AppleWin/source/Memory.cpp

1916 lines
61 KiB
C++

/*
AppleWin : An Apple //e emulator for Windows
Copyright (C) 1994-1996, Michael O'Brien
Copyright (C) 1999-2001, Oliver Schmidt
Copyright (C) 2002-2005, Tom Charlesworth
Copyright (C) 2006-2007, Tom Charlesworth, Michael Pohoreski
AppleWin is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
AppleWin is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with AppleWin; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
/* Description: Memory emulation
*
* Author: Various
*
* In comments, UTA2E is an abbreviation for a reference to "Understanding the Apple //e" by James Sather
*/
#include "StdAfx.h"
#include "AppleWin.h"
#include "CPU.h"
#include "Disk.h"
#include "Frame.h"
#include "Harddisk.h"
#include "Joystick.h"
#include "Keyboard.h"
#include "Memory.h"
#include "Mockingboard.h"
#include "MouseInterface.h"
#include "NTSC.h"
#include "NoSlotClock.h"
#include "ParallelPrinter.h"
#include "Registry.h"
#include "SAM.h"
#include "SerialComms.h"
#include "Speaker.h"
#include "Tape.h"
#include "Video.h"
#include "z80emu.h"
#include "Z80VICE\z80.h"
#include "..\resource\resource.h"
#include "Configuration\PropertySheet.h"
#include "Debugger\DebugDefs.h"
#include "YamlHelper.h"
// Memory Flag
#define MF_80STORE 0x00000001
#define MF_ALTZP 0x00000002
#define MF_AUXREAD 0x00000004 // RAMRD
#define MF_AUXWRITE 0x00000008 // RAMWRT
#define MF_BANK2 0x00000010
#define MF_HIGHRAM 0x00000020
#define MF_HIRES 0x00000040
#define MF_PAGE2 0x00000080
#define MF_SLOTC3ROM 0x00000100
#define MF_SLOTCXROM 0x00000200
#define MF_WRITERAM 0x00000400
#define MF_IMAGEMASK 0x000003F7
#define SW_80STORE (memmode & MF_80STORE)
#define SW_ALTZP (memmode & MF_ALTZP)
#define SW_AUXREAD (memmode & MF_AUXREAD)
#define SW_AUXWRITE (memmode & MF_AUXWRITE)
#define SW_BANK2 (memmode & MF_BANK2)
#define SW_HIGHRAM (memmode & MF_HIGHRAM)
#define SW_HIRES (memmode & MF_HIRES)
#define SW_PAGE2 (memmode & MF_PAGE2)
#define SW_SLOTC3ROM (memmode & MF_SLOTC3ROM)
#define SW_SLOTCXROM (memmode & MF_SLOTCXROM)
#define SW_WRITERAM (memmode & MF_WRITERAM)
/*
MEMORY MANAGEMENT SOFT SWITCHES
$C000 W 80STOREOFF Allow page2 to switch video page1 page2
$C001 W 80STOREON Allow page2 to switch main & aux video memory
$C002 W RAMRDOFF Read enable main memory from $0200-$BFFF
$C003 W RAMDRON Read enable aux memory from $0200-$BFFF
$C004 W RAMWRTOFF Write enable main memory from $0200-$BFFF
$C005 W RAMWRTON Write enable aux memory from $0200-$BFFF
$C006 W INTCXROMOFF Enable slot ROM from $C100-$CFFF
$C007 W INTCXROMON Enable main ROM from $C100-$CFFF
$C008 W ALTZPOFF Enable main memory from $0000-$01FF & avl BSR
$C009 W ALTZPON Enable aux memory from $0000-$01FF & avl BSR
$C00A W SLOTC3ROMOFF Enable main ROM from $C300-$C3FF
$C00B W SLOTC3ROMON Enable slot ROM from $C300-$C3FF
VIDEO SOFT SWITCHES
$C00C W 80COLOFF Turn off 80 column display
$C00D W 80COLON Turn on 80 column display
$C00E W ALTCHARSETOFF Turn off alternate characters
$C00F W ALTCHARSETON Turn on alternate characters
$C050 R/W TEXTOFF Select graphics mode
$C051 R/W TEXTON Select text mode
$C052 R/W MIXEDOFF Use full screen for graphics
$C053 R/W MIXEDON Use graphics with 4 lines of text
$C054 R/W PAGE2OFF Select panel display (or main video memory)
$C055 R/W PAGE2ON Select page2 display (or aux video memory)
$C056 R/W HIRESOFF Select low resolution graphics
$C057 R/W HIRESON Select high resolution graphics
SOFT SWITCH STATUS FLAGS
$C010 R7 AKD 1=key pressed 0=keys free (clears strobe)
$C011 R7 BSRBANK2 1=bank2 available 0=bank1 available
$C012 R7 BSRREADRAM 1=BSR active for read 0=$D000-$FFFF active
$C013 R7 RAMRD 0=main $0200-$BFFF active reads 1=aux active
$C014 R7 RAMWRT 0=main $0200-$BFFF active writes 1=aux writes
$C015 R7 INTCXROM 1=main $C100-$CFFF ROM active 0=slot active
$C016 R7 ALTZP 1=aux $0000-$1FF+auxBSR 0=main available
$C017 R7 SLOTC3ROM 1=slot $C3 ROM active 0=main $C3 ROM active
$C018 R7 80STORE 1=page2 switches main/aux 0=page2 video
$C019 R7 VERTBLANK 1=vertical retrace on 0=vertical retrace off
$C01A R7 TEXT 1=text mode is active 0=graphics mode active
$C01B R7 MIXED 1=mixed graphics & text 0=full screen
$C01C R7 PAGE2 1=video page2 selected or aux
$C01D R7 HIRES 1=high resolution graphics 0=low resolution
$C01E R7 ALTCHARSET 1=alt character set on 0=alt char set off
$C01F R7 80COL 1=80 col display on 0=80 col display off
*/
//-----------------------------------------------------------------------------
// Notes
// -----
//
// mem
// - a copy of the memimage ptr
//
// memimage
// - 64KB
// - reflects the current readable memory in the 6502's 64K address space
// . excludes $Cxxx I/O memory
// . could be a mix of RAM/ROM, main/aux, etc
//
// memmain, memaux
// - physical contiguous 64KB RAM for main & aux respectively
//
// memwrite
// - 1 ptr entry per 256-byte page
// - used to write to a page
//
// memdirty
// - 1 byte entry per 256-byte page
// - set when a write occurs to a 256-byte page
//
// memshadow
// - 1 ptr entry per 256-byte page
// - reflects how 'mem' is setup
// . EG: if ALTZP=1, then:
// . mem will have copies of memaux's ZP & stack
// . memshadow[0] = &memaux[0x0000]
// . memshadow[1] = &memaux[0x0100]
//
static LPBYTE memshadow[0x100];
LPBYTE memwrite[0x100];
iofunction IORead[256];
iofunction IOWrite[256];
static LPVOID SlotParameters[NUM_SLOTS];
static BOOL lastwriteram = 0; // NB. redundant - only used in MemSetPaging(), where it's forced to 1
LPBYTE mem = NULL;
//
static LPBYTE memaux = NULL;
static LPBYTE memmain = NULL;
LPBYTE memdirty = NULL;
static LPBYTE memrom = NULL;
static LPBYTE memimage = NULL;
static LPBYTE pCxRomInternal = NULL;
static LPBYTE pCxRomPeripheral = NULL;
static DWORD memmode = MF_BANK2 | MF_SLOTCXROM | MF_WRITERAM;
static BOOL modechanging = 0; // An Optimisation: means delay calling UpdatePaging() for 1 instruction
static BOOL Pravets8charmode = 0;
static CNoSlotClock g_NoSlotClock;
#ifdef RAMWORKS
UINT g_uMaxExPages = 1; // user requested ram pages (default to 1 aux bank: so total = 128KB)
UINT g_uActiveBank = 0; // 0 = aux 64K for: //e extended 80 Col card, or //c
static LPBYTE RWpages[kMaxExMemoryBanks]; // pointers to RW memory banks
#endif
BYTE __stdcall IO_Annunciator(WORD programcounter, WORD address, BYTE write, BYTE value, ULONG nCycles);
//=============================================================================
static BYTE __stdcall IORead_C00x(WORD pc, WORD addr, BYTE bWrite, BYTE d, ULONG nCyclesLeft)
{
return KeybReadData(pc, addr, bWrite, d, nCyclesLeft);
}
static BYTE __stdcall IOWrite_C00x(WORD pc, WORD addr, BYTE bWrite, BYTE d, ULONG nCyclesLeft)
{
if ((addr & 0xf) <= 0xB)
return MemSetPaging(pc, addr, bWrite, d, nCyclesLeft);
else
return VideoSetMode(pc, addr, bWrite, d, nCyclesLeft);
}
//-------------------------------------
static BYTE __stdcall IORead_C01x(WORD pc, WORD addr, BYTE bWrite, BYTE d, ULONG nCyclesLeft)
{
switch (addr & 0xf)
{
case 0x0: return KeybReadFlag(pc, addr, bWrite, d, nCyclesLeft);
case 0x1: return MemCheckPaging(pc, addr, bWrite, d, nCyclesLeft);
case 0x2: return MemCheckPaging(pc, addr, bWrite, d, nCyclesLeft);
case 0x3: return MemCheckPaging(pc, addr, bWrite, d, nCyclesLeft);
case 0x4: return MemCheckPaging(pc, addr, bWrite, d, nCyclesLeft);
case 0x5: return MemCheckPaging(pc, addr, bWrite, d, nCyclesLeft);
case 0x6: return MemCheckPaging(pc, addr, bWrite, d, nCyclesLeft);
case 0x7: return MemCheckPaging(pc, addr, bWrite, d, nCyclesLeft);
case 0x8: return MemCheckPaging(pc, addr, bWrite, d, nCyclesLeft);
case 0x9: return VideoCheckVbl(nCyclesLeft);
case 0xA: return VideoCheckMode(pc, addr, bWrite, d, nCyclesLeft);
case 0xB: return VideoCheckMode(pc, addr, bWrite, d, nCyclesLeft);
case 0xC: return MemCheckPaging(pc, addr, bWrite, d, nCyclesLeft);
case 0xD: return MemCheckPaging(pc, addr, bWrite, d, nCyclesLeft);
case 0xE: return VideoCheckMode(pc, addr, bWrite, d, nCyclesLeft);
case 0xF: return VideoCheckMode(pc, addr, bWrite, d, nCyclesLeft);
}
return 0;
}
static BYTE __stdcall IOWrite_C01x(WORD pc, WORD addr, BYTE bWrite, BYTE d, ULONG nCyclesLeft)
{
return KeybReadFlag(pc, addr, bWrite, d, nCyclesLeft);
}
//-------------------------------------
static BYTE __stdcall IORead_C02x(WORD pc, WORD addr, BYTE bWrite, BYTE d, ULONG nCyclesLeft)
{
return IO_Null(pc, addr, bWrite, d, nCyclesLeft);
}
static BYTE __stdcall IOWrite_C02x(WORD pc, WORD addr, BYTE bWrite, BYTE d, ULONG nCyclesLeft)
{
return IO_Null(pc, addr, bWrite, d, nCyclesLeft); // $C020 TAPEOUT
}
//-------------------------------------
static BYTE __stdcall IORead_C03x(WORD pc, WORD addr, BYTE bWrite, BYTE d, ULONG nCyclesLeft)
{
return SpkrToggle(pc, addr, bWrite, d, nCyclesLeft);
}
static BYTE __stdcall IOWrite_C03x(WORD pc, WORD addr, BYTE bWrite, BYTE d, ULONG nCyclesLeft)
{
return SpkrToggle(pc, addr, bWrite, d, nCyclesLeft);
}
//-------------------------------------
static BYTE __stdcall IORead_C04x(WORD pc, WORD addr, BYTE bWrite, BYTE d, ULONG nCyclesLeft)
{
return IO_Null(pc, addr, bWrite, d, nCyclesLeft);
}
static BYTE __stdcall IOWrite_C04x(WORD pc, WORD addr, BYTE bWrite, BYTE d, ULONG nCyclesLeft)
{
return IO_Null(pc, addr, bWrite, d, nCyclesLeft);
}
//-------------------------------------
static BYTE __stdcall IORead_C05x(WORD pc, WORD addr, BYTE bWrite, BYTE d, ULONG nCyclesLeft)
{
switch (addr & 0xf)
{
case 0x0: return VideoSetMode(pc, addr, bWrite, d, nCyclesLeft);
case 0x1: return VideoSetMode(pc, addr, bWrite, d, nCyclesLeft);
case 0x2: return VideoSetMode(pc, addr, bWrite, d, nCyclesLeft);
case 0x3: return VideoSetMode(pc, addr, bWrite, d, nCyclesLeft);
case 0x4: return MemSetPaging(pc, addr, bWrite, d, nCyclesLeft);
case 0x5: return MemSetPaging(pc, addr, bWrite, d, nCyclesLeft);
case 0x6: return MemSetPaging(pc, addr, bWrite, d, nCyclesLeft);
case 0x7: return MemSetPaging(pc, addr, bWrite, d, nCyclesLeft);
case 0x8: return IO_Annunciator(pc, addr, bWrite, d, nCyclesLeft);
case 0x9: return IO_Annunciator(pc, addr, bWrite, d, nCyclesLeft);
case 0xA: return IO_Annunciator(pc, addr, bWrite, d, nCyclesLeft);
case 0xB: return IO_Annunciator(pc, addr, bWrite, d, nCyclesLeft);
case 0xC: return IO_Annunciator(pc, addr, bWrite, d, nCyclesLeft);
case 0xD: return IO_Annunciator(pc, addr, bWrite, d, nCyclesLeft);
case 0xE: return VideoSetMode(pc, addr, bWrite, d, nCyclesLeft);
case 0xF: return VideoSetMode(pc, addr, bWrite, d, nCyclesLeft);
}
return 0;
}
static BYTE __stdcall IOWrite_C05x(WORD pc, WORD addr, BYTE bWrite, BYTE d, ULONG nCyclesLeft)
{
switch (addr & 0xf)
{
case 0x0: return VideoSetMode(pc, addr, bWrite, d, nCyclesLeft);
case 0x1: return VideoSetMode(pc, addr, bWrite, d, nCyclesLeft);
case 0x2: return VideoSetMode(pc, addr, bWrite, d, nCyclesLeft);
case 0x3: return VideoSetMode(pc, addr, bWrite, d, nCyclesLeft);
case 0x4: return MemSetPaging(pc, addr, bWrite, d, nCyclesLeft);
case 0x5: return MemSetPaging(pc, addr, bWrite, d, nCyclesLeft);
case 0x6: return MemSetPaging(pc, addr, bWrite, d, nCyclesLeft);
case 0x7: return MemSetPaging(pc, addr, bWrite, d, nCyclesLeft);
case 0x8: return IO_Annunciator(pc, addr, bWrite, d, nCyclesLeft);
case 0x9: return IO_Annunciator(pc, addr, bWrite, d, nCyclesLeft);
case 0xA: return IO_Annunciator(pc, addr, bWrite, d, nCyclesLeft);
case 0xB: return IO_Annunciator(pc, addr, bWrite, d, nCyclesLeft);
case 0xC: return IO_Annunciator(pc, addr, bWrite, d, nCyclesLeft);
case 0xD: return IO_Annunciator(pc, addr, bWrite, d, nCyclesLeft);
case 0xE: return VideoSetMode(pc, addr, bWrite, d, nCyclesLeft);
case 0xF: return VideoSetMode(pc, addr, bWrite, d, nCyclesLeft);
}
return 0;
}
//-------------------------------------
static BYTE __stdcall IORead_C06x(WORD pc, WORD addr, BYTE bWrite, BYTE d, ULONG nCyclesLeft)
{
static byte CurrentKestroke = 0;
CurrentKestroke = KeybGetKeycode();
switch (addr & 0x7) // address bit 4 is ignored (UTA2E page 7-5)
{
//In Pravets8A/C if SETMODE (8bit character encoding) is enabled, bit6 in $C060 is 0; Else it is 1
//If (CAPS lOCK of Pravets8A/C is on or Shift is pressed) and (MODE is enabled), bit7 in $C000 is 1; Else it is 0
//Writing into $C060 sets MODE on and off. If bit 0 is 0 the the MODE is set 0, if bit 0 is 1 then MODE is set to 1 (8-bit)
case 0x0: return TapeRead(pc, addr, bWrite, d, nCyclesLeft); // $C060 TAPEIN
case 0x1: return JoyReadButton(pc, addr, bWrite, d, nCyclesLeft); //$C061 Digital input 0 (If bit 7=1 then JoyButton 0 or OpenApple is pressed)
case 0x2: return JoyReadButton(pc, addr, bWrite, d, nCyclesLeft); //$C062 Digital input 1 (If bit 7=1 then JoyButton 1 or ClosedApple is pressed)
case 0x3: return JoyReadButton(pc, addr, bWrite, d, nCyclesLeft); //$C063 Digital input 2
case 0x4: return JoyReadPosition(pc, addr, bWrite, d, nCyclesLeft); //$C064 Analog input 0
case 0x5: return JoyReadPosition(pc, addr, bWrite, d, nCyclesLeft); //$C065 Analog input 1
case 0x6: return JoyReadPosition(pc, addr, bWrite, d, nCyclesLeft); //$C066 Analog input 2
case 0x7: return JoyReadPosition(pc, addr, bWrite, d, nCyclesLeft); //$C067 Analog input 3
}
return 0;
}
static BYTE __stdcall IOWrite_C06x(WORD pc, WORD addr, BYTE bWrite, BYTE d, ULONG nCyclesLeft)
{
switch (addr & 0xf)
{
case 0x0:
if (g_Apple2Type == A2TYPE_PRAVETS8A )
return TapeWrite (pc, addr, bWrite, d, nCyclesLeft);
else
return IO_Null(pc, addr, bWrite, d, nCyclesLeft); //Apple2 value
}
return IO_Null(pc, addr, bWrite, d, nCyclesLeft); //Apple2 value
}
//-------------------------------------
static BYTE __stdcall IORead_C07x(WORD pc, WORD addr, BYTE bWrite, BYTE d, ULONG nCyclesLeft)
{
switch (addr & 0xf)
{
case 0x0: return JoyResetPosition(pc, addr, bWrite, d, nCyclesLeft); //$C070 Analog input reset
case 0x1: return IO_Null(pc, addr, bWrite, d, nCyclesLeft);
case 0x2: return IO_Null(pc, addr, bWrite, d, nCyclesLeft);
case 0x3: return IO_Null(pc, addr, bWrite, d, nCyclesLeft);
case 0x4: return IO_Null(pc, addr, bWrite, d, nCyclesLeft);
case 0x5: return IO_Null(pc, addr, bWrite, d, nCyclesLeft);
case 0x6: return IO_Null(pc, addr, bWrite, d, nCyclesLeft);
case 0x7: return IO_Null(pc, addr, bWrite, d, nCyclesLeft);
case 0x8: return IO_Null(pc, addr, bWrite, d, nCyclesLeft);
case 0x9: return IO_Null(pc, addr, bWrite, d, nCyclesLeft);
case 0xA: return IO_Null(pc, addr, bWrite, d, nCyclesLeft);
case 0xB: return IO_Null(pc, addr, bWrite, d, nCyclesLeft);
case 0xC: return IO_Null(pc, addr, bWrite, d, nCyclesLeft);
case 0xD: return IO_Null(pc, addr, bWrite, d, nCyclesLeft);
case 0xE: return IO_Null(pc, addr, bWrite, d, nCyclesLeft);
case 0xF: return VideoCheckMode(pc, addr, bWrite, d, nCyclesLeft);
}
return 0;
}
static BYTE __stdcall IOWrite_C07x(WORD pc, WORD addr, BYTE bWrite, BYTE d, ULONG nCyclesLeft)
{
switch (addr & 0xf)
{
case 0x0: return JoyResetPosition(pc, addr, bWrite, d, nCyclesLeft);
#ifdef RAMWORKS
case 0x1: return MemSetPaging(pc, addr, bWrite, d, nCyclesLeft); // extended memory card set page
case 0x2: return IO_Null(pc, addr, bWrite, d, nCyclesLeft);
case 0x3: return MemSetPaging(pc, addr, bWrite, d, nCyclesLeft); // Ramworks III set page
#else
case 0x1: return IO_Null(pc, addr, bWrite, d, nCyclesLeft);
case 0x2: return IO_Null(pc, addr, bWrite, d, nCyclesLeft);
case 0x3: return IO_Null(pc, addr, bWrite, d, nCyclesLeft);
#endif
case 0x4: return IO_Null(pc, addr, bWrite, d, nCyclesLeft);
case 0x5: return IO_Null(pc, addr, bWrite, d, nCyclesLeft);
case 0x6: return IO_Null(pc, addr, bWrite, d, nCyclesLeft);
case 0x7: return IO_Null(pc, addr, bWrite, d, nCyclesLeft);
case 0x8: return IO_Null(pc, addr, bWrite, d, nCyclesLeft);
case 0x9: return IO_Null(pc, addr, bWrite, d, nCyclesLeft);
case 0xA: return IO_Null(pc, addr, bWrite, d, nCyclesLeft);
case 0xB: return IO_Null(pc, addr, bWrite, d, nCyclesLeft);
case 0xC: return IO_Null(pc, addr, bWrite, d, nCyclesLeft);
case 0xD: return IO_Null(pc, addr, bWrite, d, nCyclesLeft);
//http://www.kreativekorp.com/miscpages/a2info/iomemory.shtml
//- Apparently Apple//e & //c (but maybe enhanced//e not //e?)
//IOUDISON (W): $C07E Disable IOU
//IOUDISOFF (W): $C07F Enable IOU
//RDIOUDIS (R7): $C07E Status of IOU Disabling
//RDDHIRES (R7): $C07F Status of Double HiRes
case 0xE: return IO_Null(pc, addr, bWrite, d, nCyclesLeft); // TODO: IOUDIS
case 0xF: return IO_Null(pc, addr, bWrite, d, nCyclesLeft); // TODO: IOUDIS
}
return 0;
}
//-----------------------------------------------------------------------------
static iofunction IORead_C0xx[8] =
{
IORead_C00x, // Keyboard
IORead_C01x, // Memory/Video
IORead_C02x, // Cassette
IORead_C03x, // Speaker
IORead_C04x,
IORead_C05x, // Video
IORead_C06x, // Joystick
IORead_C07x, // Joystick/Video
};
static iofunction IOWrite_C0xx[8] =
{
IOWrite_C00x, // Memory/Video
IOWrite_C01x, // Keyboard
IOWrite_C02x, // Cassette
IOWrite_C03x, // Speaker
IOWrite_C04x,
IOWrite_C05x, // Video/Memory
IOWrite_C06x,
IOWrite_C07x, // Joystick/Ramworks
};
static BYTE IO_SELECT;
static BYTE IO_SELECT_InternalROM;
static BYTE* ExpansionRom[NUM_SLOTS];
enum eExpansionRomType {eExpRomNull=0, eExpRomInternal, eExpRomPeripheral};
static eExpansionRomType g_eExpansionRomType = eExpRomNull;
static UINT g_uPeripheralRomSlot = 0;
//=============================================================================
BYTE __stdcall IO_Null(WORD programcounter, WORD address, BYTE write, BYTE value, ULONG nCyclesLeft)
{
if (!write)
return MemReadFloatingBus(nCyclesLeft);
else
return 0;
}
BYTE __stdcall IO_Annunciator(WORD programcounter, WORD address, BYTE write, BYTE value, ULONG nCyclesLeft)
{
// Apple//e ROM:
// . PC=FA6F: LDA $C058 (SETAN0)
// . PC=FA72: LDA $C05A (SETAN1)
// . PC=C2B5: LDA $C05D (CLRAN2)
// NB. AN3: For //e & //c these locations are now used to enabled/disabled DHIRES
if (address >= 0xC058 && address <= 0xC05B)
{
JoyportControl(address & 0x3); // AN0 and AN1 control
}
if (!write)
return MemReadFloatingBus(nCyclesLeft);
else
return 0;
}
inline bool IsPotentialNoSlotClockAccess(const WORD address)
{
// Ref: Sather UAIIe 5-28
const BYTE AddrHi = address >> 8;
return ( ((!SW_SLOTCXROM || !SW_SLOTC3ROM) && (AddrHi == 0xC3)) || // Internal ROM at [$C100-CFFF or $C300-C3FF] && AddrHi == $C3
(!SW_SLOTCXROM && (AddrHi == 0xC8)) ); // Internal ROM at [$C100-CFFF] && AddrHi == $C8
}
static bool IsCardInSlot(const UINT uSlot);
// Enabling expansion ROM ($C800..$CFFF]:
// . Enable if: Enable1 && Enable2
// . Enable1 = I/O SELECT' (6502 accesses $Csxx)
// - Reset when 6502 accesses $CFFF
// . Enable2 = I/O STROBE' (6502 accesses [$C800..$CFFF])
BYTE __stdcall IORead_Cxxx(WORD programcounter, WORD address, BYTE write, BYTE value, ULONG nCyclesLeft)
{
if (address == 0xCFFF)
{
// Disable expansion ROM at [$C800..$CFFF]
// . SSC will disable on an access to $CFxx - but ROM only writes to $CFFF, so it doesn't matter
IO_SELECT = 0;
IO_SELECT_InternalROM = 0;
g_uPeripheralRomSlot = 0;
if (SW_SLOTCXROM)
{
// NB. SW_SLOTCXROM==0 ensures that internal rom stays switched in
memset(pCxRomPeripheral+0x800, 0, FIRMWARE_EXPANSION_SIZE);
memset(mem+FIRMWARE_EXPANSION_BEGIN, 0, FIRMWARE_EXPANSION_SIZE);
g_eExpansionRomType = eExpRomNull;
}
// NB. IO_SELECT won't get set, so ROM won't be switched back in...
}
//
BYTE IO_STROBE = 0;
if (IS_APPLE2 || SW_SLOTCXROM)
{
if ((address >= APPLE_SLOT_BEGIN) && (address <= APPLE_SLOT_END))
{
const UINT uSlot = (address >> 8) & 0xF;
if ((uSlot != 3) && ExpansionRom[uSlot])
IO_SELECT |= 1<<uSlot;
else if ((SW_SLOTC3ROM) && ExpansionRom[uSlot])
IO_SELECT |= 1<<uSlot; // Slot3 & Peripheral ROM
else if (!SW_SLOTC3ROM)
IO_SELECT_InternalROM = 1; // Slot3 & Internal ROM
}
else if ((address >= FIRMWARE_EXPANSION_BEGIN) && (address <= FIRMWARE_EXPANSION_END))
{
IO_STROBE = 1;
}
//
if (IO_SELECT && IO_STROBE)
{
// Enable Peripheral Expansion ROM
UINT uSlot=1;
for (; uSlot<NUM_SLOTS; uSlot++)
{
if (IO_SELECT & (1<<uSlot))
{
BYTE RemainingSelected = IO_SELECT & ~(1<<uSlot);
_ASSERT(RemainingSelected == 0);
break;
}
}
if (ExpansionRom[uSlot] && (g_uPeripheralRomSlot != uSlot))
{
memcpy(pCxRomPeripheral+0x800, ExpansionRom[uSlot], FIRMWARE_EXPANSION_SIZE);
memcpy(mem+FIRMWARE_EXPANSION_BEGIN, ExpansionRom[uSlot], FIRMWARE_EXPANSION_SIZE);
g_eExpansionRomType = eExpRomPeripheral;
g_uPeripheralRomSlot = uSlot;
}
}
else if (IO_SELECT_InternalROM && IO_STROBE && (g_eExpansionRomType != eExpRomInternal))
{
// Enable Internal ROM
// . Get this for PR#3
memcpy(mem+FIRMWARE_EXPANSION_BEGIN, pCxRomInternal+0x800, FIRMWARE_EXPANSION_SIZE);
g_eExpansionRomType = eExpRomInternal;
g_uPeripheralRomSlot = 0;
}
}
if (IsPotentialNoSlotClockAccess(address))
{
int data = 0;
if (g_NoSlotClock.Read(address, data))
return (BYTE) data;
}
if (!IS_APPLE2 && !SW_SLOTCXROM)
{
// !SW_SLOTC3ROM = Internal ROM: $C300-C3FF
// !SW_SLOTCXROM = Internal ROM: $C100-CFFF
if ((address >= APPLE_SLOT_BEGIN) && (address <= APPLE_SLOT_END)) // Don't care about state of SW_SLOTC3ROM
IO_SELECT_InternalROM = 1;
else if ((address >= FIRMWARE_EXPANSION_BEGIN) && (address <= FIRMWARE_EXPANSION_END))
IO_STROBE = 1;
if (!SW_SLOTCXROM && IO_SELECT_InternalROM && IO_STROBE && (g_eExpansionRomType != eExpRomInternal))
{
// Enable Internal ROM
memcpy(mem+FIRMWARE_EXPANSION_BEGIN, pCxRomInternal+0x800, FIRMWARE_EXPANSION_SIZE);
g_eExpansionRomType = eExpRomInternal;
g_uPeripheralRomSlot = 0;
}
}
if (address >= APPLE_SLOT_BEGIN && address <= APPLE_SLOT_END)
{
// Fix for bug 18643 and bug 18886
const UINT uSlot = (address>>8)&0x7;
if ( (SW_SLOTCXROM) && // Peripheral (card) ROMs enabled in $C100..$C7FF
!(!SW_SLOTC3ROM && uSlot == 3) && // Internal C3 ROM disabled in $C300 when slot == 3
!IsCardInSlot(uSlot) ) // Slot is empty
{
return IO_Null(programcounter, address, write, value, nCyclesLeft);
}
}
if ((g_eExpansionRomType == eExpRomNull) && (address >= FIRMWARE_EXPANSION_BEGIN))
return IO_Null(programcounter, address, write, value, nCyclesLeft);
return mem[address];
}
// TODO: Check if a write to [C800..CFFF] can set IO_STROBE=1 (like the IORead_Cxxx case does)
BYTE __stdcall IOWrite_Cxxx(WORD programcounter, WORD address, BYTE write, BYTE value, ULONG nCyclesLeft)
{
if (IsPotentialNoSlotClockAccess(address))
{
g_NoSlotClock.Write(address);
}
return 0;
}
//===========================================================================
static struct SlotInfo
{
bool bHasCard;
iofunction IOReadCx;
iofunction IOWriteCx;
} g_SlotInfo[NUM_SLOTS] = {0};
static void InitIoHandlers()
{
UINT i=0;
for (; i<8; i++) // C00x..C07x
{
IORead[i] = IORead_C0xx[i];
IOWrite[i] = IOWrite_C0xx[i];
}
for (; i<16; i++) // C08x..C0Fx
{
IORead[i] = IO_Null;
IOWrite[i] = IO_Null;
}
//
for (; i<256; i++) // C10x..CFFx
{
IORead[i] = IORead_Cxxx;
IOWrite[i] = IOWrite_Cxxx;
}
//
for (i=0; i<NUM_SLOTS; i++)
{
g_SlotInfo[i].bHasCard = false;
g_SlotInfo[i].IOReadCx = IORead_Cxxx;
g_SlotInfo[i].IOWriteCx = IOWrite_Cxxx;
ExpansionRom[i] = NULL;
}
}
// All slots [0..7] must register their handlers
void RegisterIoHandler(UINT uSlot, iofunction IOReadC0, iofunction IOWriteC0, iofunction IOReadCx, iofunction IOWriteCx, LPVOID lpSlotParameter, BYTE* pExpansionRom)
{
_ASSERT(uSlot < NUM_SLOTS);
SlotParameters[uSlot] = lpSlotParameter;
IORead[uSlot+8] = IOReadC0;
IOWrite[uSlot+8] = IOWriteC0;
if (uSlot == 0) // Don't trash C0xx handlers
return;
if (IOReadCx == NULL) IOReadCx = IORead_Cxxx;
if (IOWriteCx == NULL) IOWriteCx = IOWrite_Cxxx;
for (UINT i=0; i<16; i++)
{
IORead[uSlot*16+i] = IOReadCx;
IOWrite[uSlot*16+i] = IOWriteCx;
}
g_SlotInfo[uSlot].bHasCard = true;
g_SlotInfo[uSlot].IOReadCx = IOReadCx;
g_SlotInfo[uSlot].IOWriteCx = IOWriteCx;
// What about [$C80x..$CFEx]? - Do any cards use this as I/O memory?
ExpansionRom[uSlot] = pExpansionRom;
}
// TODO: Support SW_SLOTC3ROM?
static void IoHandlerCardsOut(void)
{
for (UINT uSlot=1; uSlot<NUM_SLOTS; uSlot++)
{
for (UINT i=0; i<16; i++)
{
IORead[uSlot*16+i] = IORead_Cxxx;
IOWrite[uSlot*16+i] = IOWrite_Cxxx;
}
}
}
// TODO: Support SW_SLOTC3ROM?
static void IoHandlerCardsIn(void)
{
for (UINT uSlot=1; uSlot<NUM_SLOTS; uSlot++)
{
for (UINT i=0; i<16; i++)
{
IORead[uSlot*16+i] = g_SlotInfo[uSlot].IOReadCx;
IOWrite[uSlot*16+i] = g_SlotInfo[uSlot].IOWriteCx;
}
}
}
static bool IsCardInSlot(const UINT uSlot)
{
return g_SlotInfo[uSlot].bHasCard;
}
//===========================================================================
static void BackMainImage(void)
{
for (UINT loop = 0; loop < 256; loop++)
{
if (memshadow[loop] && ((*(memdirty+loop) & 1) || (loop <= 1)))
CopyMemory(memshadow[loop], memimage+(loop << 8), 256);
*(memdirty+loop) &= ~1;
}
}
//===========================================================================
static void SetMemMode(const DWORD uNewMemMode)
{
#if defined(_DEBUG) && 0
static DWORD dwOldDiff = 0;
DWORD dwDiff = memmode ^ uNewMemMode;
dwDiff &= ~(MF_SLOTC3ROM | MF_SLOTCXROM);
if (dwOldDiff != dwDiff)
{
dwOldDiff = dwDiff;
char szStr[100];
char* psz = szStr;
psz += sprintf(psz, "diff = %08X ", dwDiff);
psz += sprintf(psz, "80=%d " , SW_80STORE ? 1 : 0);
psz += sprintf(psz, "ALTZP=%d ", SW_ALTZP ? 1 : 0);
psz += sprintf(psz, "AUXR=%d " , SW_AUXREAD ? 1 : 0);
psz += sprintf(psz, "AUXW=%d " , SW_AUXWRITE ? 1 : 0);
psz += sprintf(psz, "BANK2=%d ", SW_BANK2 ? 1 : 0);
psz += sprintf(psz, "HIRAM=%d ", SW_HIGHRAM ? 1 : 0);
psz += sprintf(psz, "HIRES=%d ", SW_HIRES ? 1 : 0);
psz += sprintf(psz, "PAGE2=%d ", SW_PAGE2 ? 1 : 0);
psz += sprintf(psz, "C3=%d " , SW_SLOTC3ROM ? 1 : 0);
psz += sprintf(psz, "CX=%d " , SW_SLOTCXROM ? 1 : 0);
psz += sprintf(psz, "WRAM=%d " , SW_WRITERAM ? 1 : 0);
psz += sprintf(psz, "\n");
OutputDebugString(szStr);
}
#endif
memmode = uNewMemMode;
}
//===========================================================================
static void ResetPaging(BOOL initialize);
static void UpdatePaging(BOOL initialize);
// Call by:
// . CtrlReset() Soft-reset (Ctrl+Reset)
void MemResetPaging()
{
ResetPaging(0); // Initialize=0
}
static void ResetPaging(BOOL initialize)
{
lastwriteram = 0;
SetMemMode(MF_BANK2 | MF_SLOTCXROM | MF_WRITERAM);
UpdatePaging(initialize);
}
//===========================================================================
void MemUpdatePaging(BOOL initialize)
{
UpdatePaging(initialize);
}
static void UpdatePaging(BOOL initialize)
{
// SAVE THE CURRENT PAGING SHADOW TABLE
LPBYTE oldshadow[256];
if (!initialize)
CopyMemory(oldshadow,memshadow,256*sizeof(LPBYTE));
// UPDATE THE PAGING TABLES BASED ON THE NEW PAGING SWITCH VALUES
UINT loop;
if (initialize)
{
for (loop = 0x00; loop < 0xC0; loop++)
memwrite[loop] = mem+(loop << 8);
for (loop = 0xC0; loop < 0xD0; loop++)
memwrite[loop] = NULL;
}
for (loop = 0x00; loop < 0x02; loop++)
memshadow[loop] = SW_ALTZP ? memaux+(loop << 8) : memmain+(loop << 8);
for (loop = 0x02; loop < 0xC0; loop++)
{
memshadow[loop] = SW_AUXREAD ? memaux+(loop << 8)
: memmain+(loop << 8);
memwrite[loop] = ((SW_AUXREAD != 0) == (SW_AUXWRITE != 0))
? mem+(loop << 8)
: SW_AUXWRITE ? memaux+(loop << 8)
: memmain+(loop << 8);
}
for (loop = 0xC0; loop < 0xC8; loop++)
{
const UINT uSlotOffset = (loop & 0x0f) * 0x100;
if (loop == 0xC3)
memshadow[loop] = (SW_SLOTC3ROM && SW_SLOTCXROM) ? pCxRomPeripheral+uSlotOffset // C300..C3FF - Slot 3 ROM (all 0x00's)
: pCxRomInternal+uSlotOffset; // C300..C3FF - Internal ROM
else
memshadow[loop] = SW_SLOTCXROM ? pCxRomPeripheral+uSlotOffset // C000..C7FF - SSC/Disk][/etc
: pCxRomInternal+uSlotOffset; // C000..C7FF - Internal ROM
}
for (loop = 0xC8; loop < 0xD0; loop++)
{
const UINT uRomOffset = (loop & 0x0f) * 0x100;
memshadow[loop] = pCxRomInternal+uRomOffset; // C800..CFFF - Internal ROM
}
for (loop = 0xD0; loop < 0xE0; loop++)
{
int bankoffset = (SW_BANK2 ? 0 : 0x1000);
memshadow[loop] = SW_HIGHRAM ? SW_ALTZP ? memaux+(loop << 8)-bankoffset
: memmain+(loop << 8)-bankoffset
: memrom+((loop-0xD0) * 0x100);
memwrite[loop] = SW_WRITERAM ? SW_HIGHRAM ? mem+(loop << 8)
: SW_ALTZP ? memaux+(loop << 8)-bankoffset
: memmain+(loop << 8)-bankoffset
: NULL;
}
for (loop = 0xE0; loop < 0x100; loop++)
{
memshadow[loop] = SW_HIGHRAM ? SW_ALTZP ? memaux+(loop << 8)
: memmain+(loop << 8)
: memrom+((loop-0xD0) * 0x100);
memwrite[loop] = SW_WRITERAM ? SW_HIGHRAM ? mem+(loop << 8)
: SW_ALTZP ? memaux+(loop << 8)
: memmain+(loop << 8)
: NULL;
}
if (SW_80STORE)
{
for (loop = 0x04; loop < 0x08; loop++)
{
memshadow[loop] = SW_PAGE2 ? memaux+(loop << 8)
: memmain+(loop << 8);
memwrite[loop] = mem+(loop << 8);
}
if (SW_HIRES)
{
for (loop = 0x20; loop < 0x40; loop++)
{
memshadow[loop] = SW_PAGE2 ? memaux+(loop << 8)
: memmain+(loop << 8);
memwrite[loop] = mem+(loop << 8);
}
}
}
// MOVE MEMORY BACK AND FORTH AS NECESSARY BETWEEN THE SHADOW AREAS AND
// THE MAIN RAM IMAGE TO KEEP BOTH SETS OF MEMORY CONSISTENT WITH THE NEW
// PAGING SHADOW TABLE
//
// NB. the condition 'loop <= 1' is there because:
// . Page0 (ZP) : memdirty[0] is set when the 6502 CPU does a ZP-write, but perhaps older versions didn't set this flag (eg. the asm version?).
// . Page1 (stack) : memdirty[1] is NOT set when the 6502 CPU writes to this page with JSR, etc.
for (loop = 0x00; loop < 0x100; loop++)
{
if (initialize || (oldshadow[loop] != memshadow[loop]))
{
if (!initialize &&
((*(memdirty+loop) & 1) || (loop <= 1)))
{
*(memdirty+loop) &= ~1;
CopyMemory(oldshadow[loop],mem+(loop << 8),256);
}
CopyMemory(mem+(loop << 8),memshadow[loop],256);
}
}
}
//
// ----- ALL GLOBALLY ACCESSIBLE FUNCTIONS ARE BELOW THIS LINE -----
//
//===========================================================================
// TODO: >= Apple2e only?
BYTE __stdcall MemCheckPaging(WORD, WORD address, BYTE, BYTE, ULONG)
{
address &= 0xFF;
BOOL result = 0;
switch (address)
{
case 0x11: result = SW_BANK2; break;
case 0x12: result = SW_HIGHRAM; break;
case 0x13: result = SW_AUXREAD; break;
case 0x14: result = SW_AUXWRITE; break;
case 0x15: result = !SW_SLOTCXROM; break;
case 0x16: result = SW_ALTZP; break;
case 0x17: result = SW_SLOTC3ROM; break;
case 0x18: result = SW_80STORE; break;
case 0x1C: result = SW_PAGE2; break;
case 0x1D: result = SW_HIRES; break;
}
return KeybGetKeycode() | (result ? 0x80 : 0);
}
//===========================================================================
void MemDestroy()
{
VirtualFree(memaux ,0,MEM_RELEASE);
VirtualFree(memmain ,0,MEM_RELEASE);
VirtualFree(memdirty,0,MEM_RELEASE);
VirtualFree(memrom ,0,MEM_RELEASE);
VirtualFree(memimage,0,MEM_RELEASE);
VirtualFree(pCxRomInternal,0,MEM_RELEASE);
VirtualFree(pCxRomPeripheral,0,MEM_RELEASE);
#ifdef RAMWORKS
for (UINT i=1; i<g_uMaxExPages; i++)
{
if (RWpages[i])
{
VirtualFree(RWpages[i], 0, MEM_RELEASE);
RWpages[i] = NULL;
}
}
RWpages[0]=NULL;
#endif
memaux = NULL;
memmain = NULL;
memdirty = NULL;
memrom = NULL;
memimage = NULL;
pCxRomInternal = NULL;
pCxRomPeripheral = NULL;
mem = NULL;
ZeroMemory(memwrite, sizeof(memwrite));
ZeroMemory(memshadow,sizeof(memshadow));
}
//===========================================================================
bool MemCheckSLOTCXROM()
{
return SW_SLOTCXROM ? true : false;
}
//===========================================================================
static LPBYTE MemGetPtrBANK1(const WORD offset, const LPBYTE pMemBase)
{
if ((offset & 0xF000) != 0xC000) // Requesting RAM at physical addr $Cxxx (ie. 4K RAM BANK1)
return NULL;
// NB. This works for memaux when set to any RWpages[] value, ie. RamWork III "just works"
const BYTE bank1page = (offset >> 8) & 0xF;
return (memshadow[0xD0+bank1page] == pMemBase+(0xC0+bank1page)*256)
? mem+offset+0x1000 // Return ptr to $Dxxx address - 'mem' has (a potentially dirty) 4K RAM BANK1 mapped in at $D000
: pMemBase+offset; // Else return ptr to $Cxxx address
}
//-------------------------------------
LPBYTE MemGetAuxPtr(const WORD offset)
{
LPBYTE lpMem = MemGetPtrBANK1(offset, memaux);
if (lpMem)
return lpMem;
lpMem = (memshadow[(offset >> 8)] == (memaux+(offset & 0xFF00)))
? mem+offset // Return 'mem' copy if possible, as page could be dirty
: memaux+offset;
#ifdef RAMWORKS
if ( ((SW_PAGE2 && SW_80STORE) || VideoGetSW80COL()) &&
( ( ((offset & 0xFF00)>=0x0400) &&
((offset & 0xFF00)<=0700) ) ||
( SW_HIRES && ((offset & 0xFF00)>=0x2000) &&
((offset & 0xFF00)<=0x3F00) ) ) ) {
lpMem = (memshadow[(offset >> 8)] == (RWpages[0]+(offset & 0xFF00)))
? mem+offset
: RWpages[0]+offset;
}
#endif
return lpMem;
}
//-------------------------------------
LPBYTE MemGetMainPtr(const WORD offset)
{
LPBYTE lpMem = MemGetPtrBANK1(offset, memmain);
if (lpMem)
return lpMem;
return (memshadow[(offset >> 8)] == (memmain+(offset & 0xFF00)))
? mem+offset // Return 'mem' copy if possible, as page could be dirty
: memmain+offset;
}
//===========================================================================
LPBYTE MemGetBankPtr(const UINT nBank)
{
BackMainImage(); // Flush any dirty pages to back-buffer
#ifdef RAMWORKS
if (nBank > g_uMaxExPages)
return NULL;
if (nBank == 0)
return memmain;
return RWpages[nBank-1];
#else
return (nBank == 0) ? memmain :
(nBank == 1) ? memaux :
NULL;
#endif
}
//===========================================================================
LPBYTE MemGetCxRomPeripheral()
{
return pCxRomPeripheral;
}
//===========================================================================
const UINT CxRomSize = 4*1024;
const UINT Apple2RomSize = 12*1024;
const UINT Apple2eRomSize = Apple2RomSize+CxRomSize;
//const UINT Pravets82RomSize = 12*1024;
//const UINT Pravets8ARomSize = Pravets82RomSize+CxRomSize;
void MemInitialize()
{
// ALLOCATE MEMORY FOR THE APPLE MEMORY IMAGE AND ASSOCIATED DATA STRUCTURES
memaux = (LPBYTE)VirtualAlloc(NULL,_6502_MEM_END+1,MEM_COMMIT,PAGE_READWRITE);
memmain = (LPBYTE)VirtualAlloc(NULL,_6502_MEM_END+1,MEM_COMMIT,PAGE_READWRITE);
memdirty = (LPBYTE)VirtualAlloc(NULL,0x100 ,MEM_COMMIT,PAGE_READWRITE);
memrom = (LPBYTE)VirtualAlloc(NULL,0x5000 ,MEM_COMMIT,PAGE_READWRITE);
memimage = (LPBYTE)VirtualAlloc(NULL,_6502_MEM_END+1,MEM_RESERVE,PAGE_NOACCESS);
pCxRomInternal = (LPBYTE) VirtualAlloc(NULL, CxRomSize, MEM_COMMIT, PAGE_READWRITE);
pCxRomPeripheral = (LPBYTE) VirtualAlloc(NULL, CxRomSize, MEM_COMMIT, PAGE_READWRITE);
if (!memaux || !memdirty || !memimage || !memmain || !memrom || !pCxRomInternal || !pCxRomPeripheral)
{
MessageBox(
GetDesktopWindow(),
TEXT("The emulator was unable to allocate the memory it ")
TEXT("requires. Further execution is not possible."),
g_pAppTitle,
MB_ICONSTOP | MB_SETFOREGROUND);
ExitProcess(1);
}
LPVOID newloc = VirtualAlloc(memimage,_6502_MEM_END+1,MEM_COMMIT,PAGE_READWRITE);
if (newloc != memimage)
MessageBox(
GetDesktopWindow(),
TEXT("The emulator has detected a bug in your operating ")
TEXT("system. While changing the attributes of a memory ")
TEXT("object, the operating system also changed its ")
TEXT("location."),
g_pAppTitle,
MB_ICONEXCLAMATION | MB_SETFOREGROUND);
#ifdef RAMWORKS
// allocate memory for RAMWorks III - up to 8MB
g_uActiveBank = 0;
RWpages[g_uActiveBank] = memaux;
UINT i = 1;
while ((i < g_uMaxExPages) && (RWpages[i] = (LPBYTE) VirtualAlloc(NULL,_6502_MEM_END+1,MEM_COMMIT,PAGE_READWRITE)))
i++;
#endif
MemInitializeROM();
MemInitializeCustomF8ROM();
MemInitializeIO();
MemReset();
}
void MemInitializeROM(void)
{
// READ THE APPLE FIRMWARE ROMS INTO THE ROM IMAGE
UINT ROM_SIZE = 0;
HRSRC hResInfo = NULL;
switch (g_Apple2Type)
{
case A2TYPE_APPLE2: hResInfo = FindResource(NULL, MAKEINTRESOURCE(IDR_APPLE2_ROM ), "ROM"); ROM_SIZE = Apple2RomSize ; break;
case A2TYPE_APPLE2PLUS: hResInfo = FindResource(NULL, MAKEINTRESOURCE(IDR_APPLE2_PLUS_ROM ), "ROM"); ROM_SIZE = Apple2RomSize ; break;
case A2TYPE_APPLE2E: hResInfo = FindResource(NULL, MAKEINTRESOURCE(IDR_APPLE2E_ROM ), "ROM"); ROM_SIZE = Apple2eRomSize; break;
case A2TYPE_APPLE2EENHANCED:hResInfo = FindResource(NULL, MAKEINTRESOURCE(IDR_APPLE2E_ENHANCED_ROM), "ROM"); ROM_SIZE = Apple2eRomSize; break;
case A2TYPE_PRAVETS82: hResInfo = FindResource(NULL, MAKEINTRESOURCE(IDR_PRAVETS_82_ROM ), "ROM"); ROM_SIZE = Apple2RomSize ; break;
case A2TYPE_PRAVETS8M: hResInfo = FindResource(NULL, MAKEINTRESOURCE(IDR_PRAVETS_8M_ROM ), "ROM"); ROM_SIZE = Apple2RomSize ; break;
case A2TYPE_PRAVETS8A: hResInfo = FindResource(NULL, MAKEINTRESOURCE(IDR_PRAVETS_8C_ROM ), "ROM"); ROM_SIZE = Apple2eRomSize; break;
case A2TYPE_TK30002E: hResInfo = FindResource(NULL, MAKEINTRESOURCE(IDR_TK3000_2E_ROM ), "ROM"); ROM_SIZE = Apple2eRomSize; break;
}
if(hResInfo == NULL)
{
TCHAR sRomFileName[ MAX_PATH ];
switch (g_Apple2Type)
{
case A2TYPE_APPLE2: _tcscpy(sRomFileName, TEXT("APPLE2.ROM" )); break;
case A2TYPE_APPLE2PLUS: _tcscpy(sRomFileName, TEXT("APPLE2_PLUS.ROM" )); break;
case A2TYPE_APPLE2E: _tcscpy(sRomFileName, TEXT("APPLE2E.ROM" )); break;
case A2TYPE_APPLE2EENHANCED:_tcscpy(sRomFileName, TEXT("APPLE2E_ENHANCED.ROM")); break;
case A2TYPE_PRAVETS82: _tcscpy(sRomFileName, TEXT("PRAVETS82.ROM" )); break;
case A2TYPE_PRAVETS8M: _tcscpy(sRomFileName, TEXT("PRAVETS8M.ROM" )); break;
case A2TYPE_PRAVETS8A: _tcscpy(sRomFileName, TEXT("PRAVETS8C.ROM" )); break;
case A2TYPE_TK30002E: _tcscpy(sRomFileName, TEXT("TK3000e.ROM" )); break;
default:
{
_tcscpy(sRomFileName, TEXT("Unknown type!"));
REGSAVE(TEXT(REGVALUE_APPLE2_TYPE), A2TYPE_APPLE2EENHANCED);
}
}
TCHAR sText[ MAX_PATH ];
wsprintf( sText, TEXT("Unable to open the required firmware ROM data file.\n\nFile: %s"), sRomFileName );
MessageBox(
GetDesktopWindow(),
sText,
g_pAppTitle,
MB_ICONSTOP | MB_SETFOREGROUND);
ExitProcess(1);
}
DWORD dwResSize = SizeofResource(NULL, hResInfo);
if(dwResSize != ROM_SIZE)
return;
HGLOBAL hResData = LoadResource(NULL, hResInfo);
if(hResData == NULL)
return;
BYTE* pData = (BYTE*) LockResource(hResData); // NB. Don't need to unlock resource
if (pData == NULL)
return;
memset(pCxRomInternal,0,CxRomSize);
memset(pCxRomPeripheral,0,CxRomSize);
if (ROM_SIZE == Apple2eRomSize)
{
memcpy(pCxRomInternal, pData, CxRomSize);
pData += CxRomSize;
ROM_SIZE -= CxRomSize;
}
_ASSERT(ROM_SIZE == Apple2RomSize);
memcpy(memrom, pData, Apple2RomSize); // ROM at $D000...$FFFF
}
void MemInitializeCustomF8ROM(void)
{
const UINT F8RomSize = 0x800;
if (g_hCustomRomF8 != INVALID_HANDLE_VALUE)
{
BYTE OldRom[Apple2RomSize]; // NB. 12KB on stack
memcpy(OldRom, memrom, Apple2RomSize);
SetFilePointer(g_hCustomRomF8, 0, NULL, FILE_BEGIN);
DWORD uNumBytesRead;
BOOL bRes = ReadFile(g_hCustomRomF8, memrom+Apple2RomSize-F8RomSize, F8RomSize, &uNumBytesRead, NULL);
if (uNumBytesRead != F8RomSize)
{
memcpy(memrom, OldRom, Apple2RomSize); // ROM at $D000...$FFFF
bRes = FALSE;
}
if (!bRes)
{
MessageBox( g_hFrameWindow, "Failed to read custom F8 rom", TEXT("AppleWin Error"), MB_OK );
CloseHandle(g_hCustomRomF8);
g_hCustomRomF8 = INVALID_HANDLE_VALUE;
// Failed, so use default rom...
}
}
if (sg_PropertySheet.GetTheFreezesF8Rom() && IS_APPLE2)
{
HGLOBAL hResData = NULL;
BYTE* pData = NULL;
HRSRC hResInfo = FindResource(NULL, MAKEINTRESOURCE(IDR_FREEZES_F8_ROM), "ROM");
if (hResInfo && (SizeofResource(NULL, hResInfo) == 0x800) && (hResData = LoadResource(NULL, hResInfo)) && (pData = (BYTE*) LockResource(hResData)))
{
memcpy(memrom+Apple2RomSize-F8RomSize, pData, F8RomSize);
}
}
}
// Called by:
// . MemInitialize()
// . Snapshot_LoadState_v2()
//
// Since called by LoadState(), then this must not init any cards
// - it should only init the card I/O hooks
void MemInitializeIO(void)
{
InitIoHandlers();
const UINT uSlot = 0;
RegisterIoHandler(uSlot, MemSetPaging, MemSetPaging, NULL, NULL, NULL, NULL);
// TODO: Cleanup peripheral setup!!!
PrintLoadRom(pCxRomPeripheral, 1); // $C100 : Parallel printer f/w
sg_SSC.CommInitialize(pCxRomPeripheral, 2); // $C200 : SSC
// Slot 3 contains the Uthernet card (which can coexist with an 80-col+Ram card in AUX slot)
// . Uthernet card has no ROM and only IO mapped at $C0Bx
// Apple//e: Auxilary slot contains Extended 80 Column card or RamWorksIII card
if (g_Slot4 == CT_MouseInterface)
{
sg_Mouse.Initialize(pCxRomPeripheral, 4); // $C400 : Mouse f/w
}
else if (g_Slot4 == CT_MockingboardC || g_Slot4 == CT_Phasor)
{
const UINT uSlot4 = 4;
const UINT uSlot5 = 5;
MB_InitializeIO(pCxRomPeripheral, uSlot4, uSlot5);
}
else if (g_Slot4 == CT_Z80)
{
ConfigureSoftcard(pCxRomPeripheral, 4); // $C400 : Z80 card
}
// else if (g_Slot4 == CT_GenericClock)
// {
// LoadRom_Clock_Generic(pCxRomPeripheral, 4);
// }
if (g_Slot5 == CT_Z80)
{
ConfigureSoftcard(pCxRomPeripheral, 5); // $C500 : Z80 card
}
else
if (g_Slot5 == CT_SAM)
ConfigureSAM(pCxRomPeripheral, 5); // $C500 : Z80 card
DiskLoadRom(pCxRomPeripheral, 6); // $C600 : Disk][ f/w
HD_Load_Rom(pCxRomPeripheral, 7); // $C700 : HDD f/w
//
// Finally remove the cards' ROMs at $Csnn if internal ROM is enabled
// . required when restoring saved-state
if (!SW_SLOTCXROM)
IoHandlerCardsOut();
}
inline DWORD getRandomTime()
{
return rand() ^ timeGetTime(); // We can't use g_nCumulativeCycles as it will be zero on a fresh execution.
}
//===========================================================================
// Called by:
// . MemInitialize()
// . ResetMachineState() eg. Power-cycle ('Apple-Go' button)
// . Snapshot_LoadState_v1()
// . Snapshot_LoadState_v2()
void MemReset()
{
// INITIALIZE THE PAGING TABLES
ZeroMemory(memshadow,256*sizeof(LPBYTE));
ZeroMemory(memwrite ,256*sizeof(LPBYTE));
// INITIALIZE THE RAM IMAGES
ZeroMemory(memaux ,0x10000);
ZeroMemory(memmain,0x10000);
// Init the I/O ROM vars
IO_SELECT = 0;
IO_SELECT_InternalROM = 0;
g_eExpansionRomType = eExpRomNull;
g_uPeripheralRomSlot = 0;
//
int iByte;
// Memory is pseudo-initialized across various models of Apple ][ //e //c
// We chose a random one for nostalgia's sake
// To inspect:
// F2. Ctrl-F2. CALL-151, C050 C053 C057
// OR
// F2, Ctrl-F2, F7, HGR
DWORD clock = getRandomTime();
MemoryInitPattern_e eMemoryInitPattern = static_cast<MemoryInitPattern_e>(g_nMemoryClearType);
if (g_nMemoryClearType < 0) // random
{
eMemoryInitPattern = static_cast<MemoryInitPattern_e>( clock % NUM_MIP );
// Don't use unless manually specified as a
// few badly written programs will not work correctly
// due to buffer overflows or not initializig memory before using.
if( eMemoryInitPattern == MIP_PAGE_ADDRESS_LOW )
eMemoryInitPattern = MIP_FF_FF_00_00;
}
switch( eMemoryInitPattern )
{
case MIP_FF_FF_00_00:
for( iByte = 0x0000; iByte < 0xC000; iByte += 4 ) // NB. ODD 16-bit words are zero'd above...
{
memmain[ iByte+0 ] = 0xFF;
memmain[ iByte+1 ] = 0xFF;
}
// Exceptions: xx28 xx29 xx68 xx69 Apple //e
for( iByte = 0x0000; iByte < 0xC000; iByte += 512 )
{
clock = getRandomTime();
memmain[ iByte + 0x28 ] = (clock >> 0) & 0xFF;
memmain[ iByte + 0x29 ] = (clock >> 8) & 0xFF;
clock = getRandomTime();
memmain[ iByte + 0x68 ] = (clock >> 0) & 0xFF;
memmain[ iByte + 0x69 ] = (clock >> 8) & 0xFF;
}
break;
case MIP_FF_00_FULL_PAGE:
// https://github.com/AppleWin/AppleWin/issues/225
// AppleWin 1.25 RC2 fails to boot Castle Wolfenstein #225
// This causes Castle Wolfenstein to not boot properly 100% with an error:
// ?OVERFLOW ERROR IN 10
// http://mirrors.apple2.org.za/ftp.apple.asimov.net/images/games/action/wolfenstein/castle_wolfenstein-fixed.dsk
for( iByte = 0x0000; iByte < 0xC000; iByte += 512 )
{
memset( &memmain[ iByte ], 0xFF, 256 );
// Exceptions: xx28: 00 xx68:00 Apple //e Platinum NTSC
memmain[ iByte + 0x28 ] = 0x00;
memmain[ iByte + 0x68 ] = 0x00;
}
break;
case MIP_00_FF_HALF_PAGE:
for( iByte = 0x0080; iByte < 0xC000; iByte += 256 ) // NB. start = 0x80, delta = 0x100 !
memset( &memmain[ iByte ], 0xFF, 128 );
break;
case MIP_FF_00_HALF_PAGE:
for( iByte = 0x0000; iByte < 0xC000; iByte += 256 )
memset( &memmain[ iByte ], 0xFF, 128 );
break;
case MIP_RANDOM:
unsigned char random[ 256 ];
for( iByte = 0x0000; iByte < 0xC000; iByte += 256 )
{
for( int i = 0; i < 256; i++ )
{
clock = getRandomTime();
random[ (i+0) & 0xFF ] ^= (clock >> 0) & 0xFF;
random[ (i+1) & 0xFF ] ^= (clock >> 11) & 0xFF;
}
memcpy( &memmain[ iByte ], random, 256 );
}
break;
case MIP_PAGE_ADDRESS_LOW:
for( iByte = 0x0000; iByte < 0xC000; iByte++ )
memmain[ iByte ] = iByte & 0xFF;
break;
case MIP_PAGE_ADDRESS_HIGH:
for( iByte = 0x0000; iByte < 0xC000; iByte += 256 )
memset( &memmain[ iByte ], (iByte >> 8), 256 );
break;
default: // MIP_ZERO -- nothing to do
break;
}
// https://github.com/AppleWin/AppleWin/issues/206
// Work-around for a cold-booting bug in "Pooyan" which expects RNDL and RNDH to be non-zero.
clock = getRandomTime();
memmain[ 0x4E ] = 0x20 | (clock >> 0) & 0xFF;
memmain[ 0x4F ] = 0x20 | (clock >> 8) & 0xFF;
// https://github.com/AppleWin/AppleWin/issues/222
// MIP_PAGE_ADDRESS_LOW breaks a few badly written programs!
// "Beautiful Boot by Mini Appler" reads past $61FF into $6200
// - "BeachParty-PoacherWars-DaytonDinger-BombsAway.dsk"
// - "Dung Beetles, Ms. PacMan, Pooyan, Star Cruiser, Star Thief, Invas. Force.dsk"
memmain[ 0x620B ] = 0x0;
// https://github.com/AppleWin/AppleWin/issues/222
// MIP_PAGE_ADDRESS_LOW
// "Copy II+ v5.0.dsk"
// There is a strange memory checker from $1B03 .. $1C25
// Stuck in loop at $1BC2: JSR $F88E INSDS2 before crashing to $0: 00 BRK
memmain[ 0xBFFD ] = 0;
memmain[ 0xBFFE ] = 0;
memmain[ 0xBFFF ] = 0;
// SET UP THE MEMORY IMAGE
mem = memimage;
// INITIALIZE PAGING, FILLING IN THE 64K MEMORY IMAGE
ResetPaging(1); // Initialize=1
// INITIALIZE & RESET THE CPU
// . Do this after ROM has been copied back to mem[], so that PC is correctly init'ed from 6502's reset vector
CpuInitialize();
//Sets Caps Lock = false (Pravets 8A/C only)
z80_reset(); // NB. Also called above in CpuInitialize()
}
//===========================================================================
BYTE MemReadFloatingBus(const ULONG uExecutedCycles)
{
#if 0
// NTSC: It is tempting to replace with
// return NTSC_VideoGetScannerAddress( uExecutedCycles );
// But that breaks "Rainbow" Bug #254 if NTSC_VideoGetScannerAddress() is not correct.
// This is out of sync with VideoGetScannerAddress() due to two reasons:
// a) returning a cached copy of g_aHorzClockMemAddress
// Fixed by calling: updateVideoScannerAddressTXT or updateVideoScannerAddressHGR()
// b) A bug? in APPLE_IIE_HORZ_CLOCK_OFFSET[0][8] containing the incorrect value of 0x006F
uint16_t addr1 = NTSC_VideoGetScannerAddress( uExecutedCycles );
uint16_t addr2 = VideoGetScannerAddress(NULL, uExecutedCycles);
uint8_t byte1 = mem[ addr1 ];
uint8_t byte2 = mem[ addr2 ];
if( byte1 != byte2 )
mem[ 0x2000 ] ^= 0xFF;
#endif
// return mem[ VideoGetScannerAddress(NULL, uExecutedCycles) ];
uint16_t addr = NTSC_VideoGetScannerAddress( uExecutedCycles );
return mem[ addr ] ; // cycles is ignored
}
//===========================================================================
BYTE MemReadFloatingBus(const BYTE highbit, const ULONG uExecutedCycles)
{
// NTSC: It is tempting to replace with
// return NTSC_VideoGetScannerAddress( uExecutedCycles );
// But that breaks "Rainbow" Bug #254
// BYTE r= NTSC_VideoGetByte( uExecutedCycles );
BYTE r = *(LPBYTE)(mem + VideoGetScannerAddress(NULL, uExecutedCycles));
return (r & ~0x80) | ((highbit) ? 0x80 : 0);
}
//===========================================================================
//#define DEBUG_FLIP_TIMINGS
#if defined(_DEBUG) && defined(DEBUG_FLIP_TIMINGS)
static void DebugFlip(WORD address, ULONG nCyclesLeft)
{
static unsigned __int64 uLastFlipCycle = 0;
static unsigned int uLastPage = -1;
if (address != 0x54 && address != 0x55)
return;
const unsigned int uNewPage = address & 1;
if (uLastPage == uNewPage)
return;
uLastPage = uNewPage;
CpuCalcCycles(nCyclesLeft); // Update g_nCumulativeCycles
const unsigned int uCyclesBetweenFlips = (unsigned int) (uLastFlipCycle ? g_nCumulativeCycles - uLastFlipCycle : 0);
uLastFlipCycle = g_nCumulativeCycles;
if (!uCyclesBetweenFlips)
return; // 1st time in func
const double fFreq = CLK_6502 / (double)uCyclesBetweenFlips;
char szStr[100];
sprintf(szStr, "Cycles between flips = %d (%f Hz)\n", uCyclesBetweenFlips, fFreq);
OutputDebugString(szStr);
}
#endif
BYTE __stdcall MemSetPaging(WORD programcounter, WORD address, BYTE write, BYTE value, ULONG nCyclesLeft)
{
address &= 0xFF;
DWORD lastmemmode = memmode;
#if defined(_DEBUG) && defined(DEBUG_FLIP_TIMINGS)
DebugFlip(address, nCyclesLeft);
#endif
// DETERMINE THE NEW MEMORY PAGING MODE.
if ((address >= 0x80) && (address <= 0x8F))
{
BOOL writeram = (address & 1);
SetMemMode(memmode & ~(MF_BANK2 | MF_HIGHRAM | MF_WRITERAM));
lastwriteram = 1; // note: because diags.do doesn't set switches twice!
if (lastwriteram && writeram)
SetMemMode(memmode | MF_WRITERAM);
if (!(address & 8))
SetMemMode(memmode | MF_BANK2);
if (((address & 2) >> 1) == (address & 1))
SetMemMode(memmode | MF_HIGHRAM);
lastwriteram = writeram;
}
else if (!IS_APPLE2)
{
switch (address)
{
case 0x00: SetMemMode(memmode & ~MF_80STORE); break;
case 0x01: SetMemMode(memmode | MF_80STORE); break;
case 0x02: SetMemMode(memmode & ~MF_AUXREAD); break;
case 0x03: SetMemMode(memmode | MF_AUXREAD); break;
case 0x04: SetMemMode(memmode & ~MF_AUXWRITE); break;
case 0x05: SetMemMode(memmode | MF_AUXWRITE); break;
case 0x06: SetMemMode(memmode | MF_SLOTCXROM); break;
case 0x07: SetMemMode(memmode & ~MF_SLOTCXROM); break;
case 0x08: SetMemMode(memmode & ~MF_ALTZP); break;
case 0x09: SetMemMode(memmode | MF_ALTZP); break;
case 0x0A: SetMemMode(memmode & ~MF_SLOTC3ROM); break;
case 0x0B: SetMemMode(memmode | MF_SLOTC3ROM); break;
case 0x54: SetMemMode(memmode & ~MF_PAGE2); break;
case 0x55: SetMemMode(memmode | MF_PAGE2); break;
case 0x56: SetMemMode(memmode & ~MF_HIRES); break;
case 0x57: SetMemMode(memmode | MF_HIRES); break;
#ifdef RAMWORKS
case 0x71: // extended memory aux page number
case 0x73: // Ramworks III set aux page number
if ((value < g_uMaxExPages) && RWpages[value])
{
g_uActiveBank = value;
memaux = RWpages[g_uActiveBank];
UpdatePaging(0); // Initialize=0
}
break;
#endif
}
}
// IF THE EMULATED PROGRAM HAS JUST UPDATE THE MEMORY WRITE MODE AND IS
// ABOUT TO UPDATE THE MEMORY READ MODE, HOLD OFF ON ANY PROCESSING UNTIL
// IT DOES SO.
//
// NB. A 6502 interrupt occurring between these memory write & read updates could lead to incorrect behaviour.
// - although any date-race is probably a bug in the 6502 code too.
if ((address >= 4) && (address <= 5) &&
((*(LPDWORD)(mem+programcounter) & 0x00FFFEFF) == 0x00C0028D)) {
modechanging = 1;
return write ? 0 : MemReadFloatingBus(1, nCyclesLeft);
}
if ((address >= 0x80) && (address <= 0x8F) && (programcounter < 0xC000) &&
(((*(LPDWORD)(mem+programcounter) & 0x00FFFEFF) == 0x00C0048D) ||
((*(LPDWORD)(mem+programcounter) & 0x00FFFEFF) == 0x00C0028D))) {
modechanging = 1;
return write ? 0 : MemReadFloatingBus(1, nCyclesLeft);
}
// IF THE MEMORY PAGING MODE HAS CHANGED, UPDATE OUR MEMORY IMAGES AND
// WRITE TABLES.
if ((lastmemmode != memmode) || modechanging)
{
modechanging = 0;
if ((lastmemmode & MF_SLOTCXROM) != (memmode & MF_SLOTCXROM))
{
if (SW_SLOTCXROM)
{
// Disable Internal ROM
// . Similar to $CFFF access
// . None of the peripheral cards can be driving the bus - so use the null ROM
memset(pCxRomPeripheral+0x800, 0, FIRMWARE_EXPANSION_SIZE);
memset(mem+FIRMWARE_EXPANSION_BEGIN, 0, FIRMWARE_EXPANSION_SIZE);
g_eExpansionRomType = eExpRomNull;
g_uPeripheralRomSlot = 0;
IoHandlerCardsIn();
}
else
{
// Enable Internal ROM
memcpy(mem+0xC800, pCxRomInternal+0x800, FIRMWARE_EXPANSION_SIZE);
g_eExpansionRomType = eExpRomInternal;
g_uPeripheralRomSlot = 0;
IoHandlerCardsOut();
}
}
UpdatePaging(0); // Initialize=0
}
if ((address <= 1) || ((address >= 0x54) && (address <= 0x57)))
return VideoSetMode(programcounter,address,write,value,nCyclesLeft);
return write ? 0 : MemReadFloatingBus(nCyclesLeft);
}
//===========================================================================
LPVOID MemGetSlotParameters(UINT uSlot)
{
_ASSERT(uSlot < NUM_SLOTS);
return SlotParameters[uSlot];
}
//===========================================================================
// NB. Don't need to save 'modechanging', as this is just an optimisation to save calling UpdatePaging() twice.
// . If we were to save the state when 'modechanging' is set, then on restoring the state, the 6502 code will immediately update the read memory mode.
// . This will work correctly.
void MemSetSnapshot_v1(const DWORD MemMode, const BOOL LastWriteRam, const BYTE* const pMemMain, const BYTE* const pMemAux)
{
SetMemMode(MemMode);
lastwriteram = LastWriteRam;
memcpy(memmain, pMemMain, nMemMainSize);
memcpy(memaux, pMemAux, nMemAuxSize);
memset(memdirty, 0, 0x100);
//
modechanging = 0;
// NB. MemUpdatePaging(TRUE) called at end of Snapshot_LoadState_v1()
UpdatePaging(1); // Initialize=1
}
//
#define UNIT_AUXSLOT_VER 1
#define SS_YAML_KEY_MEMORYMODE "Memory Mode"
#define SS_YAML_KEY_LASTRAMWRITE "Last RAM Write"
#define SS_YAML_KEY_IOSELECT "IO_SELECT"
#define SS_YAML_KEY_IOSELECT_INT "IO_SELECT_InternalROM"
#define SS_YAML_KEY_EXPANSIONROMTYPE "Expansion ROM Type"
#define SS_YAML_KEY_PERIPHERALROMSLOT "Peripheral ROM Slot"
#define SS_YAML_VALUE_CARD_80COL "80 Column"
#define SS_YAML_VALUE_CARD_EXTENDED80COL "Extended 80 Column"
#define SS_YAML_VALUE_CARD_RAMWORKSIII "RamWorksIII"
#define SS_YAML_KEY_NUMAUXBANKS "Num Aux Banks"
#define SS_YAML_KEY_ACTIVEAUXBANK "Active Aux Bank"
static std::string MemGetSnapshotStructName(void)
{
static const std::string name("Memory");
return name;
}
std::string MemGetSnapshotUnitAuxSlotName(void)
{
static const std::string name("Auxiliary Slot");
return name;
}
static std::string MemGetSnapshotMainMemStructName(void)
{
static const std::string name("Main Memory");
return name;
}
static std::string MemGetSnapshotAuxMemStructName(void)
{
static const std::string name("Auxiliary Memory Bank");
return name;
}
static void MemSaveSnapshotMemory(YamlSaveHelper& yamlSaveHelper, bool bIsMainMem, UINT bank=0)
{
LPBYTE pMemBase = MemGetBankPtr(bank);
if (bIsMainMem)
{
YamlSaveHelper::Label state(yamlSaveHelper, "%s:\n", MemGetSnapshotMainMemStructName().c_str());
yamlSaveHelper.SaveMemory(pMemBase, 64*1024);
}
else
{
YamlSaveHelper::Label state(yamlSaveHelper, "%s%02X:\n", MemGetSnapshotAuxMemStructName().c_str(), bank-1);
yamlSaveHelper.SaveMemory(pMemBase, 64*1024);
}
}
void MemSaveSnapshot(YamlSaveHelper& yamlSaveHelper)
{
// Scope so that "Memory" & "Main Memory" are at same indent level
{
YamlSaveHelper::Label state(yamlSaveHelper, "%s:\n", MemGetSnapshotStructName().c_str());
yamlSaveHelper.SaveHexUint32(SS_YAML_KEY_MEMORYMODE, memmode);
yamlSaveHelper.SaveUint(SS_YAML_KEY_LASTRAMWRITE, lastwriteram ? 1 : 0);
yamlSaveHelper.SaveHexUint8(SS_YAML_KEY_IOSELECT, IO_SELECT);
yamlSaveHelper.SaveHexUint8(SS_YAML_KEY_IOSELECT_INT, IO_SELECT_InternalROM);
yamlSaveHelper.SaveUint(SS_YAML_KEY_EXPANSIONROMTYPE, (UINT) g_eExpansionRomType);
yamlSaveHelper.SaveUint(SS_YAML_KEY_PERIPHERALROMSLOT, g_uPeripheralRomSlot);
}
MemSaveSnapshotMemory(yamlSaveHelper, true);
}
bool MemLoadSnapshot(YamlLoadHelper& yamlLoadHelper)
{
if (!yamlLoadHelper.GetSubMap(MemGetSnapshotStructName()))
return false;
SetMemMode( yamlLoadHelper.LoadUint(SS_YAML_KEY_MEMORYMODE) );
lastwriteram = yamlLoadHelper.LoadUint(SS_YAML_KEY_LASTRAMWRITE) ? TRUE : FALSE;
IO_SELECT = (BYTE) yamlLoadHelper.LoadUint(SS_YAML_KEY_IOSELECT);
IO_SELECT_InternalROM = (BYTE) yamlLoadHelper.LoadUint(SS_YAML_KEY_IOSELECT_INT);
g_eExpansionRomType = (eExpansionRomType) yamlLoadHelper.LoadUint(SS_YAML_KEY_EXPANSIONROMTYPE);
g_uPeripheralRomSlot = yamlLoadHelper.LoadUint(SS_YAML_KEY_PERIPHERALROMSLOT);
yamlLoadHelper.PopMap();
//
if (!yamlLoadHelper.GetSubMap( MemGetSnapshotMainMemStructName() ))
throw std::string("Card: Expected key: ") + MemGetSnapshotMainMemStructName();
yamlLoadHelper.LoadMemory(memmain, _6502_MEM_END+1);
memset(memdirty, 0, 0x100);
yamlLoadHelper.PopMap();
//
modechanging = 0;
// NB. MemUpdatePaging(TRUE) called at end of Snapshot_LoadState_v2()
UpdatePaging(1); // Initialize=1 (Still needed, even with call to MemUpdatePaging() - why?)
return true;
}
void MemSaveSnapshotAux(YamlSaveHelper& yamlSaveHelper)
{
if (IS_APPLE2)
{
return; // No Aux slot for AppleII
}
if (IS_APPLE2C)
{
_ASSERT(g_uMaxExPages == 1);
}
yamlSaveHelper.UnitHdr(MemGetSnapshotUnitAuxSlotName(), UNIT_AUXSLOT_VER);
YamlSaveHelper::Label state(yamlSaveHelper, "%s:\n", SS_YAML_KEY_STATE);
std::string card = g_uMaxExPages == 0 ? SS_YAML_VALUE_CARD_80COL : // todo: support empty slot
g_uMaxExPages == 1 ? SS_YAML_VALUE_CARD_EXTENDED80COL :
SS_YAML_VALUE_CARD_RAMWORKSIII;
yamlSaveHelper.SaveString(SS_YAML_KEY_CARD, card.c_str());
yamlSaveHelper.Save("%s: %02X # [0,1..7F] 0=no aux mem, 1=128K system, etc\n", SS_YAML_KEY_NUMAUXBANKS, g_uMaxExPages);
yamlSaveHelper.Save("%s: %02X # [ 0..7E] 0=memaux\n", SS_YAML_KEY_ACTIVEAUXBANK, g_uActiveBank);
for(UINT uBank = 1; uBank <= g_uMaxExPages; uBank++)
{
MemSaveSnapshotMemory(yamlSaveHelper, false, uBank);
}
}
bool MemLoadSnapshotAux(YamlLoadHelper& yamlLoadHelper, UINT version)
{
if (version != UNIT_AUXSLOT_VER)
throw std::string(SS_YAML_KEY_UNIT ": AuxSlot: Version mismatch");
// "State"
UINT numAuxBanks = yamlLoadHelper.LoadUint(SS_YAML_KEY_NUMAUXBANKS);
UINT activeAuxBank = yamlLoadHelper.LoadUint(SS_YAML_KEY_ACTIVEAUXBANK);
std::string card = yamlLoadHelper.LoadString(SS_YAML_KEY_CARD);
if (card == SS_YAML_VALUE_CARD_80COL)
{
if (numAuxBanks != 0 || activeAuxBank != 0)
throw std::string(SS_YAML_KEY_UNIT ": AuxSlot: Bad aux slot card state");
}
else if (card == SS_YAML_VALUE_CARD_EXTENDED80COL)
{
if (numAuxBanks != 1 || activeAuxBank != 0)
throw std::string(SS_YAML_KEY_UNIT ": AuxSlot: Bad aux slot card state");
}
else if (card == SS_YAML_VALUE_CARD_RAMWORKSIII)
{
if (numAuxBanks < 2 || numAuxBanks > 0x7F || (activeAuxBank+1) > numAuxBanks)
throw std::string(SS_YAML_KEY_UNIT ": AuxSlot: Bad aux slot card state");
}
else
{
// todo: support empty slot
throw std::string(SS_YAML_KEY_UNIT ": AuxSlot: Unknown card: " + card);
}
g_uMaxExPages = numAuxBanks;
g_uActiveBank = activeAuxBank;
//
for(UINT uBank = 1; uBank <= g_uMaxExPages; uBank++)
{
LPBYTE pBank = MemGetBankPtr(uBank);
if (!pBank)
{
pBank = RWpages[uBank-1] = (LPBYTE) VirtualAlloc(NULL,_6502_MEM_END+1,MEM_COMMIT,PAGE_READWRITE);
if (!pBank)
throw std::string("Card: mem alloc failed");
}
// "Auxiliary Memory Bankxx"
char szBank[3];
sprintf(szBank, "%02X", uBank-1);
std::string auxMemName = MemGetSnapshotAuxMemStructName() + szBank;
if (!yamlLoadHelper.GetSubMap(auxMemName))
throw std::string("Memory: Missing map name: " + auxMemName);
yamlLoadHelper.LoadMemory(pBank, _6502_MEM_END+1);
yamlLoadHelper.PopMap();
}
memaux = RWpages[g_uActiveBank];
// NB. MemUpdatePaging(TRUE) called at end of Snapshot_LoadState_v2()
return true;
}