================================================
void Disk2InterfaceCard::ReadTrack(const int drive)
{
if (! IsDriveValid( drive ))
return;
FloppyDrive* pDrive = &m_floppyDrive[ drive ];
FloppyDisk* pFloppy = &pDrive->m_disk;
if (pDrive->m_track >= ImageGetNumTracks(pFloppy->m_imagehandle))
{
pFloppy->m_trackimagedata = false;
return;
}
if (!pFloppy->m_trackimage)
AllocTrack( drive );
if (pFloppy->m_trackimage && pFloppy->m_imagehandle)
{
#if LOG_DISK_TRACKS
LOG_DISK("track $%02X%s read\r\n", pDrive->m_track, (pDrive->m_phase & 1) ? ".5" : " ");
#endif
ImageReadTrack(
pFloppy->m_imagehandle,
pDrive->m_track,
pDrive->m_phase,
pFloppy->m_trackimage,
&pFloppy->m_nibbles,
m_enhanceDisk);
pFloppy->m_byte = 0;
pFloppy->m_trackimagedata = (pFloppy->m_nibbles != 0);
}
}
//===========================================================================
void Disk2InterfaceCard::RemoveDisk(const int drive)
{
FloppyDisk* pFloppy = &m_floppyDrive[drive].m_disk;
if (pFloppy->m_imagehandle)
{
FlushCurrentTrack(drive);
ImageClose(pFloppy->m_imagehandle);
pFloppy->m_imagehandle = NULL;
}
if (pFloppy->m_trackimage)
{
VirtualFree(pFloppy->m_trackimage, 0, MEM_RELEASE);
pFloppy->m_trackimage = NULL;
pFloppy->m_trackimagedata = false;
}
memset( pFloppy->m_imagename, 0, MAX_DISK_IMAGE_NAME+1 );
memset( pFloppy->m_fullname , 0, MAX_DISK_FULL_NAME +1 );
pFloppy->m_strFilenameInZip = "";
SaveLastDiskImage( drive );
Video_ResetScreenshotCounter( NULL );
}
//===========================================================================
void Disk2InterfaceCard::WriteTrack(const int drive)
{
FloppyDrive* pDrive = &m_floppyDrive[ drive ];
FloppyDisk* pFloppy = &pDrive->m_disk;
if (pDrive->m_track >= ImageGetNumTracks(pFloppy->m_imagehandle))
return;
if (pFloppy->m_bWriteProtected)
return;
if (pFloppy->m_trackimage && pFloppy->m_imagehandle)
{
#if LOG_DISK_TRACKS
LOG_DISK("track $%02X%s write\r\n", pDrive->m_track, (pDrive->m_phase & 0) ? ".5" : " "); // TODO: hard-coded to whole tracks - see below (nickw)
#endif
ImageWriteTrack(
pFloppy->m_imagehandle,
pDrive->m_track,
pDrive->m_phase, // TODO: this should never be used; it's the current phase (half-track), not that of the track to be written (nickw)
pFloppy->m_trackimage,
pFloppy->m_nibbles);
}
pFloppy->m_trackimagedirty = false;
}
void Disk2InterfaceCard::FlushCurrentTrack(const int drive)
{
FloppyDisk* pFloppy = &m_floppyDrive[drive].m_disk;
if (pFloppy->m_trackimage && pFloppy->m_trackimagedirty)
WriteTrack(drive);
}
//===========================================================================
void Disk2InterfaceCard::Boot(void)
{
// THIS FUNCTION RELOADS A PROGRAM IMAGE IF ONE IS LOADED IN DRIVE ONE.
// IF A DISK IMAGE OR NO IMAGE IS LOADED IN DRIVE ONE, IT DOES NOTHING.
if (m_floppyDrive[0].m_disk.m_imagehandle && ImageBoot(m_floppyDrive[0].m_disk.m_imagehandle))
m_floppyMotorOn = 0;
}
//===========================================================================
void __stdcall Disk2InterfaceCard::ControlMotor(WORD, WORD address, BYTE, BYTE, ULONG uExecutedCycles)
{
BOOL newState = address & 1;
if (newState != m_floppyMotorOn) // motor changed state
m_formatTrack.DriveNotWritingTrack();
m_floppyMotorOn = newState;
// NB. Motor off doesn't reset the Command Decoder like reset. (UTAIIe figures 9.7 & 9.8 chip C2)
// - so it doesn't reset this state: m_floppyLoadMode, m_floppyWriteMode, m_phases
#if LOG_DISK_MOTOR
LOG_DISK("motor %s\r\n", (m_floppyMotorOn) ? "on" : "off");
#endif
CheckSpinning(uExecutedCycles);
}
//===========================================================================
void __stdcall Disk2InterfaceCard::ControlStepper(WORD, WORD address, BYTE, BYTE, ULONG uExecutedCycles)
{
FloppyDrive* pDrive = &m_floppyDrive[m_currDrive];
FloppyDisk* pFloppy = &pDrive->m_disk;
if (!m_floppyMotorOn) // GH#525
{
if (!pDrive->m_spinning)
{
#if LOG_DISK_PHASES
LOG_DISK("stepper accessed whilst motor is off and not spinning\r\n");
#endif
return;
}
#if LOG_DISK_PHASES
LOG_DISK("stepper accessed whilst motor is off, but still spinning\r\n");
#endif
}
int phase = (address >> 1) & 3;
int phase_bit = (1 << phase);
#if 1
// update the magnet states
if (address & 1)
{
// phase on
m_phases |= phase_bit;
}
else
{
// phase off
m_phases &= ~phase_bit;
}
// check for any stepping effect from a magnet
// - move only when the magnet opposite the cog is off
// - move in the direction of an adjacent magnet if one is on
// - do not move if both adjacent magnets are on
// momentum and timing are not accounted for ... maybe one day!
int direction = 0;
if (m_phases & (1 << ((pDrive->m_phase + 1) & 3)))
direction += 1;
if (m_phases & (1 << ((pDrive->m_phase + 3) & 3)))
direction -= 1;
// apply magnet step, if any
if (direction)
{
pDrive->m_phase = MAX(0, MIN(79, pDrive->m_phase + direction));
const int nNumTracksInImage = ImageGetNumTracks(pFloppy->m_imagehandle);
const int newtrack = (nNumTracksInImage == 0) ? 0
: MIN(nNumTracksInImage-1, pDrive->m_phase >> 1); // (round half tracks down)
if (newtrack != pDrive->m_track)
{
FlushCurrentTrack(m_currDrive);
pDrive->m_track = newtrack;
pFloppy->m_trackimagedata = false;
m_formatTrack.DriveNotWritingTrack();
}
// Feature Request #201 Show track status
// https://github.com/AppleWin/AppleWin/issues/201
FrameDrawDiskStatus( (HDC)0 );
}
#else
// substitute alternate stepping code here to test
#endif
#if LOG_DISK_PHASES
LOG_DISK("track $%02X%s phases %d%d%d%d phase %d %s address $%4X\r\n",
pDrive->m_phase >> 1,
(pDrive->m_phase & 1) ? ".5" : " ",
(m_phases >> 3) & 1,
(m_phases >> 2) & 1,
(m_phases >> 1) & 1,
(m_phases >> 0) & 1,
phase,
(address & 1) ? "on " : "off",
address);
#endif
}
//===========================================================================
void Disk2InterfaceCard::Destroy(void)
{
m_saveDiskImage = false;
RemoveDisk(DRIVE_1);
m_saveDiskImage = false;
RemoveDisk(DRIVE_2);
m_saveDiskImage = true;
}
//===========================================================================
void __stdcall Disk2InterfaceCard::Enable(WORD, WORD address, BYTE, BYTE, ULONG uExecutedCycles)
{
m_currDrive = address & 1;
#if LOG_DISK_ENABLE_DRIVE
LOG_DISK("enable drive: %d\r\n", m_currDrive);
#endif
m_floppyDrive[!m_currDrive].m_spinning = 0;
m_floppyDrive[!m_currDrive].m_writelight = 0;
CheckSpinning(uExecutedCycles);
}
//===========================================================================
void Disk2InterfaceCard::EjectDisk(const int drive)
{
if (IsDriveValid(drive))
{
RemoveDisk(drive);
}
}
//===========================================================================
// Return the filename
// . Used by Drive Buttons' tooltips
LPCTSTR Disk2InterfaceCard::GetFullDiskFilename(const int drive)
{
if (!m_floppyDrive[drive].m_disk.m_strFilenameInZip.empty())
return m_floppyDrive[drive].m_disk.m_strFilenameInZip.c_str();
return GetFullName(drive);
}
// Return the file or zip name
// . Used by Property Sheet Page (Disk)
LPCTSTR Disk2InterfaceCard::GetFullName(const int drive)
{
return m_floppyDrive[drive].m_disk.m_fullname;
}
// Return the imagename
// . Used by Drive Button's icons & Property Sheet Page (Save snapshot)
LPCTSTR Disk2InterfaceCard::GetBaseName(const int drive)
{
return m_floppyDrive[drive].m_disk.m_imagename;
}
LPCTSTR Disk2InterfaceCard::DiskGetFullPathName(const int drive)
{
return ImageGetPathname(m_floppyDrive[drive].m_disk.m_imagehandle);
}
//===========================================================================
void Disk2InterfaceCard::GetLightStatus(Disk_Status_e *pDisk1Status, Disk_Status_e *pDisk2Status)
{
if (pDisk1Status)
*pDisk1Status = GetDriveLightStatus(DRIVE_1);
if (pDisk2Status)
*pDisk2Status = GetDriveLightStatus(DRIVE_2);
}
//===========================================================================
ImageError_e Disk2InterfaceCard::InsertDisk(const int drive, LPCTSTR pszImageFilename, const bool bForceWriteProtected, const bool bCreateIfNecessary)
{
FloppyDrive* pDrive = &m_floppyDrive[drive];
FloppyDisk* pFloppy = &pDrive->m_disk;
if (pFloppy->m_imagehandle)
RemoveDisk(drive);
// Reset the disk's attributes, but preserve the drive's attributes (GH#138/Platoon, GH#640)
// . Changing the disk (in the drive) doesn't affect the drive's attributes.
pFloppy->clear();
const DWORD dwAttributes = GetFileAttributes(pszImageFilename);
if(dwAttributes == INVALID_FILE_ATTRIBUTES)
pFloppy->m_bWriteProtected = false; // Assume this is a new file to create
else
pFloppy->m_bWriteProtected = bForceWriteProtected ? true : (dwAttributes & FILE_ATTRIBUTE_READONLY);
// Check if image is being used by the other drive, and if so remove it in order so it can be swapped
{
const char* pszOtherPathname = DiskGetFullPathName(!drive);
char szCurrentPathname[MAX_PATH];
DWORD uNameLen = GetFullPathName(pszImageFilename, MAX_PATH, szCurrentPathname, NULL);
if (uNameLen == 0 || uNameLen >= MAX_PATH)
strcpy_s(szCurrentPathname, MAX_PATH, pszImageFilename);
if (!strcmp(pszOtherPathname, szCurrentPathname))
{
EjectDisk(!drive);
FrameRefreshStatus(DRAW_LEDS | DRAW_BUTTON_DRIVES);
}
}
ImageError_e Error = ImageOpen(pszImageFilename,
&pFloppy->m_imagehandle,
&pFloppy->m_bWriteProtected,
bCreateIfNecessary,
pFloppy->m_strFilenameInZip);
if (Error == eIMAGE_ERROR_NONE && ImageIsMultiFileZip(pFloppy->m_imagehandle))
{
TCHAR szText[100+MAX_PATH];
szText[sizeof(szText)-1] = 0;
_snprintf(szText, sizeof(szText)-1, "Only the first file in a multi-file zip is supported\nUse disk image '%s' ?", pFloppy->m_strFilenameInZip.c_str());
int nRes = MessageBox(g_hFrameWindow, szText, TEXT("Multi-Zip Warning"), MB_ICONWARNING | MB_YESNO | MB_SETFOREGROUND);
if (nRes == IDNO)
{
RemoveDisk(drive);
Error = eIMAGE_ERROR_REJECTED_MULTI_ZIP;
}
}
if (Error == eIMAGE_ERROR_NONE)
{
GetImageTitle(pszImageFilename, pFloppy->m_imagename, pFloppy->m_fullname);
Video_ResetScreenshotCounter(pFloppy->m_imagename);
}
else
{
Video_ResetScreenshotCounter(NULL);
}
SaveLastDiskImage(drive);
return Error;
}
//===========================================================================
bool Disk2InterfaceCard::IsConditionForFullSpeed(void)
{
return m_floppyMotorOn && m_enhanceDisk;
}
//===========================================================================
void Disk2InterfaceCard::NotifyInvalidImage(const int drive, LPCTSTR pszImageFilename, const ImageError_e Error)
{
TCHAR szBuffer[MAX_PATH+128];
szBuffer[sizeof(szBuffer)-1] = 0;
switch (Error)
{
case eIMAGE_ERROR_UNABLE_TO_OPEN:
case eIMAGE_ERROR_UNABLE_TO_OPEN_GZ:
case eIMAGE_ERROR_UNABLE_TO_OPEN_ZIP:
_snprintf(
szBuffer,
sizeof(szBuffer)-1,
TEXT("Unable to open the file %s."),
pszImageFilename);
break;
case eIMAGE_ERROR_BAD_SIZE:
_snprintf(
szBuffer,
sizeof(szBuffer)-1,
TEXT("Unable to use the file %s\nbecause the ")
TEXT("disk image is an unsupported size."),
pszImageFilename);
break;
case eIMAGE_ERROR_BAD_FILE:
_snprintf(
szBuffer,
sizeof(szBuffer)-1,
TEXT("Unable to use the file %s\nbecause the ")
TEXT("OS can't access it."),
pszImageFilename);
break;
case eIMAGE_ERROR_UNSUPPORTED:
_snprintf(
szBuffer,
sizeof(szBuffer)-1,
TEXT("Unable to use the file %s\nbecause the ")
TEXT("disk image format is not recognized."),
pszImageFilename);
break;
case eIMAGE_ERROR_UNSUPPORTED_HDV:
_snprintf(
szBuffer,
sizeof(szBuffer)-1,
TEXT("Unable to use the file %s\n")
TEXT("because this UniDisk 3.5/Apple IIGS/hard-disk image is not supported.\n")
TEXT("Try inserting as a hard-disk image instead."),
pszImageFilename);
break;
case eIMAGE_ERROR_UNSUPPORTED_MULTI_ZIP:
_snprintf(
szBuffer,
sizeof(szBuffer)-1,
TEXT("Unable to use the file %s\nbecause the ")
TEXT("first file (%s) in this multi-zip archive is not recognized.\n")
TEXT("Try unzipping and using the disk images directly.\n"),
pszImageFilename,
m_floppyDrive[drive].m_disk.m_strFilenameInZip.c_str());
break;
case eIMAGE_ERROR_GZ:
case eIMAGE_ERROR_ZIP:
_snprintf(
szBuffer,
sizeof(szBuffer)-1,
TEXT("Unable to use the compressed file %s\nbecause the ")
TEXT("compressed disk image is corrupt/unsupported."),
pszImageFilename);
break;
case eIMAGE_ERROR_FAILED_TO_GET_PATHNAME:
_snprintf(
szBuffer,
sizeof(szBuffer)-1,
TEXT("Unable to GetFullPathName() for the file: %s."),
pszImageFilename);
break;
case eIMAGE_ERROR_ZEROLENGTH_WRITEPROTECTED:
_snprintf(
szBuffer,
sizeof(szBuffer)-1,
TEXT("Unsupported zero-length write-protected file: %s."),
pszImageFilename);
break;
case eIMAGE_ERROR_FAILED_TO_INIT_ZEROLENGTH:
_snprintf(
szBuffer,
sizeof(szBuffer)-1,
TEXT("Failed to resize the zero-length file: %s."),
pszImageFilename);
break;
default:
// IGNORE OTHER ERRORS SILENTLY
return;
}
MessageBox(
g_hFrameWindow,
szBuffer,
g_pAppTitle,
MB_ICONEXCLAMATION | MB_SETFOREGROUND);
}
//===========================================================================
bool Disk2InterfaceCard::GetProtect(const int drive)
{
if (IsDriveValid(drive))
{
if (m_floppyDrive[drive].m_disk.m_bWriteProtected)
return true;
}
return false;
}
//===========================================================================
void Disk2InterfaceCard::SetProtect(const int drive, const bool bWriteProtect)
{
if (IsDriveValid( drive ))
{
m_floppyDrive[drive].m_disk.m_bWriteProtected = bWriteProtect;
}
}
//===========================================================================
bool Disk2InterfaceCard::IsDiskImageWriteProtected(const int drive)
{
if (!IsDriveValid(drive))
return true;
return ImageIsWriteProtected(m_floppyDrive[drive].m_disk.m_imagehandle);
}
//===========================================================================
bool Disk2InterfaceCard::IsDriveEmpty(const int drive)
{
if (!IsDriveValid(drive))
return true;
return m_floppyDrive[drive].m_disk.m_imagehandle == NULL;
}
//===========================================================================
#if LOG_DISK_NIBBLES_WRITE
bool Disk2InterfaceCard::LogWriteCheckSyncFF(ULONG& uCycleDelta)
{
bool bIsSyncFF = false;
if (m_uWriteLastCycle == 0) // Reset to 0 when write mode is enabled
{
uCycleDelta = 0;
if (m_floppyLatch == 0xFF)
{
m_uSyncFFCount = 0;
bIsSyncFF = true;
}
}
else
{
uCycleDelta = (ULONG) (g_nCumulativeCycles - m_uWriteLastCycle);
if (m_floppyLatch == 0xFF && uCycleDelta > 32)
{
m_uSyncFFCount++;
bIsSyncFF = true;
}
}
m_uWriteLastCycle = g_nCumulativeCycles;
return bIsSyncFF;
}
#endif
//===========================================================================
void __stdcall Disk2InterfaceCard::ReadWrite(WORD pc, WORD addr, BYTE bWrite, BYTE d, ULONG nExecutedCycles)
{
/* m_floppyLoadMode = 0; */
FloppyDrive* pDrive = &m_floppyDrive[m_currDrive];
FloppyDisk* pFloppy = &pDrive->m_disk;
if (!pFloppy->m_trackimagedata && pFloppy->m_imagehandle)
ReadTrack(m_currDrive);
if (!pFloppy->m_trackimagedata)
{
m_floppyLatch = 0xFF;
return;
}
// Improve precision of "authentic" drive mode - GH#125
UINT uSpinNibbleCount = 0;
CpuCalcCycles(nExecutedCycles); // g_nCumulativeCycles required for uSpinNibbleCount & LogWriteCheckSyncFF()
if (!m_enhanceDisk && pDrive->m_spinning)
{
const ULONG nCycleDiff = (ULONG) (g_nCumulativeCycles - m_diskLastCycle);
m_diskLastCycle = g_nCumulativeCycles;
if (nCycleDiff > 40)
{
// 40 cycles for a write of a 10-bit 0xFF sync byte
uSpinNibbleCount = nCycleDiff >> 5; // ...but divide by 32 (not 40)
ULONG uWrapOffset = uSpinNibbleCount % pFloppy->m_nibbles;
pFloppy->m_byte += uWrapOffset;
if (pFloppy->m_byte >= pFloppy->m_nibbles)
pFloppy->m_byte -= pFloppy->m_nibbles;
#if LOG_DISK_NIBBLES_SPIN
UINT uCompleteRevolutions = uSpinNibbleCount / pFloppy->m_nibbles;
LOG_DISK("spin: revs=%d, nibbles=%d\r\n", uCompleteRevolutions, uWrapOffset);
#endif
}
}
if (!m_floppyWriteMode)
{
// Don't change latch if drive off after 1 second drive-off delay (UTAIIe page 9-13)
// "DRIVES OFF forces the data register to hold its present state." (UTAIIe page 9-12)
// Note: Sherwood Forest sets shift mode and reads with the drive off.
if (!pDrive->m_spinning) // GH#599
return;
const ULONG nReadCycleDiff = (ULONG) (g_nCumulativeCycles - m_diskLastReadLatchCycle);
// Support partial nibble read if disk reads are very close: (GH#582)
// . 6 cycles (1st->2nd read) for DOS 3.3 / $BD34: "read with delays to see if disk is spinning." (Beneath Apple DOS)
// . 6 cycles (1st->2nd read) for Curse of the Azure Bonds (loop to see if disk is spinning)
// . 31 cycles is the max for a partial 8-bit nibble
const ULONG kReadAccessThreshold = m_enhanceDisk ? 6 : 31;
if (nReadCycleDiff <= kReadAccessThreshold)
{
UINT invalidBits = 8 - (nReadCycleDiff / 4); // 4 cycles per bit-cell
m_floppyLatch = *(pFloppy->m_trackimage + pFloppy->m_byte) >> invalidBits;
return; // Early return so don't update: m_diskLastReadLatchCycle & pFloppy->byte
}
m_floppyLatch = *(pFloppy->m_trackimage + pFloppy->m_byte);
m_diskLastReadLatchCycle = g_nCumulativeCycles;
#if LOG_DISK_NIBBLES_READ
#if LOG_DISK_NIBBLES_USE_RUNTIME_VAR
if (m_bLogDisk_NibblesRW)
#endif
{
LOG_DISK("read %04X = %02X\r\n", pFloppy->m_byte, m_floppyLatch);
}
m_formatTrack.DecodeLatchNibbleRead(m_floppyLatch);
#endif
}
else if (!pFloppy->m_bWriteProtected) // && m_floppyWriteMode
{
*(pFloppy->m_trackimage + pFloppy->m_byte) = m_floppyLatch;
pFloppy->m_trackimagedirty = true;
bool bIsSyncFF = false;
#if LOG_DISK_NIBBLES_WRITE
ULONG uCycleDelta = 0;
bIsSyncFF = LogWriteCheckSyncFF(uCycleDelta);
#endif
m_formatTrack.DecodeLatchNibbleWrite(m_floppyLatch, uSpinNibbleCount, pFloppy, bIsSyncFF); // GH#125
#if LOG_DISK_NIBBLES_WRITE
#if LOG_DISK_NIBBLES_USE_RUNTIME_VAR
if (m_bLogDisk_NibblesRW)
#endif
{
if (!bIsSyncFF)
LOG_DISK("write %04X = %02X (cy=+%d)\r\n", pFloppy->m_byte, m_floppyLatch, uCycleDelta);
else
LOG_DISK("write %04X = %02X (cy=+%d) sync #%d\r\n", pFloppy->m_byte, m_floppyLatch, uCycleDelta, m_uSyncFFCount);
}
#endif
}
if (++pFloppy->m_byte >= pFloppy->m_nibbles)
pFloppy->m_byte = 0;
// Show track status (GH#201) - NB. Prevent flooding of forcing UI to redraw!!!
if ((pFloppy->m_byte & 0xFF) == 0)
FrameDrawDiskStatus( (HDC)0 );
}
//===========================================================================
void Disk2InterfaceCard::Reset(const bool bIsPowerCycle/*=false*/)
{
// RESET forces all switches off (UTAIIe Table 9.1)
m_currDrive = 0;
m_floppyMotorOn = 0;
m_floppyLoadMode = 0;
m_floppyWriteMode = 0;
m_phases = 0;
m_formatTrack.Reset();
if (bIsPowerCycle) // GH#460
{
// NB. This doesn't affect the drive head (ie. drive's track position)
// . The initial machine start-up state is track=0, but after a power-cycle the track could be any value.
// . (For DiskII firmware, this results in a subtle extra latch read in this latter case, for the track!=0 case)
m_floppyDrive[DRIVE_1].m_spinning = 0;
m_floppyDrive[DRIVE_1].m_writelight = 0;
m_floppyDrive[DRIVE_2].m_spinning = 0;
m_floppyDrive[DRIVE_2].m_writelight = 0;
FrameRefreshStatus(DRAW_LEDS, false);
}
}
//===========================================================================
bool Disk2InterfaceCard::UserSelectNewDiskImage(const int drive, LPCSTR pszFilename/*=""*/)
{
TCHAR directory[MAX_PATH] = TEXT("");
TCHAR filename[MAX_PATH] = TEXT("");
TCHAR title[40];
strcpy(filename, pszFilename);
RegLoadString(TEXT(REG_PREFS), REGVALUE_PREF_START_DIR, 1, directory, MAX_PATH);
_tcscpy(title, TEXT("Select Disk Image For Drive "));
_tcscat(title, drive ? TEXT("2") : TEXT("1"));
_ASSERT(sizeof(OPENFILENAME) == sizeof(OPENFILENAME_NT4)); // Required for Win98/ME support (selected by _WIN32_WINNT=0x0400 in stdafx.h)
OPENFILENAME ofn;
ZeroMemory(&ofn,sizeof(OPENFILENAME));
ofn.lStructSize = sizeof(OPENFILENAME);
ofn.hwndOwner = g_hFrameWindow;
ofn.hInstance = g_hInstance;
ofn.lpstrFilter = TEXT("All Images\0*.bin;*.do;*.dsk;*.nib;*.po;*.gz;*.zip;*.2mg;*.2img;*.iie;*.apl\0")
TEXT("Disk Images (*.bin,*.do,*.dsk,*.nib,*.po,*.gz,*.zip,*.2mg,*.2img,*.iie)\0*.bin;*.do;*.dsk;*.nib;*.po;*.gz;*.zip;*.2mg;*.2img;*.iie\0")
TEXT("All Files\0*.*\0");
ofn.lpstrFile = filename;
ofn.nMaxFile = MAX_PATH;
ofn.lpstrInitialDir = directory;
ofn.Flags = OFN_PATHMUSTEXIST;
ofn.lpstrTitle = title;
bool bRes = false;
if (GetOpenFileName(&ofn))
{
if ((!ofn.nFileExtension) || !filename[ofn.nFileExtension])
_tcscat(filename,TEXT(".dsk"));
ImageError_e Error = InsertDisk(drive, filename, ofn.Flags & OFN_READONLY, IMAGE_CREATE);
if (Error == eIMAGE_ERROR_NONE)
{
bRes = true;
}
else
{
NotifyInvalidImage(drive, filename, Error);
}
}
return bRes;
}
//===========================================================================
void __stdcall Disk2InterfaceCard::LoadWriteProtect(WORD, WORD, BYTE write, BYTE value, ULONG)
{
/* m_floppyLoadMode = 1; */
// Don't change latch if drive off after 1 second drive-off delay (UTAIIe page 9-13)
// "DRIVES OFF forces the data register to hold its present state." (UTAIIe page 9-12)
// Note: Gemstone Warrior sets load mode with the drive off.
if (!m_floppyDrive[m_currDrive].m_spinning) // GH#599
return;
if (!write)
{
// Notes:
// . Phase 1 on also forces write protect in the Disk II drive (UTAIIe page 9-7) but we don't implement that
// . write mode doesn't prevent reading write protect (GH#537):
// "If for some reason the above write protect check were entered with the READ/WRITE switch in WRITE,
// the write protect switch would still be read correctly" (UTAIIe page 9-21)
if (m_floppyDrive[m_currDrive].m_disk.m_bWriteProtected)
m_floppyLatch |= 0x80;
else
m_floppyLatch &= 0x7F;
}
}
//===========================================================================
void __stdcall Disk2InterfaceCard::SetReadMode(WORD, WORD, BYTE, BYTE, ULONG)
{
m_floppyWriteMode = 0;
m_formatTrack.DriveSwitchedToReadMode(&m_floppyDrive[m_currDrive].m_disk);
#if LOG_DISK_RW_MODE
LOG_DISK("rw mode: read\r\n");
#endif
}
//===========================================================================
void __stdcall Disk2InterfaceCard::SetWriteMode(WORD, WORD, BYTE, BYTE, ULONG uExecutedCycles)
{
m_floppyWriteMode = 1;
m_formatTrack.DriveSwitchedToWriteMode(m_floppyDrive[m_currDrive].m_disk.m_byte);
BOOL modechange = !m_floppyDrive[m_currDrive].m_writelight;
#if LOG_DISK_RW_MODE
LOG_DISK("rw mode: write (mode changed=%d)\r\n", modechange ? 1 : 0);
#endif
#if LOG_DISK_NIBBLES_WRITE
m_uWriteLastCycle = 0;
#endif
m_floppyDrive[m_currDrive].m_writelight = WRITELIGHT_CYCLES;
if (modechange)
FrameDrawDiskLEDS( (HDC)0 );
}
//===========================================================================
void Disk2InterfaceCard::UpdateDriveState(DWORD cycles)
{
int loop = NUM_DRIVES;
while (loop--)
{
FloppyDrive* pDrive = &m_floppyDrive[loop];
if (pDrive->m_spinning && !m_floppyMotorOn)
{
if (!(pDrive->m_spinning -= MIN(pDrive->m_spinning, cycles)))
{
FrameDrawDiskLEDS( (HDC)0 );
FrameDrawDiskStatus( (HDC)0 );
}
}
if (m_floppyWriteMode && (m_currDrive == loop) && pDrive->m_spinning)
{
pDrive->m_writelight = WRITELIGHT_CYCLES;
}
else if (pDrive->m_writelight)
{
if (!(pDrive->m_writelight -= MIN(pDrive->m_writelight, cycles)))
{
FrameDrawDiskLEDS( (HDC)0 );
FrameDrawDiskStatus( (HDC)0 );
}
}
}
}
//===========================================================================
bool Disk2InterfaceCard::DriveSwap(void)
{
// Refuse to swap if either Disk][ is active
// TODO: if Shift-Click then FORCE drive swap to bypass message
if (m_floppyDrive[DRIVE_1].m_spinning || m_floppyDrive[DRIVE_2].m_spinning)
{
// 1.26.2.4 Prompt when trying to swap disks while drive is on instead of silently failing
int status = MessageBox(
g_hFrameWindow,
"WARNING:\n"
"\n"
"\tAttempting to swap a disk while a drive is on\n"
"\t\t--> is NOT recommended <--\n"
"\tas this will most likely read/write incorrect data!\n"
"\n"
"If the other drive is empty then swapping is harmless. The"
" computer will appear to 'hang' trying to read non-existent data but"
" you can safely swap disks once more to restore the original disk.\n"
"\n"
"Do you still wish to swap disks?",
"Trying to swap a disk while a drive is on ...",
MB_ICONWARNING | MB_YESNOCANCEL
);
switch( status )
{
case IDNO:
case IDCANCEL:
return false;
default:
break; // User is OK with swapping disks so let them proceed at their own risk
}
}
FlushCurrentTrack(DRIVE_1);
FlushCurrentTrack(DRIVE_2);
// Swap disks between drives
// . NB. We swap trackimage ptrs (so don't need to swap the buffers' data)
std::swap(m_floppyDrive[DRIVE_1].m_disk, m_floppyDrive[DRIVE_2].m_disk);
// Invalidate the trackimage so that a read latch will re-read the track for the new floppy (GH#543)
m_floppyDrive[DRIVE_1].m_disk.m_trackimagedata = false;
m_floppyDrive[DRIVE_2].m_disk.m_trackimagedata = false;
SaveLastDiskImage(DRIVE_1);
SaveLastDiskImage(DRIVE_2);
FrameRefreshStatus(DRAW_LEDS | DRAW_BUTTON_DRIVES, false);
return true;
}
//===========================================================================
// TODO: LoadRom_Disk_Floppy()
void Disk2InterfaceCard::Initialize(LPBYTE pCxRomPeripheral, UINT uSlot)
{
const UINT DISK2_FW_SIZE = APPLE_SLOT_SIZE;
HRSRC hResInfo = FindResource(NULL, MAKEINTRESOURCE(IDR_DISK2_FW), "FIRMWARE");
if(hResInfo == NULL)
return;
DWORD dwResSize = SizeofResource(NULL, hResInfo);
if(dwResSize != DISK2_FW_SIZE)
return;
HGLOBAL hResData = LoadResource(NULL, hResInfo);
if(hResData == NULL)
return;
BYTE* pData = (BYTE*) LockResource(hResData); // NB. Don't need to unlock resource
if(pData == NULL)
return;
memcpy(pCxRomPeripheral + uSlot*APPLE_SLOT_SIZE, pData, DISK2_FW_SIZE);
// Note: We used to disable the track stepping delay in the Disk II controller firmware by
// patching $C64C with $A9,$00,$EA. Now not doing this since:
// . Authentic Speed should be authentic
// . Enhanced Speed runs emulation unthrottled, so removing the delay has negligible effect
// . Patching the firmware breaks the ADC checksum used by "The CIA Files" (Tricky Dick)
// . In this case we can patch to compensate for an ADC or EOR checksum but not both (nickw)
RegisterIoHandler(uSlot, &Disk2InterfaceCard::IORead, &Disk2InterfaceCard::IOWrite, NULL, NULL, this, NULL);
m_slot = uSlot;
}
//===========================================================================
BYTE __stdcall Disk2InterfaceCard::IORead(WORD pc, WORD addr, BYTE bWrite, BYTE d, ULONG nExecutedCycles)
{
UINT uSlot = ((addr & 0xff) >> 4) - 8;
Disk2InterfaceCard* pCard = (Disk2InterfaceCard*) MemGetSlotParameters(uSlot);
switch (addr & 0xF)
{
case 0x0: pCard->ControlStepper(pc, addr, bWrite, d, nExecutedCycles); break;
case 0x1: pCard->ControlStepper(pc, addr, bWrite, d, nExecutedCycles); break;
case 0x2: pCard->ControlStepper(pc, addr, bWrite, d, nExecutedCycles); break;
case 0x3: pCard->ControlStepper(pc, addr, bWrite, d, nExecutedCycles); break;
case 0x4: pCard->ControlStepper(pc, addr, bWrite, d, nExecutedCycles); break;
case 0x5: pCard->ControlStepper(pc, addr, bWrite, d, nExecutedCycles); break;
case 0x6: pCard->ControlStepper(pc, addr, bWrite, d, nExecutedCycles); break;
case 0x7: pCard->ControlStepper(pc, addr, bWrite, d, nExecutedCycles); break;
case 0x8: pCard->ControlMotor(pc, addr, bWrite, d, nExecutedCycles); break;
case 0x9: pCard->ControlMotor(pc, addr, bWrite, d, nExecutedCycles); break;
case 0xA: pCard->Enable(pc, addr, bWrite, d, nExecutedCycles); break;
case 0xB: pCard->Enable(pc, addr, bWrite, d, nExecutedCycles); break;
case 0xC: pCard->ReadWrite(pc, addr, bWrite, d, nExecutedCycles); break;
case 0xD: pCard->LoadWriteProtect(pc, addr, bWrite, d, nExecutedCycles); break;
case 0xE: pCard->SetReadMode(pc, addr, bWrite, d, nExecutedCycles); break;
case 0xF: pCard->SetWriteMode(pc, addr, bWrite, d, nExecutedCycles); break;
}
// only even addresses return the latch (UTAIIe Table 9.1)
if (!(addr & 1))
return pCard->m_floppyLatch;
else
return MemReadFloatingBus(nExecutedCycles);
}
BYTE __stdcall Disk2InterfaceCard::IOWrite(WORD pc, WORD addr, BYTE bWrite, BYTE d, ULONG nExecutedCycles)
{
UINT uSlot = ((addr & 0xff) >> 4) - 8;
Disk2InterfaceCard* pCard = (Disk2InterfaceCard*) MemGetSlotParameters(uSlot);
switch (addr & 0xF)
{
case 0x0: pCard->ControlStepper(pc, addr, bWrite, d, nExecutedCycles); break;
case 0x1: pCard->ControlStepper(pc, addr, bWrite, d, nExecutedCycles); break;
case 0x2: pCard->ControlStepper(pc, addr, bWrite, d, nExecutedCycles); break;
case 0x3: pCard->ControlStepper(pc, addr, bWrite, d, nExecutedCycles); break;
case 0x4: pCard->ControlStepper(pc, addr, bWrite, d, nExecutedCycles); break;
case 0x5: pCard->ControlStepper(pc, addr, bWrite, d, nExecutedCycles); break;
case 0x6: pCard->ControlStepper(pc, addr, bWrite, d, nExecutedCycles); break;
case 0x7: pCard->ControlStepper(pc, addr, bWrite, d, nExecutedCycles); break;
case 0x8: pCard->ControlMotor(pc, addr, bWrite, d, nExecutedCycles); break;
case 0x9: pCard->ControlMotor(pc, addr, bWrite, d, nExecutedCycles); break;
case 0xA: pCard->Enable(pc, addr, bWrite, d, nExecutedCycles); break;
case 0xB: pCard->Enable(pc, addr, bWrite, d, nExecutedCycles); break;
case 0xC: pCard->ReadWrite(pc, addr, bWrite, d, nExecutedCycles); break;
case 0xD: pCard->LoadWriteProtect(pc, addr, bWrite, d, nExecutedCycles); break;
case 0xE: pCard->SetReadMode(pc, addr, bWrite, d, nExecutedCycles); break;
case 0xF: pCard->SetWriteMode(pc, addr, bWrite, d, nExecutedCycles); break;
}
// any address writes the latch via sequencer LD command (74LS323 datasheet)
if (pCard->m_floppyWriteMode /* && m_floppyLoadMode */)
{
pCard->m_floppyLatch = d;
}
return 0;
}
//===========================================================================
// Unit version history:
// 2: Added: Format Track state & DiskLastCycle
// 3: Added: DiskLastReadLatchCycle
static const UINT kUNIT_VERSION = 3;
#define SS_YAML_VALUE_CARD_DISK2 "Disk]["
#define SS_YAML_KEY_PHASES "Phases"
#define SS_YAML_KEY_CURRENT_DRIVE "Current Drive"
#define SS_YAML_KEY_DISK_ACCESSED "Disk Accessed"
#define SS_YAML_KEY_ENHANCE_DISK "Enhance Disk"
#define SS_YAML_KEY_FLOPPY_LATCH "Floppy Latch"
#define SS_YAML_KEY_FLOPPY_MOTOR_ON "Floppy Motor On"
#define SS_YAML_KEY_FLOPPY_WRITE_MODE "Floppy Write Mode"
#define SS_YAML_KEY_LAST_CYCLE "Last Cycle"
#define SS_YAML_KEY_LAST_READ_LATCH_CYCLE "Last Read Latch Cycle"
#define SS_YAML_KEY_DISK2UNIT "Unit"
#define SS_YAML_KEY_FILENAME "Filename"
#define SS_YAML_KEY_TRACK "Track"
#define SS_YAML_KEY_PHASE "Phase"
#define SS_YAML_KEY_BYTE "Byte"
#define SS_YAML_KEY_WRITE_PROTECTED "Write Protected"
#define SS_YAML_KEY_SPINNING "Spinning"
#define SS_YAML_KEY_WRITE_LIGHT "Write Light"
#define SS_YAML_KEY_NIBBLES "Nibbles"
#define SS_YAML_KEY_TRACK_IMAGE_DATA "Track Image Data"
#define SS_YAML_KEY_TRACK_IMAGE_DIRTY "Track Image Dirty"
#define SS_YAML_KEY_TRACK_IMAGE "Track Image"
std::string Disk2InterfaceCard::GetSnapshotCardName(void)
{
static const std::string name(SS_YAML_VALUE_CARD_DISK2);
return name;
}
void Disk2InterfaceCard::SaveSnapshotDisk2Unit(YamlSaveHelper& yamlSaveHelper, UINT unit)
{
YamlSaveHelper::Label label(yamlSaveHelper, "%s%d:\n", SS_YAML_KEY_DISK2UNIT, unit);
yamlSaveHelper.SaveString(SS_YAML_KEY_FILENAME, m_floppyDrive[unit].m_disk.m_fullname);
yamlSaveHelper.SaveUint(SS_YAML_KEY_TRACK, m_floppyDrive[unit].m_track);
yamlSaveHelper.SaveUint(SS_YAML_KEY_PHASE, m_floppyDrive[unit].m_phase);
yamlSaveHelper.SaveHexUint16(SS_YAML_KEY_BYTE, m_floppyDrive[unit].m_disk.m_byte);
yamlSaveHelper.SaveBool(SS_YAML_KEY_WRITE_PROTECTED, m_floppyDrive[unit].m_disk.m_bWriteProtected);
yamlSaveHelper.SaveUint(SS_YAML_KEY_SPINNING, m_floppyDrive[unit].m_spinning);
yamlSaveHelper.SaveUint(SS_YAML_KEY_WRITE_LIGHT, m_floppyDrive[unit].m_writelight);
yamlSaveHelper.SaveHexUint16(SS_YAML_KEY_NIBBLES, m_floppyDrive[unit].m_disk.m_nibbles);
yamlSaveHelper.SaveUint(SS_YAML_KEY_TRACK_IMAGE_DATA, m_floppyDrive[unit].m_disk.m_trackimagedata);
yamlSaveHelper.SaveUint(SS_YAML_KEY_TRACK_IMAGE_DIRTY, m_floppyDrive[unit].m_disk.m_trackimagedirty);
if (m_floppyDrive[unit].m_disk.m_trackimage)
{
YamlSaveHelper::Label image(yamlSaveHelper, "%s:\n", SS_YAML_KEY_TRACK_IMAGE);
yamlSaveHelper.SaveMemory(m_floppyDrive[unit].m_disk.m_trackimage, NIBBLES_PER_TRACK);
}
}
void Disk2InterfaceCard::SaveSnapshot(class YamlSaveHelper& yamlSaveHelper)
{
YamlSaveHelper::Slot slot(yamlSaveHelper, GetSnapshotCardName(), m_slot, kUNIT_VERSION);
YamlSaveHelper::Label state(yamlSaveHelper, "%s:\n", SS_YAML_KEY_STATE);
yamlSaveHelper.SaveHexUint4(SS_YAML_KEY_PHASES, m_phases);
yamlSaveHelper.SaveUint(SS_YAML_KEY_CURRENT_DRIVE, m_currDrive);
yamlSaveHelper.SaveBool(SS_YAML_KEY_DISK_ACCESSED, false); // deprecated
yamlSaveHelper.SaveBool(SS_YAML_KEY_ENHANCE_DISK, m_enhanceDisk);
yamlSaveHelper.SaveHexUint8(SS_YAML_KEY_FLOPPY_LATCH, m_floppyLatch);
yamlSaveHelper.SaveBool(SS_YAML_KEY_FLOPPY_MOTOR_ON, m_floppyMotorOn == TRUE);
yamlSaveHelper.SaveBool(SS_YAML_KEY_FLOPPY_WRITE_MODE, m_floppyWriteMode == TRUE);
yamlSaveHelper.SaveHexUint64(SS_YAML_KEY_LAST_CYCLE, m_diskLastCycle); // v2
yamlSaveHelper.SaveHexUint64(SS_YAML_KEY_LAST_READ_LATCH_CYCLE, m_diskLastReadLatchCycle); // v3
m_formatTrack.SaveSnapshot(yamlSaveHelper); // v2
SaveSnapshotDisk2Unit(yamlSaveHelper, DRIVE_1);
SaveSnapshotDisk2Unit(yamlSaveHelper, DRIVE_2);
}
void Disk2InterfaceCard::LoadSnapshotDriveUnit(YamlLoadHelper& yamlLoadHelper, UINT unit)
{
std::string disk2UnitName = std::string(SS_YAML_KEY_DISK2UNIT) + (unit == DRIVE_1 ? std::string("0") : std::string("1"));
if (!yamlLoadHelper.GetSubMap(disk2UnitName))
throw std::string("Card: Expected key: ") + disk2UnitName;
bool bImageError = false;
m_floppyDrive[unit].m_disk.m_fullname[0] = 0;
m_floppyDrive[unit].m_disk.m_imagename[0] = 0;
m_floppyDrive[unit].m_disk.m_bWriteProtected = false; // Default to false (until image is successfully loaded below)
std::string filename = yamlLoadHelper.LoadString(SS_YAML_KEY_FILENAME);
if (!filename.empty())
{
DWORD dwAttributes = GetFileAttributes(filename.c_str());
if(dwAttributes == INVALID_FILE_ATTRIBUTES)
{
// Get user to browse for file
UserSelectNewDiskImage(unit, filename.c_str());
dwAttributes = GetFileAttributes(filename.c_str());
}
bImageError = (dwAttributes == INVALID_FILE_ATTRIBUTES);
if (!bImageError)
{
if(InsertDisk(unit, filename.c_str(), dwAttributes & FILE_ATTRIBUTE_READONLY, IMAGE_DONT_CREATE) != eIMAGE_ERROR_NONE)
bImageError = true;
// DiskInsert() zeros m_floppyDrive[unit], then sets up:
// . imagename
// . fullname
// . writeprotected
}
}
m_floppyDrive[unit].m_track = yamlLoadHelper.LoadUint(SS_YAML_KEY_TRACK);
m_floppyDrive[unit].m_phase = yamlLoadHelper.LoadUint(SS_YAML_KEY_PHASE);
m_floppyDrive[unit].m_disk.m_byte = yamlLoadHelper.LoadUint(SS_YAML_KEY_BYTE);
yamlLoadHelper.LoadBool(SS_YAML_KEY_WRITE_PROTECTED); // Consume
m_floppyDrive[unit].m_spinning = yamlLoadHelper.LoadUint(SS_YAML_KEY_SPINNING);
m_floppyDrive[unit].m_writelight = yamlLoadHelper.LoadUint(SS_YAML_KEY_WRITE_LIGHT);
m_floppyDrive[unit].m_disk.m_nibbles = yamlLoadHelper.LoadUint(SS_YAML_KEY_NIBBLES);
m_floppyDrive[unit].m_disk.m_trackimagedata = yamlLoadHelper.LoadUint(SS_YAML_KEY_TRACK_IMAGE_DATA) ? true : false;
m_floppyDrive[unit].m_disk.m_trackimagedirty = yamlLoadHelper.LoadUint(SS_YAML_KEY_TRACK_IMAGE_DIRTY) ? true : false;
std::vector<BYTE> track(NIBBLES_PER_TRACK);
if (yamlLoadHelper.GetSubMap(SS_YAML_KEY_TRACK_IMAGE))
{
yamlLoadHelper.LoadMemory(&track[0], NIBBLES_PER_TRACK);
yamlLoadHelper.PopMap();
}
yamlLoadHelper.PopMap();
//
if (!filename.empty() && !bImageError)
{
if ((m_floppyDrive[unit].m_disk.m_trackimage == NULL) && m_floppyDrive[unit].m_disk.m_nibbles)
AllocTrack(unit);
if (m_floppyDrive[unit].m_disk.m_trackimage == NULL)
bImageError = true;
else
memcpy(m_floppyDrive[unit].m_disk.m_trackimage, &track[0], NIBBLES_PER_TRACK);
}
if (bImageError)
{
m_floppyDrive[unit].m_disk.m_trackimagedata = false;
m_floppyDrive[unit].m_disk.m_trackimagedirty = false;
m_floppyDrive[unit].m_disk.m_nibbles = 0;
}
}
bool Disk2InterfaceCard::LoadSnapshot(class YamlLoadHelper& yamlLoadHelper, UINT slot, UINT version)
{
if (slot != 6) // fixme
throw std::string("Card: wrong slot");
if (version < 1 || version > kUNIT_VERSION)
throw std::string("Card: wrong version");
m_phases = yamlLoadHelper.LoadUint(SS_YAML_KEY_PHASES);
m_currDrive = yamlLoadHelper.LoadUint(SS_YAML_KEY_CURRENT_DRIVE);
(void) yamlLoadHelper.LoadBool(SS_YAML_KEY_DISK_ACCESSED); // deprecated - but retrieve the value to avoid the "State: Unknown key (Disk Accessed)" warning
m_enhanceDisk = yamlLoadHelper.LoadBool(SS_YAML_KEY_ENHANCE_DISK);
m_floppyLatch = yamlLoadHelper.LoadUint(SS_YAML_KEY_FLOPPY_LATCH);
m_floppyMotorOn = yamlLoadHelper.LoadBool(SS_YAML_KEY_FLOPPY_MOTOR_ON);
m_floppyWriteMode = yamlLoadHelper.LoadBool(SS_YAML_KEY_FLOPPY_WRITE_MODE);
if (version >= 2)
{
m_diskLastCycle = yamlLoadHelper.LoadUint64(SS_YAML_KEY_LAST_CYCLE);
m_formatTrack.LoadSnapshot(yamlLoadHelper);
}
if (version >= 3)
{
m_diskLastReadLatchCycle = yamlLoadHelper.LoadUint64(SS_YAML_KEY_LAST_READ_LATCH_CYCLE);
}
// Eject all disks first in case Drive-2 contains disk to be inserted into Drive-1
for (UINT i=0; i<NUM_DRIVES; i++)
{
EjectDisk(i); // Remove any disk & update Registry to reflect empty drive
m_floppyDrive[i].clear();
}
LoadSnapshotDriveUnit(yamlLoadHelper, DRIVE_1);
LoadSnapshotDriveUnit(yamlLoadHelper, DRIVE_2);
FrameRefreshStatus(DRAW_LEDS | DRAW_BUTTON_DRIVES);
return true;
}