AppleWin/source/Disk.cpp
Andrea 2759527f0d
Remove some StringCb* functions and fix assertion. (PR #1239)
. Return an error for an invalid .bin image.
2023-06-17 20:41:48 +01:00

2533 lines
80 KiB
C++

/*
AppleWin : An Apple //e emulator for Windows
Copyright (C) 1994-1996, Michael O'Brien
Copyright (C) 1999-2001, Oliver Schmidt
Copyright (C) 2002-2005, Tom Charlesworth
Copyright (C) 2006-2019, Tom Charlesworth, Michael Pohoreski, Nick Westgate
AppleWin is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
AppleWin is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with AppleWin; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
/* Description: Disk
*
* Author: Various
*
* In comments, UTAIIe is an abbreviation for a reference to "Understanding the Apple //e" by James Sather
*/
#include "StdAfx.h"
#include "Disk.h"
#include "Interface.h"
#include "Core.h"
#include "CardManager.h"
#include "CPU.h"
#include "DiskImage.h"
#include "Log.h"
#include "Memory.h"
#include "Registry.h"
#include "SaveState.h"
#include "YamlHelper.h"
#include "../resource/resource.h"
// About m_enhanceDisk:
// . In general m_enhanceDisk==false is used for authentic disk access speed, whereas m_enhanceDisk==true is for enhanced speed.
// Details:
// . if false: Used by ImageReadTrack() to skew the sectors in a track (for .do, .dsk, .po 5.25" images).
// . if true && m_floppyMotorOn, then this is a condition for full-speed (unthrottled) emulation mode.
// . if false && I/O ReadWrite($C0EC) && drive is spinning, then advance the track buffer's nibble index (to simulate spinning).
// Also m_enhanceDisk is persisted to the save-state, so it's an attribute of the DiskII interface card.
// NB. Non-standard 4&4, with Vol=0x00 and Chk=0x00 (only a few match, eg. Wasteland, Legacy of the Ancients, Planetfall, Border Zone & Wizardry). [*1]
const BYTE Disk2InterfaceCard::m_T00S00Pattern[] = {0xD5,0xAA,0x96,0xAA,0xAA,0xAA,0xAA,0xAA,0xAA,0xAA,0xAA,0xDE};
Disk2InterfaceCard::Disk2InterfaceCard(UINT slot) :
Card(CT_Disk2, slot),
m_syncEvent(slot, 0, SyncEventCallback) // use slot# as "unique" id for Disk2InterfaceCards
{
if (m_slot != 5 && m_slot != 6) // fixme
ThrowErrorInvalidSlot();
ResetSwitches();
m_floppyLatch = 0;
m_saveDiskImage = true; // Save the DiskImage name to Registry
m_diskLastCycle = 0;
m_diskLastReadLatchCycle = 0;
m_enhanceDisk = true;
m_is13SectorFirmware = false;
m_force13SectorFirmware = false;
m_deferredStepperEvent = false;
m_deferredStepperAddress = 0;
m_deferredStepperCumulativeCycles = 0;
ResetLogicStateSequencer();
// Debug:
#if LOG_DISK_NIBBLES_USE_RUNTIME_VAR
m_bLogDisk_NibblesRW = false;
#endif
#if LOG_DISK_NIBBLES_WRITE
m_uWriteLastCycle = 0;
m_uSyncFFCount = 0;
#endif
}
Disk2InterfaceCard::~Disk2InterfaceCard(void)
{
EjectDiskInternal(DRIVE_1);
EjectDiskInternal(DRIVE_2);
if (m_syncEvent.m_active)
g_SynchronousEventMgr.Remove(m_syncEvent.m_id);
}
bool Disk2InterfaceCard::GetEnhanceDisk(void) { return m_enhanceDisk; }
void Disk2InterfaceCard::SetEnhanceDisk(bool bEnhanceDisk) { m_enhanceDisk = bEnhanceDisk; }
UINT Disk2InterfaceCard::GetCurrentBitOffset (void) { return m_floppyDrive[m_currDrive].m_disk.m_bitOffset; }
double Disk2InterfaceCard::GetCurrentExtraCycles(void) { return m_floppyDrive[m_currDrive].m_disk.m_extraCycles; }
float Disk2InterfaceCard::GetCurrentPhase (void) { return m_floppyDrive[m_currDrive].m_phasePrecise; }
int Disk2InterfaceCard::GetCurrentDrive (void) { return m_currDrive; }
BYTE Disk2InterfaceCard::GetCurrentShiftReg (void) { return m_shiftReg; }
int Disk2InterfaceCard::GetCurrentTrack (void) { return ImagePhaseToTrack(m_floppyDrive[m_currDrive].m_disk.m_imagehandle, m_floppyDrive[m_currDrive].m_phasePrecise, false); }
float Disk2InterfaceCard::GetPhase(const int drive) { return m_floppyDrive[drive].m_phasePrecise; }
int Disk2InterfaceCard::GetTrack(const int drive) { return ImagePhaseToTrack(m_floppyDrive[drive].m_disk.m_imagehandle, m_floppyDrive[drive].m_phasePrecise, false); }
std::string Disk2InterfaceCard::FormatIntFracString(float phase, bool hex)
{
const UINT phaseInt = (UINT)phase;
const UINT phaseFrac = (UINT)((phase - (float)phaseInt) * 100 + 0.5);
if (hex)
return StrFormat("%02X.%02d", phaseInt, phaseFrac); // (hex)"NN.nn"
else
return StrFormat("%02d.%02d", phaseInt, phaseFrac); // (dec)"NN.nn"
}
std::string Disk2InterfaceCard::GetCurrentTrackString(void)
{
return FormatIntFracString(m_floppyDrive[m_currDrive].m_phasePrecise / 2, true);
}
std::string Disk2InterfaceCard::GetCurrentPhaseString(void)
{
return FormatIntFracString(m_floppyDrive[m_currDrive].m_phasePrecise, true);
}
LPCTSTR Disk2InterfaceCard::GetCurrentState(Disk_Status_e& eDiskState_)
{
if (m_floppyDrive[m_currDrive].m_disk.m_imagehandle == NULL)
{
eDiskState_ = DISK_STATUS_EMPTY;
}
else
if (!m_floppyMotorOn)
{
if (m_floppyDrive[m_currDrive].m_spinning > 0)
{
eDiskState_ = DISK_STATUS_SPIN;
}
else
{
eDiskState_ = DISK_STATUS_OFF;
}
}
else if (m_seqFunc.writeMode)
{
if (m_floppyDrive[m_currDrive].m_disk.m_bWriteProtected)
{
eDiskState_ = DISK_STATUS_PROT;
}
else
{
eDiskState_ = DISK_STATUS_WRITE;
}
}
else
{
/*if (m_seqFunc.loadMode)
{
if (m_floppyDrive[m_currDrive].disk.bWriteProtected)
return "Reading write protect state (write protected)";
else
return "Reading write protect state (not write protected)";
}
else*/
{
eDiskState_ = DISK_STATUS_READ;
}
}
static const char *aDiskStateMiniDesc[NUM_DISK_STATUS] =
{
"Off" // DISK_STATUS_OFF
,"R" // DISK_STATUS_READ
,"W" // DISK_STATUS_WRITE
,"WP" // DISK_STATUS_PROT
,"n/a" // DISK_STATUS_EMPTY
,"Spin" // DISK_STATUS_SPIN
};
return aDiskStateMiniDesc[eDiskState_];
}
//===========================================================================
void Disk2InterfaceCard::LoadLastDiskImage(const int drive)
{
_ASSERT(drive == DRIVE_1 || drive == DRIVE_2);
const std::string regKey = (drive == DRIVE_1)
? REGVALUE_LAST_DISK_1
: REGVALUE_LAST_DISK_2;
char pathname[MAX_PATH];
std::string regSection = RegGetConfigSlotSection(m_slot);
if (RegLoadString(regSection.c_str(), regKey.c_str(), TRUE, pathname, MAX_PATH, TEXT("")) && (pathname[0] != 0))
{
m_saveDiskImage = false;
ImageError_e error = InsertDisk(drive, pathname, IMAGE_USE_FILES_WRITE_PROTECT_STATUS, IMAGE_DONT_CREATE);
m_saveDiskImage = true;
if (error != eIMAGE_ERROR_NONE)
{
NotifyInvalidImage(drive, pathname, error);
EjectDisk(drive);
}
}
}
//===========================================================================
void Disk2InterfaceCard::SaveLastDiskImage(const int drive)
{
_ASSERT(drive == DRIVE_1 || drive == DRIVE_2);
if (!m_saveDiskImage)
return;
std::string regSection = RegGetConfigSlotSection(m_slot);
RegSaveValue(regSection.c_str(), REGVALUE_CARD_TYPE, TRUE, CT_Disk2);
const std::string regKey = (drive == DRIVE_1)
? REGVALUE_LAST_DISK_1
: REGVALUE_LAST_DISK_2;
const std::string& pathName = DiskGetFullPathName(drive);
RegSaveString(regSection.c_str(), regKey.c_str(), TRUE, pathName);
//
// For now, only update 'Starting Directory' for slot6 & drive1
// . otherwise you'll get inconsistent results if you set drive1, then drive2 (and the images were in different folders)
if (m_slot != SLOT6 || drive != DRIVE_1)
return;
const size_t slash = pathName.find_last_of(PATH_SEPARATOR);
if (slash != std::string::npos)
{
const std::string dirName = pathName.substr(0, slash + 1);
RegSaveString(REG_PREFS, REGVALUE_PREF_START_DIR, 1, dirName);
}
}
//===========================================================================
// Called by ControlMotor() & Enable()
void Disk2InterfaceCard::CheckSpinning(const bool stateChanged, const ULONG uExecutedCycles)
{
bool modeChanged = m_floppyMotorOn && !m_floppyDrive[m_currDrive].m_spinning;
if (m_floppyMotorOn && IsDriveConnected(m_currDrive))
m_floppyDrive[m_currDrive].m_spinning = SPINNING_CYCLES;
if (modeChanged)
GetFrame().FrameDrawDiskLEDS();
if (modeChanged)
{
// Set m_diskLastCycle when motor changes: not spinning (ie. off for 1 sec) -> on
m_diskLastCycle = g_nCumulativeCycles;
}
if (m_floppyMotorOn && stateChanged)
{
// Set m_motorOnCycle when: motor changes to on, or the other drive is enabled (and motor is on)
m_floppyDrive[m_currDrive].m_motorOnCycle = g_nCumulativeCycles;
}
}
//===========================================================================
bool Disk2InterfaceCard::IsDriveValid(const int drive)
{
return (drive >= 0 && drive < NUM_DRIVES);
}
//===========================================================================
void Disk2InterfaceCard::AllocTrack(const int drive, const UINT minSize/*=NIBBLES_PER_TRACK*/)
{
FloppyDisk* pFloppy = &m_floppyDrive[drive].m_disk;
const UINT maxNibblesPerTrack = ImageGetMaxNibblesPerTrack(m_floppyDrive[drive].m_disk.m_imagehandle);
pFloppy->m_trackimage = new BYTE[ MAX(minSize,maxNibblesPerTrack) ];
}
//===========================================================================
void Disk2InterfaceCard::ReadTrack(const int drive, ULONG uExecutedCycles)
{
if (!IsDriveValid( drive ))
return;
FloppyDrive* pDrive = &m_floppyDrive[ drive ];
FloppyDisk* pFloppy = &pDrive->m_disk;
if (ImagePhaseToTrack(pFloppy->m_imagehandle, pDrive->m_phasePrecise, false) >= ImageGetNumTracks(pFloppy->m_imagehandle))
{
_ASSERT(0); // What can cause this? Add a comment to replace this assert.
// Boot with DOS 3.3 Master in D1
// Create a blank disk in D2
// INIT HELLO,D2
// RUN HELLO
// F2 to reboot DOS 3.3 Master
// RUN HELLO,D2
pFloppy->m_trackimagedata = false;
return;
}
if (!pFloppy->m_trackimage)
AllocTrack( drive );
if (pFloppy->m_trackimage && pFloppy->m_imagehandle)
{
if (ImageIsWOZ(pFloppy->m_imagehandle))
{
// Update bitStream position for *current* track before re-calc'ing position for new track
UINT bitCellDelta = GetBitCellDelta(uExecutedCycles);
UpdateBitStreamPosition(*pFloppy, bitCellDelta);
}
if (ImageIsWOZ(pFloppy->m_imagehandle) && (pFloppy->m_bitCount == 0))
{
// WOZ: m_bitCount only ever 0 on initial power on
pFloppy->m_bitOffset = 0;
pFloppy->m_bitCount = 8;
}
const UINT32 currentBitPosition = pFloppy->m_bitOffset;
const UINT32 currentBitTrackLength = pFloppy->m_bitCount;
ImageReadTrack(
pFloppy->m_imagehandle,
pDrive->m_phasePrecise,
pFloppy->m_trackimage,
&pFloppy->m_nibbles,
&pFloppy->m_bitCount,
m_enhanceDisk);
if (!ImageIsWOZ(pFloppy->m_imagehandle))
{
pFloppy->m_byte = 0;
}
else
{
// NB. This function is only called for a new track when there's a latch read, ie. only for *even* DEVICE SELECT I/O accesses.
// . So when seeking across tracks (ie. sequencing through the magnet phases), then not all (quarter) tracks will need reading.
// . eg. for 'Balance of Power'(GH#1022), for seek T00->T35: this only reads: 00.00, 00.25, 00.75, 01.25, 01.75, ... 34.25, 34.75, 35.00 (skipping the NN.00, NN.50 tracks).
// . And so the bitOffset "round-up" below isn't called for every track.
// TODO: consider forcing this function be be called for every track (and appropriately adjust the "round-up" amount - ie. halve it)
_ASSERT(pFloppy->m_nibbles && pFloppy->m_bitCount);
if (pFloppy->m_nibbles == 0 || pFloppy->m_bitCount == 0)
{
pFloppy->m_nibbles = 1;
pFloppy->m_bitCount = 8;
}
pFloppy->m_bitOffset = (currentBitPosition * pFloppy->m_bitCount) / currentBitTrackLength; // Ref: WOZ-1.01
pFloppy->m_bitOffset += 7; // Round-up for sensitive cross-track sync check (GH#1022)
if (pFloppy->m_bitOffset >= pFloppy->m_bitCount)
pFloppy->m_bitOffset = 0;
#if LOG_DISK_WOZ_READTRACK
LOG_DISK("T%05.2f: %04X->%04X, Len=%04X\n", pDrive->m_phasePrecise / 2, currentBitPosition, pFloppy->m_bitOffset, pFloppy->m_bitCount);
#endif
pFloppy->m_byte = pFloppy->m_bitOffset / 8;
pFloppy->m_bitMask = 1 << (7 - (pFloppy->m_bitOffset % 8));
pFloppy->m_extraCycles = 0.0;
pDrive->m_headWindow = 0;
FindTrackSeamWOZ(*pFloppy, pDrive->m_phasePrecise/2);
}
pFloppy->m_trackimagedata = (pFloppy->m_nibbles != 0);
pFloppy->m_initialBitOffset = pFloppy->m_bitOffset;
pFloppy->m_revs = 0;
}
}
//===========================================================================
void Disk2InterfaceCard::EjectDiskInternal(const int drive)
{
FloppyDisk* pFloppy = &m_floppyDrive[drive].m_disk;
if (pFloppy->m_imagehandle)
{
FlushCurrentTrack(drive);
ImageClose(pFloppy->m_imagehandle);
pFloppy->m_imagehandle = NULL;
}
if (pFloppy->m_trackimage)
{
delete [] pFloppy->m_trackimage;
pFloppy->m_trackimage = NULL;
pFloppy->m_trackimagedata = false;
}
pFloppy->m_imagename.clear();
pFloppy->m_fullname.clear();
pFloppy->m_strFilenameInZip = "";
}
void Disk2InterfaceCard::EjectDisk(const int drive)
{
if (!IsDriveValid(drive))
return;
EjectDiskInternal(drive);
Snapshot_UpdatePath();
SaveLastDiskImage(drive);
GetFrame().Video_ResetScreenshotCounter("");
}
void Disk2InterfaceCard::UnplugDrive(const int drive)
{
if (!IsDriveValid(drive))
return;
EjectDisk(drive);
m_floppyDrive[drive].m_isConnected = false;
}
//===========================================================================
void Disk2InterfaceCard::WriteTrack(const int drive)
{
FloppyDrive* pDrive = &m_floppyDrive[ drive ];
FloppyDisk* pFloppy = &pDrive->m_disk;
if (ImagePhaseToTrack(pFloppy->m_imagehandle, pDrive->m_phasePrecise, false) >= ImageGetNumTracks(pFloppy->m_imagehandle))
{
_ASSERT(0); // What can cause this? Add a comment to replace this assert.
return;
}
if (pFloppy->m_bWriteProtected)
return;
if (pFloppy->m_trackimage && pFloppy->m_imagehandle)
{
#if LOG_DISK_TRACKS
LOG_DISK("track $%s write\r\n", GetCurrentTrackString().c_str());
#endif
ImageWriteTrack(
pFloppy->m_imagehandle,
pDrive->m_phasePrecise,
pFloppy->m_trackimage,
pFloppy->m_nibbles);
}
pFloppy->m_trackimagedirty = false;
}
void Disk2InterfaceCard::FlushCurrentTrack(const int drive)
{
FloppyDisk* pFloppy = &m_floppyDrive[drive].m_disk;
if (pFloppy->m_trackimage && pFloppy->m_trackimagedirty)
WriteTrack(drive);
}
//===========================================================================
void Disk2InterfaceCard::Boot(void)
{
// THIS FUNCTION RELOADS A PROGRAM IMAGE IF ONE IS LOADED IN DRIVE ONE.
// IF A DISK IMAGE OR NO IMAGE IS LOADED IN DRIVE ONE, IT DOES NOTHING.
if (m_floppyDrive[0].m_disk.m_imagehandle && ImageBoot(m_floppyDrive[0].m_disk.m_imagehandle))
m_floppyMotorOn = 0;
}
//===========================================================================
void __stdcall Disk2InterfaceCard::ControlMotor(WORD, WORD address, BYTE, BYTE, ULONG uExecutedCycles)
{
BOOL newState = address & 1;
bool stateChanged = (newState != m_floppyMotorOn);
if (stateChanged)
{
m_floppyMotorOn = newState;
m_formatTrack.DriveNotWritingTrack();
}
// NB. Motor off doesn't reset the Command Decoder like reset. (UTAIIe figures 9.7 & 9.8 chip C2)
// - so it doesn't reset this state: m_seqFunc, m_magnetStates
#if LOG_DISK_MOTOR
LOG_DISK("%08X: motor %s\r\n", (UINT32)g_nCumulativeCycles, (m_floppyMotorOn) ? "on" : "off");
#endif
CheckSpinning(stateChanged, uExecutedCycles);
}
//===========================================================================
void __stdcall Disk2InterfaceCard::ControlStepper(WORD, WORD address, BYTE, BYTE, ULONG uExecutedCycles)
{
FloppyDrive* pDrive = &m_floppyDrive[m_currDrive];
if (!m_floppyMotorOn) // GH#525
{
if (!pDrive->m_spinning)
{
#if LOG_DISK_PHASES
LOG_DISK("stepper accessed whilst motor is off and not spinning\r\n");
#endif
return;
}
#if LOG_DISK_PHASES
LOG_DISK("stepper accessed whilst motor is off, but still spinning\r\n");
#endif
}
// update phases (magnet states)
{
const int phase = (address >> 1) & 3;
const int phase_bit = (1 << phase);
// update the magnet states
if (address & 1)
m_magnetStates |= phase_bit; // phase on
else
m_magnetStates &= ~phase_bit; // phase off
}
if (!GetCardMgr().GetDisk2CardMgr().IsStepperDeferred())
{
m_deferredStepperAddress = address;
m_deferredStepperCumulativeCycles = g_nCumulativeCycles;
ControlStepperDeferred();
return;
}
if (m_syncEvent.m_active)
{
// Check for adjacent magnets being turned off/on in a very short interval (10 cycles is purely based on A2osX). (GH#1110)
g_SynchronousEventMgr.Remove(m_syncEvent.m_id);
m_deferredStepperEvent = false;
int addrDelta = (m_deferredStepperAddress & 7) - (address & 7);
if (addrDelta < 0) addrDelta = -addrDelta;
if (addrDelta == 2 || addrDelta == 6) // adjacent magnets: both turned off or both turned on
{
if ((address & 1) == 0) // adjacent magnets off
{
// 2 adjacent magnets off in quick succession don't move the cog (GH#1110)
// . also DOS3.2, Pascal and ProDOS rapidly turning off all 4 magnets.
ControlStepperLogging(m_deferredStepperAddress, m_deferredStepperCumulativeCycles);
ControlStepperLogging(address, g_nCumulativeCycles);
return;
}
else // adjacent magnets turned on
{
// take no action - can't find any titles that ever do this!
const std::string msg = "Disk: ControlStepper() - adjacent magnets turned on\n";
LogOutput("%s", msg.c_str());
LogFileOutput("%s", msg.c_str());
}
}
// complete the deferred stepper event
// eg. Glutton, EDD III - both just combinations of turning off all 4 magnets
ControlStepperDeferred();
}
// defer the effect of changing the phase
m_deferredStepperAddress = address;
m_deferredStepperCumulativeCycles = g_nCumulativeCycles;
InsertSyncEvent();
m_deferredStepperEvent = true;
}
void Disk2InterfaceCard::InsertSyncEvent(void)
{
m_syncEvent.m_cyclesRemaining = 10; // NB. same cycle delay for magnet off and on - but perhaps they take different times?
g_SynchronousEventMgr.Insert(&m_syncEvent);
}
int Disk2InterfaceCard::SyncEventCallback(int id, int cycles, ULONG uExecutedCycles)
{
Disk2InterfaceCard& disk2Card = dynamic_cast<Disk2InterfaceCard&>(GetCardMgr().GetRef(id));
disk2Card.ControlStepperDeferred();
return 0; // Don't repeat event
}
void Disk2InterfaceCard::ControlStepperDeferred(void)
{
m_deferredStepperEvent = false;
const WORD address = m_deferredStepperAddress;
FloppyDrive* pDrive = &m_floppyDrive[m_currDrive];
FloppyDisk* pFloppy = &pDrive->m_disk;
// check for any stepping effect from a magnet
// - move only when the magnet opposite the cog is off
// - move in the direction of an adjacent magnet if one is on
// - do not move if both adjacent magnets are on (ie. quarter track)
// - timing is accounted for in the case when "two phases [are] turned off in rapid sequence" (UTAIIe page 9-13) (GH#1110)
// momentum is not accounted for ... maybe one day!
int direction = 0;
if (m_magnetStates & (1 << ((pDrive->m_phase + 1) & 3)))
direction += 1;
if (m_magnetStates & (1 << ((pDrive->m_phase + 3) & 3)))
direction -= 1;
// Only calculate quarterDirection for WOZ, as NIB/DSK don't support half phases.
int quarterDirection = 0;
if (ImageIsWOZ(pFloppy->m_imagehandle))
{
if ((m_magnetStates == 0xC || // 1100
m_magnetStates == 0x6 || // 0110
m_magnetStates == 0x3 || // 0011
m_magnetStates == 0x9)) // 1001
{
quarterDirection = direction;
direction = 0;
}
}
pDrive->m_phase = MAX(0, MIN(79, pDrive->m_phase + direction));
float newPhasePrecise = (float)(pDrive->m_phase) + (float)quarterDirection * 0.5f;
if (newPhasePrecise < 0)
newPhasePrecise = 0;
// apply magnet step, if any
if (newPhasePrecise != pDrive->m_phasePrecise)
{
FlushCurrentTrack(m_currDrive);
pDrive->m_phasePrecise = newPhasePrecise;
pFloppy->m_trackimagedata = false;
m_formatTrack.DriveNotWritingTrack();
GetFrame().FrameDrawDiskStatus(); // Show track status (GH#201)
}
ControlStepperLogging(address, m_deferredStepperCumulativeCycles);
}
void Disk2InterfaceCard::ControlStepperLogging(WORD address, unsigned __int64 cumulativeCycles)
{
FloppyDrive* pDrive = &m_floppyDrive[m_currDrive];
#if LOG_DISK_PHASES
const ULONG cycleDelta = (ULONG)(cumulativeCycles - pDrive->m_lastStepperCycle);
#endif
pDrive->m_lastStepperCycle = cumulativeCycles; // NB. Persisted to save-state
#if LOG_DISK_PHASES
LOG_DISK("%08X: track $%s magnet-states %d%d%d%d phase %d %s address $%4X last-stepper %.3fms\r\n",
(UINT32)cumulativeCycles,
GetCurrentTrackString().c_str(),
(m_magnetStates >> 3) & 1,
(m_magnetStates >> 2) & 1,
(m_magnetStates >> 1) & 1,
(m_magnetStates >> 0) & 1,
(address >> 1) & 3, // phase
(address & 1) ? "on " : "off",
address,
((float)cycleDelta) / (CLK_6502_NTSC / 1000.0));
#endif
}
//===========================================================================
void Disk2InterfaceCard::Destroy(void)
{
m_saveDiskImage = false;
EjectDisk(DRIVE_1);
m_saveDiskImage = false;
EjectDisk(DRIVE_2);
m_saveDiskImage = true;
}
//===========================================================================
bool __stdcall Disk2InterfaceCard::Enable(WORD, WORD address, BYTE, BYTE, ULONG uExecutedCycles)
{
WORD newDrive = address & 1;
bool stateChanged = (newDrive != m_currDrive);
m_currDrive = newDrive;
#if LOG_DISK_ENABLE_DRIVE
LOG_DISK("%08X: enable drive: %d\r\n", (UINT32)g_nCumulativeCycles, m_currDrive);
#endif
m_floppyDrive[!m_currDrive].m_spinning = 0;
m_floppyDrive[!m_currDrive].m_writelight = 0;
CheckSpinning(stateChanged, uExecutedCycles);
return ImageIsWOZ(m_floppyDrive[m_currDrive].m_disk.m_imagehandle); // Drive may've changed, so image-type may've changed
}
//===========================================================================
// Return the filename
// . Used by Drive Buttons' tooltips
const std::string & Disk2InterfaceCard::GetFullDiskFilename(const int drive)
{
if (!m_floppyDrive[drive].m_disk.m_strFilenameInZip.empty())
return m_floppyDrive[drive].m_disk.m_strFilenameInZip;
return GetFullName(drive);
}
// Return the file or zip name
// . Used by Property Sheet Page (Disk)
const std::string & Disk2InterfaceCard::GetFullName(const int drive)
{
return m_floppyDrive[drive].m_disk.m_fullname;
}
// Return the imagename
// . Used by Drive Button's icons & Property Sheet Page (Save snapshot)
const std::string & Disk2InterfaceCard::GetBaseName(const int drive)
{
return m_floppyDrive[drive].m_disk.m_imagename;
}
void Disk2InterfaceCard::GetFilenameAndPathForSaveState(std::string& filename, std::string& path)
{
filename = "";
path = "";
for (UINT i=DRIVE_1; i<=DRIVE_2; i++)
{
if (IsDriveEmpty(i))
continue;
filename = GetBaseName(i);
std::string pathname = DiskGetFullPathName(i);
int idx = pathname.find_last_of(PATH_SEPARATOR);
if (idx >= 0 && idx+1 < (int)pathname.length()) // path exists?
{
path = pathname.substr(0, idx+1);
return;
}
_ASSERT(0);
break;
}
}
const std::string & Disk2InterfaceCard::DiskGetFullPathName(const int drive)
{
return ImageGetPathname(m_floppyDrive[drive].m_disk.m_imagehandle);
}
//===========================================================================
Disk_Status_e Disk2InterfaceCard::GetDriveLightStatus(const int drive)
{
if (IsDriveValid( drive ))
{
FloppyDrive* pDrive = &m_floppyDrive[ drive ];
if (pDrive->m_spinning)
{
if (pDrive->m_disk.m_bWriteProtected)
return DISK_STATUS_PROT;
if (pDrive->m_writelight)
return DISK_STATUS_WRITE;
else
return DISK_STATUS_READ;
}
else
{
return DISK_STATUS_OFF;
}
}
return DISK_STATUS_EMPTY;
}
void Disk2InterfaceCard::GetLightStatus(Disk_Status_e *pDisk1Status, Disk_Status_e *pDisk2Status)
{
if (pDisk1Status)
*pDisk1Status = GetDriveLightStatus(DRIVE_1);
if (pDisk2Status)
*pDisk2Status = GetDriveLightStatus(DRIVE_2);
}
//===========================================================================
// Pre: pathname likely to include path (but can also just be filename)
ImageError_e Disk2InterfaceCard::InsertDisk(const int drive, const std::string& pathname, const bool bForceWriteProtected, const bool bCreateIfNecessary)
{
FloppyDrive* pDrive = &m_floppyDrive[drive];
FloppyDisk* pFloppy = &pDrive->m_disk;
if (pFloppy->m_imagehandle)
EjectDisk(drive);
// Reset the disk's attributes, but preserve the drive's attributes (GH#138/Platoon, GH#640)
// . Changing the disk (in the drive) doesn't affect the drive's attributes.
pFloppy->clear();
const DWORD dwAttributes = GetFileAttributes(pathname.c_str());
if (dwAttributes == INVALID_FILE_ATTRIBUTES)
pFloppy->m_bWriteProtected = false; // Assume this is a new file to create (so it must be write-enabled to allow it to be formatted)
else
pFloppy->m_bWriteProtected = bForceWriteProtected ? true : (dwAttributes & FILE_ATTRIBUTE_READONLY);
// Check if image is being used by the other drive, and if so remove it in order so it can be swapped
{
const std::string & pszOtherPathname = DiskGetFullPathName(!drive);
char szCurrentPathname[MAX_PATH];
DWORD uNameLen = GetFullPathName(pathname.c_str(), MAX_PATH, szCurrentPathname, NULL);
if (uNameLen == 0 || uNameLen >= MAX_PATH)
strcpy_s(szCurrentPathname, MAX_PATH, pathname.c_str());
if (!strcmp(pszOtherPathname.c_str(), szCurrentPathname))
{
EjectDisk(!drive);
GetFrame().FrameRefreshStatus(DRAW_LEDS | DRAW_BUTTON_DRIVES | DRAW_DISK_STATUS);
}
}
ImageError_e Error = ImageOpen(pathname,
&pFloppy->m_imagehandle,
&pFloppy->m_bWriteProtected,
bCreateIfNecessary,
pFloppy->m_strFilenameInZip);
if (Error == eIMAGE_ERROR_NONE && ImageIsMultiFileZip(pFloppy->m_imagehandle))
{
std::string strText = StrFormat("Only the first file in a multi-file zip is supported\n"
"Use disk image '%s' ?",
pFloppy->m_strFilenameInZip.c_str());
int nRes = GetFrame().FrameMessageBox(strText.c_str(), "Multi-Zip Warning", MB_ICONWARNING | MB_YESNO | MB_SETFOREGROUND);
if (nRes == IDNO)
{
EjectDisk(drive);
Error = eIMAGE_ERROR_REJECTED_MULTI_ZIP;
}
}
if (Error == eIMAGE_ERROR_NONE)
{
GetImageTitle(pathname.c_str(), pFloppy->m_imagename, pFloppy->m_fullname);
Snapshot_UpdatePath();
GetFrame().Video_ResetScreenshotCounter(pFloppy->m_imagename);
if (g_nAppMode == MODE_LOGO)
InitFirmware(GetCxRomPeripheral());
}
else
{
GetFrame().Video_ResetScreenshotCounter("");
}
SaveLastDiskImage(drive);
return Error;
}
//===========================================================================
bool Disk2InterfaceCard::IsConditionForFullSpeed(void)
{
return m_floppyMotorOn && m_enhanceDisk;
}
//===========================================================================
void Disk2InterfaceCard::NotifyInvalidImage(const int drive, const std::string & szImageFilename, const ImageError_e Error)
{
std::string strText;
const char * pszImageFilename = szImageFilename.c_str();
switch (Error)
{
case eIMAGE_ERROR_UNABLE_TO_OPEN:
case eIMAGE_ERROR_UNABLE_TO_OPEN_GZ:
case eIMAGE_ERROR_UNABLE_TO_OPEN_ZIP:
strText = StrFormat("Unable to open the file %s.",
pszImageFilename);
break;
case eIMAGE_ERROR_BAD_SIZE:
strText = StrFormat("Unable to use the file %s\n"
"because the disk image is an unsupported size.",
pszImageFilename);
break;
case eIMAGE_ERROR_BAD_FILE:
strText = StrFormat("Unable to use the file %s\n"
"because the OS can't access it.",
pszImageFilename);
break;
case eIMAGE_ERROR_UNSUPPORTED:
strText = StrFormat("Unable to use the file %s\n"
"because the disk image format is not recognized.",
pszImageFilename);
break;
case eIMAGE_ERROR_UNSUPPORTED_HDV:
strText = StrFormat("Unable to use the file %s\n"
"because this UniDisk 3.5/Apple IIGS/hard-disk image is not supported.\n"
"Try inserting as a hard-disk image instead.",
pszImageFilename);
break;
case eIMAGE_ERROR_GZ:
case eIMAGE_ERROR_ZIP:
strText = StrFormat("Unable to use the compressed file %s\n"
"because the compressed disk image is corrupt/unsupported.",
pszImageFilename);
break;
case eIMAGE_ERROR_FAILED_TO_GET_PATHNAME:
strText = StrFormat("Unable to GetFullPathName() for the file: %s.",
pszImageFilename);
break;
case eIMAGE_ERROR_ZEROLENGTH_WRITEPROTECTED:
strText = StrFormat("Unsupported zero-length write-protected file: %s.",
pszImageFilename);
break;
case eIMAGE_ERROR_FAILED_TO_INIT_ZEROLENGTH:
strText = StrFormat("Failed to resize the zero-length file: %s.",
pszImageFilename);
break;
default:
// IGNORE OTHER ERRORS SILENTLY
return;
}
GetFrame().FrameMessageBox(strText.c_str(),
g_pAppTitle.c_str(),
MB_ICONEXCLAMATION | MB_SETFOREGROUND);
}
//===========================================================================
bool Disk2InterfaceCard::GetProtect(const int drive)
{
if (!IsDriveValid(drive))
return true;
return m_floppyDrive[drive].m_disk.m_bWriteProtected;
}
//===========================================================================
void Disk2InterfaceCard::SetProtect(const int drive, const bool bWriteProtect)
{
if (!IsDriveValid(drive))
return;
m_floppyDrive[drive].m_disk.m_bWriteProtected = bWriteProtect;
}
//===========================================================================
bool Disk2InterfaceCard::IsDriveEmpty(const int drive)
{
if (!IsDriveValid(drive))
return true;
return m_floppyDrive[drive].m_disk.m_imagehandle == NULL;
}
//===========================================================================
bool Disk2InterfaceCard::IsWozImageInDrive(const int drive)
{
if (!IsDriveValid(drive))
return false;
return ImageIsWOZ(m_floppyDrive[drive].m_disk.m_imagehandle);
}
//===========================================================================
#if LOG_DISK_NIBBLES_WRITE
bool Disk2InterfaceCard::LogWriteCheckSyncFF(ULONG& uCycleDelta)
{
bool bIsSyncFF = false;
if (m_uWriteLastCycle == 0) // Reset to 0 when write mode is enabled
{
uCycleDelta = 0;
if (m_floppyLatch == 0xFF)
{
m_uSyncFFCount = 0;
bIsSyncFF = true;
}
}
else
{
uCycleDelta = (ULONG) (g_nCumulativeCycles - m_uWriteLastCycle);
if (m_floppyLatch == 0xFF && uCycleDelta > 32)
{
m_uSyncFFCount++;
bIsSyncFF = true;
}
}
m_uWriteLastCycle = g_nCumulativeCycles;
return bIsSyncFF;
}
#endif
//===========================================================================
void Disk2InterfaceCard::UpdateLatchForEmptyDrive(FloppyDrive* pDrive)
{
if (!pDrive->m_isConnected)
{
m_floppyLatch = 0x80; // GH#864
return;
}
// Drive connected
if ((g_nCumulativeCycles - pDrive->m_motorOnCycle) < MOTOR_ON_UNTIL_LSS_STABLE_CYCLES)
m_floppyLatch = 0x80; // GH#864
else
m_floppyLatch = rand() & 0xFF; // GH#748
}
void __stdcall Disk2InterfaceCard::ReadWrite(WORD pc, WORD addr, BYTE bWrite, BYTE d, ULONG uExecutedCycles)
{
FloppyDrive* pDrive = &m_floppyDrive[m_currDrive];
FloppyDisk* pFloppy = &pDrive->m_disk;
if (!pFloppy->m_trackimagedata && pFloppy->m_imagehandle)
ReadTrack(m_currDrive, uExecutedCycles);
if (!pFloppy->m_trackimagedata)
return UpdateLatchForEmptyDrive(pDrive);
// Improve precision of "authentic" drive mode - GH#125
UINT uSpinNibbleCount = 0;
if (!m_enhanceDisk && pDrive->m_spinning)
{
const ULONG nCycleDiff = (ULONG) (g_nCumulativeCycles - m_diskLastCycle);
m_diskLastCycle = g_nCumulativeCycles;
if (nCycleDiff > 40)
{
// 40 cycles for a write of a 10-bit 0xFF sync byte
uSpinNibbleCount = nCycleDiff >> 5; // ...but divide by 32 (not 40)
ULONG uWrapOffset = uSpinNibbleCount % pFloppy->m_nibbles;
pFloppy->m_byte += uWrapOffset;
if (pFloppy->m_byte >= pFloppy->m_nibbles)
pFloppy->m_byte -= pFloppy->m_nibbles;
#if LOG_DISK_NIBBLES_SPIN
UINT uCompleteRevolutions = uSpinNibbleCount / pFloppy->m_nibbles;
LOG_DISK("spin: revs=%d, nibbles=%d\r\n", uCompleteRevolutions, uWrapOffset);
#endif
}
}
if (!m_seqFunc.writeMode)
{
// Don't change latch if drive off after 1 second drive-off delay (UTAIIe page 9-13)
// "DRIVES OFF forces the data register to hold its present state." (UTAIIe page 9-12)
// Note: Sherwood Forest sets shift mode and reads with the drive off.
if (!pDrive->m_spinning) // GH#599
return;
const ULONG nReadCycleDiff = (ULONG) (g_nCumulativeCycles - m_diskLastReadLatchCycle);
// Support partial nibble read if disk reads are very close: (GH#582)
// . 6 cycles (1st->2nd read) for DOS 3.3 / $BD34: "read with delays to see if disk is spinning." (Beneath Apple DOS)
// . 6 cycles (1st->2nd read) for Curse of the Azure Bonds (loop to see if disk is spinning)
// . 25 cycles or higher fails for Legacy of the Ancients (GH#733)
// . 31 cycles is the max for a partial 8-bit nibble
const ULONG kReadAccessThreshold = 6; // Same for enhanced/authentic modes
if (nReadCycleDiff <= kReadAccessThreshold)
{
UINT invalidBits = 8 - (nReadCycleDiff / 4); // 4 cycles per bit-cell
m_floppyLatch = *(pFloppy->m_trackimage + pFloppy->m_byte) >> invalidBits;
return; // Early return so don't update: m_diskLastReadLatchCycle & pFloppy->byte
}
m_floppyLatch = *(pFloppy->m_trackimage + pFloppy->m_byte);
m_diskLastReadLatchCycle = g_nCumulativeCycles;
#if LOG_DISK_NIBBLES_READ
#if LOG_DISK_NIBBLES_USE_RUNTIME_VAR
if (m_bLogDisk_NibblesRW)
#endif
{
LOG_DISK("read %04X = %02X\r\n", pFloppy->m_byte, m_floppyLatch);
}
m_formatTrack.DecodeLatchNibbleRead(m_floppyLatch);
#endif
}
else if (!pFloppy->m_bWriteProtected) // && m_seqFunc.writeMode
{
if (!pDrive->m_spinning)
return; // If not spinning then only 1 bit-cell gets written?
*(pFloppy->m_trackimage + pFloppy->m_byte) = m_floppyLatch;
pFloppy->m_trackimagedirty = true;
bool bIsSyncFF = false;
#if LOG_DISK_NIBBLES_WRITE
ULONG uCycleDelta = 0;
bIsSyncFF = LogWriteCheckSyncFF(uCycleDelta);
#endif
m_formatTrack.DecodeLatchNibbleWrite(m_floppyLatch, uSpinNibbleCount, pFloppy, bIsSyncFF); // GH#125
#if LOG_DISK_NIBBLES_WRITE
#if LOG_DISK_NIBBLES_USE_RUNTIME_VAR
if (m_bLogDisk_NibblesRW)
#endif
{
if (!bIsSyncFF)
LOG_DISK("write %04X = %02X (cy=+%d)\r\n", pFloppy->m_byte, m_floppyLatch, uCycleDelta);
else
LOG_DISK("write %04X = %02X (cy=+%d) sync #%d\r\n", pFloppy->m_byte, m_floppyLatch, uCycleDelta, m_uSyncFFCount);
}
#endif
}
// GH #1212 We have a non .WOZ disk, mirror so that GetCurrentShiftReg() returns last nibble read
m_shiftReg = m_floppyLatch;
if (++pFloppy->m_byte >= pFloppy->m_nibbles)
pFloppy->m_byte = 0;
// Show track status (GH#201) - NB. Prevent flooding of forcing UI to redraw!!!
if ((pFloppy->m_byte & 0xFF) == 0)
GetFrame().FrameDrawDiskStatus();
}
//===========================================================================
void Disk2InterfaceCard::ResetLogicStateSequencer(void)
{
m_shiftReg = 0;
m_latchDelay = 0;
m_writeStarted = false;
m_dbgLatchDelayedCnt = 0;
m_T00S00PatternIdx = 0;
m_foundT00S00Pattern = false;
}
UINT Disk2InterfaceCard::GetBitCellDelta(const ULONG uExecutedCycles)
{
FloppyDisk& floppy = m_floppyDrive[m_currDrive].m_disk;
const BYTE optimalBitTiming = ImageGetOptimalBitTiming(floppy.m_imagehandle);
// NB. m_extraCycles is needed to retain accuracy:
// . Read latch #1: 0-> 9: cycleDelta= 9, bitCellDelta=2, extraCycles=1
// . Read latch #2: 9->20: cycleDelta=11, bitCellDelta=2, extraCycles=3
// . Overall: 0->20: cycleDelta=20, bitCellDelta=5, extraCycles=0
UINT bitCellDelta;
#if 0
if (optimalBitTiming == 32)
{
const ULONG cycleDelta = (ULONG)(g_nCumulativeCycles - m_diskLastCycle) + (BYTE) floppy.m_extraCycles;
bitCellDelta = cycleDelta / 4; // DIV 4 for 4us per bit-cell
floppy.m_extraCycles = cycleDelta & 3; // MOD 4 : remainder carried forward for next time
}
else
#endif
{
const double cycleDelta = (double)(g_nCumulativeCycles - m_diskLastCycle) + floppy.m_extraCycles;
const double bitTime = 0.125 * (double)optimalBitTiming; // 125ns units
bitCellDelta = (UINT) floor( cycleDelta / bitTime );
floppy.m_extraCycles = (double)cycleDelta - ((double)bitCellDelta * bitTime);
}
// NB. actual m_diskLastCycle for the last bitCell is minus floppy.m_extraCycles
// - but don't need this value; and it's correctly accounted for in this function.
m_diskLastCycle = g_nCumulativeCycles;
return bitCellDelta;
}
void Disk2InterfaceCard::UpdateBitStreamPosition(FloppyDisk& floppy, const ULONG bitCellDelta)
{
if (floppy.m_bitCount == 0) // Repro: Boot DOS3.3(WOZ), eject+reinsert disk, CALL-151, C0E9 N C0ED ; motor-on & LoadWriteProtect()
return;
floppy.m_bitOffset += bitCellDelta;
if (floppy.m_bitOffset >= floppy.m_bitCount)
floppy.m_bitOffset %= floppy.m_bitCount;
UpdateBitStreamOffsets(floppy);
}
void Disk2InterfaceCard::UpdateBitStreamOffsets(FloppyDisk& floppy)
{
floppy.m_byte = floppy.m_bitOffset / 8;
const UINT remainder = 7 - (floppy.m_bitOffset & 7);
floppy.m_bitMask = 1 << remainder;
}
__forceinline void Disk2InterfaceCard::IncBitStream(FloppyDisk& floppy)
{
floppy.m_bitMask >>= 1;
if (!floppy.m_bitMask)
{
floppy.m_bitMask = 1 << 7;
floppy.m_byte++;
}
floppy.m_bitOffset++;
if (floppy.m_bitOffset == floppy.m_bitCount)
{
floppy.m_bitMask = 1 << 7;
floppy.m_bitOffset = 0;
floppy.m_byte = 0;
}
if (floppy.m_bitOffset == floppy.m_initialBitOffset)
floppy.m_revs++;
}
void Disk2InterfaceCard::PreJitterCheck(int phase, BYTE latch)
{
if (phase != 0 || (latch & 0x80) == 0)
return;
if (latch == m_T00S00Pattern[m_T00S00PatternIdx])
{
m_T00S00PatternIdx++;
if (m_T00S00PatternIdx == sizeof(m_T00S00Pattern))
m_foundT00S00Pattern = true; // 6502 code has just read latch nibbles for T$00,S$00 address prologue
}
else
{
m_T00S00PatternIdx = 0;
}
}
// GH#930: After T$00,S$00 randomly skip 1 bit-cell.
// . PreJitterCheck() condition met && skipped a big number of bit-cells.
// . Fix is just for 'Wasteland' and 'Legacy of the Ancients' (but shouldn't interfere with any other woz images).
// . NB. This is likely to be the transition from DiskII firmware ($C6xx) to user-code ($801),
// so skipping 1 bit-cell here shouldn't matter.
// . And (see comment [*1]) the T00S00 pattern only matches a handful of titles.
void Disk2InterfaceCard::AddJitter(int phase, FloppyDisk& floppy)
{
if (phase == 0 && m_foundT00S00Pattern)
{
if (rand() < RAND_THRESHOLD(1, 10))
{
LogOutput("Disk: T$00 jitter - slip 1 bitcell (PC=%04X)\n", regs.pc);
IncBitStream(floppy);
}
else
{
LogOutput("Disk: T$00 jitter - *** SKIP *** (PC=%04X)\n", regs.pc);
}
}
m_T00S00PatternIdx = 0;
m_foundT00S00Pattern = false;
}
// GH#1125: For T$21 (track 33.0) or above (and sufficiently long sync FF/10 run-length), then randomly skip 1 bit-cell at the start of the FF/2 track seam.
// Example of high sync FF/10 run-lengths for tracks 33.0+:
// . Accolade Comics:114, Silent Service:117, Wings of Fury:140, Wizardry I:127, Wizardry III:283
// NB. Restrict to higher FF/10 run-lengths to limit the titles affected by this jitter.
void Disk2InterfaceCard::AddTrackSeamJitter(float phasePrecise, FloppyDisk& floppy)
{
if (phasePrecise >= (33.0 * 2) && floppy.m_longestSyncFFRunLength > 110)
{
if (floppy.m_bitOffset == floppy.m_longestSyncFFBitOffsetStart)
{
if (rand() < RAND_THRESHOLD(5, 10))
{
LogOutput("Disk: T%05.2f jitter - slip 1 bitcell (revs=%d) (PC=%04X)\n", phasePrecise / 2, floppy.m_revs, regs.pc);
IncBitStream(floppy);
}
else
{
LogOutput("Disk: T%05.2f jitter - *** SKIP *** (revs=%d) (PC=%04X)\n", phasePrecise / 2, floppy.m_revs, regs.pc);
}
}
}
}
void __stdcall Disk2InterfaceCard::DataLatchReadWriteWOZ(WORD pc, WORD addr, BYTE bWrite, ULONG uExecutedCycles)
{
_ASSERT(m_seqFunc.function != dataShiftWrite);
FloppyDrive& drive = m_floppyDrive[m_currDrive];
FloppyDisk& floppy = drive.m_disk;
if (!floppy.m_trackimagedata && floppy.m_imagehandle)
{
ReadTrack(m_currDrive, uExecutedCycles);
// NB. ReadTrack() has called GetBitCellDelta(), so the subsequent call to GetBitCellDelta() below just returns bitCellDelta==0
// So could just return at this point.
}
if (!floppy.m_trackimagedata)
{
_ASSERT(0); // Can't happen for WOZ - ReadTrack() should return an empty track
return UpdateLatchForEmptyDrive(&drive);
}
// Don't change latch if drive off after 1 second drive-off delay (UTAIIe page 9-13)
// "DRIVES OFF forces the data register to hold its present state." (UTAIIe page 9-12)
// Note: Sherwood Forest sets shift mode and reads with the drive off.
// TODO: And same for a write?
if (!drive.m_spinning) // GH#599
return;
// Skipping forward a large amount of bitcells means the bitstream will very likely be out-of-sync.
// The first 1-bit will produce a latch nibble, and this 1-bit is unlikely to be the nibble's high bit.
// So we need to ensure we run enough bits through the sequencer to re-sync.
const UINT significantBitCells = 100; // eg. long stream of weak bits and/or 5x 10-bit sync FF nibbles (GH#1020)
UINT bitCellDelta = GetBitCellDelta(uExecutedCycles);
UINT bitCellRemainder;
if (bitCellDelta <= significantBitCells)
{
bitCellRemainder = bitCellDelta;
}
else
{
bitCellRemainder = significantBitCells;
bitCellDelta -= significantBitCells;
UpdateBitStreamPosition(floppy, bitCellDelta);
m_latchDelay = 0;
drive.m_headWindow = 0;
AddJitter(drive.m_phase, floppy); // Only call when skipping a big number of bit-cells (ie. >significantBitCells)
}
if (!bWrite)
{
if (m_seqFunc.function != readSequencing)
{
_ASSERT(m_seqFunc.function == checkWriteProtAndInitWrite);
UpdateBitStreamPosition(floppy, bitCellRemainder);
return;
}
DataLatchReadWOZ(pc, addr, bitCellRemainder);
PreJitterCheck(drive.m_phase, m_floppyLatch); // Pre: m_floppyLatch just updated
}
else
{
_ASSERT(m_seqFunc.function == dataLoadWrite);
DataLoadWriteWOZ(pc, addr, bitCellRemainder);
}
// Show track status (GH#201) - NB. Prevent flooding of forcing UI to redraw!!!
if ((floppy.m_byte & 0xFF) == 0)
GetFrame().FrameDrawDiskStatus();
}
void Disk2InterfaceCard::DataLatchReadWOZ(WORD pc, WORD addr, UINT bitCellRemainder)
{
// m_diskLastReadLatchCycle = g_nCumulativeCycles; // Not used by WOZ (only by NIB)
#if LOG_DISK_NIBBLES_READ
bool newLatchData = false;
#endif
FloppyDrive& drive = m_floppyDrive[m_currDrive];
FloppyDisk& floppy = drive.m_disk;
#if _DEBUG
static int dbgWOZ = 0;
if (dbgWOZ)
{
dbgWOZ = 0;
DumpTrackWOZ(floppy); // Enable as necessary
}
#endif
for (UINT i = 0; i < bitCellRemainder; i++)
{
BYTE n = floppy.m_trackimage[floppy.m_byte];
drive.m_headWindow <<= 1;
drive.m_headWindow |= (n & floppy.m_bitMask) ? 1 : 0;
BYTE outputBit = (drive.m_headWindow & 0xf) ? (drive.m_headWindow >> 1) & 1
: (rand() < RAND_THRESHOLD(3, 10)) ? 1 : 0; // ~30% chance of a 1 bit (Ref: WOZ-2.0)
IncBitStream(floppy);
AddTrackSeamJitter(drive.m_phasePrecise, floppy);
m_shiftReg <<= 1;
m_shiftReg |= outputBit;
if (m_latchDelay)
{
m_latchDelay -= 4;
if (m_latchDelay < 0)
m_latchDelay = 0;
if (m_shiftReg)
{
m_dbgLatchDelayedCnt = 0;
}
else // m_shiftReg==0
{
m_latchDelay += 4; // extend by 4us (so 7us again) - GH#662
m_dbgLatchDelayedCnt++;
#if LOG_DISK_NIBBLES_READ
if (m_dbgLatchDelayedCnt >= 3)
{
LOG_DISK("read: latch held due to 0: PC=%04X, cnt=%02X\r\n", regs.pc, m_dbgLatchDelayedCnt);
}
#endif
}
}
if (!m_latchDelay)
{
#if LOG_DISK_NIBBLES_READ
if (newLatchData)
{
LOG_DISK("read skipped latch data: %04X = %02X\r\n", floppy.m_byte, m_floppyLatch);
newLatchData = false;
}
#endif
m_floppyLatch = m_shiftReg;
if (m_shiftReg & 0x80)
{
m_latchDelay = 7;
m_shiftReg = 0;
#if LOG_DISK_NIBBLES_READ
// May not actually be read by 6502 (eg. Prologue's CHKSUM 4&4 nibble pair), but still pass to the log's nibble reader
m_formatTrack.DecodeLatchNibbleRead(m_floppyLatch);
newLatchData = true;
#endif
}
}
} // for
#if LOG_DISK_NIBBLES_READ
if (m_floppyLatch & 0x80)
{
#if LOG_DISK_NIBBLES_USE_RUNTIME_VAR
if (m_bLogDisk_NibblesRW)
#endif
{
LOG_DISK("read %04X = %02X\r\n", floppy.m_byte, m_floppyLatch);
}
}
#endif
}
void Disk2InterfaceCard::DataLoadWriteWOZ(WORD pc, WORD addr, UINT bitCellRemainder)
{
_ASSERT(m_seqFunc.function == dataLoadWrite);
FloppyDrive& drive = m_floppyDrive[m_currDrive];
FloppyDisk& floppy = drive.m_disk;
if (floppy.m_bWriteProtected)
{
_ASSERT(0); // Must be a bug in the 6502 code for this to occur!
UpdateBitStreamPosition(floppy, bitCellRemainder);
return;
}
if (!m_writeStarted)
UpdateBitStreamPosition(floppy, bitCellRemainder); // skip over bitCells before switching to write mode
m_writeStarted = true;
#if LOG_DISK_WOZ_LOADWRITE
LOG_DISK("load shiftReg with %02X (was: %02X)\n", m_floppyLatch, m_shiftReg);
#endif
m_shiftReg = m_floppyLatch;
floppy.m_longestSyncFFBitOffsetStart = -1; // invalidate the track seam location after a write
}
void Disk2InterfaceCard::DataShiftWriteWOZ(WORD pc, WORD addr, ULONG uExecutedCycles)
{
_ASSERT(m_seqFunc.function == dataShiftWrite);
FloppyDrive& drive = m_floppyDrive[m_currDrive];
FloppyDisk& floppy = drive.m_disk;
const UINT bitCellRemainder = GetBitCellDelta(uExecutedCycles);
if (floppy.m_bWriteProtected)
{
_ASSERT(0); // Must be a bug in the 6502 code for this to occur!
UpdateBitStreamPosition(floppy, bitCellRemainder);
return;
}
if (!drive.m_spinning)
return;
if (!floppy.m_trackimagedata) // GH#1126
return;
#if LOG_DISK_WOZ_SHIFTWRITE
LOG_DISK("T$%02X, bitOffset=%04X: %02X (%d bits)\n", drive.m_phase/2, floppy.m_bitOffset, m_shiftReg, bitCellRemainder);
#endif
for (UINT i = 0; i < bitCellRemainder; i++)
{
BYTE outputBit = m_shiftReg & 0x80;
m_shiftReg <<= 1;
BYTE n = floppy.m_trackimage[floppy.m_byte];
n &= ~floppy.m_bitMask;
if (outputBit) n |= floppy.m_bitMask;
floppy.m_trackimage[floppy.m_byte] = n;
IncBitStream(floppy);
}
floppy.m_trackimagedirty = true;
}
//===========================================================================
// For now all that's needed is this basic case:
// . find [start,end] of longest run of FF/10 sync nibbles
void Disk2InterfaceCard::FindTrackSeamWOZ(FloppyDisk& floppy, float track)
{
const UINT oldBitOffset = floppy.m_bitOffset; // Save current state
BYTE shiftReg = 0;
UINT zeroCount = 0;
int startBitOffset = -1; // NB. change this to start of first FF/10
floppy.m_bitOffset = 0;
UpdateBitStreamOffsets(floppy);
int nibbleStartBitOffset = -1;
int syncFFStartBitOffset = -1;
int syncFFRunLength = 0;
int longestSyncFFStartBitOffset = -1;
int longestSyncFFRunLength = 0;
floppy.m_longestSyncFFBitOffsetStart = -1;
while (1)
{
BYTE n = floppy.m_trackimage[floppy.m_byte];
BYTE outputBit = (n & floppy.m_bitMask) ? 1 : 0;
IncBitStream(floppy);
if ((startBitOffset < 0 && floppy.m_bitOffset == 0) || (startBitOffset == floppy.m_bitOffset)) // done complete track?
break;
if (shiftReg & 0x80)
{
if (outputBit == 0) // zero, so LSS holds nibble in latch
{
zeroCount++;
continue;
}
// else: start of next nibble
if (shiftReg == 0xff && zeroCount == 2)
{
if (syncFFStartBitOffset < 0)
syncFFStartBitOffset = nibbleStartBitOffset;
syncFFRunLength++;
}
if ((shiftReg != 0xff || zeroCount != 2) && syncFFStartBitOffset >= 0)
{
// Longest FF/2 run could straddle end/start of track's bit buffer
if (startBitOffset < 0)
startBitOffset = nibbleStartBitOffset;
if (longestSyncFFRunLength < syncFFRunLength)
{
longestSyncFFStartBitOffset = syncFFStartBitOffset;
longestSyncFFRunLength = syncFFRunLength;
}
syncFFStartBitOffset = -1;
syncFFRunLength = 0;
}
shiftReg = 0;
zeroCount = 0;
}
shiftReg <<= 1;
shiftReg |= outputBit;
if (shiftReg == 0x01)
{
nibbleStartBitOffset = floppy.m_bitOffset - 1;
if (nibbleStartBitOffset < 0) nibbleStartBitOffset += floppy.m_bitCount;
}
}
if (longestSyncFFRunLength)
{
const int longestSyncFFBitOffsetEnd = (longestSyncFFStartBitOffset + longestSyncFFRunLength * 10 - 1) % floppy.m_bitCount;
#if LOG_DISK_WOZ_TRACK_SEAM
LOG_DISK("Track seam: T%05.2f: FF/10 (run=%d), start=%04X, end=%04X\n", track, longestSyncFFRunLength, longestSyncFFStartBitOffset, longestSyncFFBitOffsetEnd);
#endif
floppy.m_longestSyncFFBitOffsetStart = longestSyncFFStartBitOffset;
floppy.m_longestSyncFFRunLength = longestSyncFFRunLength;
}
else
{
#if LOG_DISK_WOZ_TRACK_SEAM
LOG_DISK("Track seam: T%05.2f: FF/10 (none)\n", track);
#endif
}
// Restore state
floppy.m_bitOffset = oldBitOffset;
UpdateBitStreamOffsets(floppy);
}
//===========================================================================
#ifdef _DEBUG
// Dump nibbles from current position bitstream wraps to same position
// NB. Need to define LOG_DISK_NIBBLES_READ so that GetReadD5AAxxDetectedString() works.
void Disk2InterfaceCard::DumpTrackWOZ(FloppyDisk floppy) // pass a copy of m_floppy
{
FormatTrack formatTrack(true);
BYTE shiftReg = 0;
UINT zeroCount = 0;
UINT nibbleCount = 0;
const UINT startBitOffset = 0; // NB. may need to tweak this offset, since the bitstream is a circular buffer
floppy.m_bitOffset = startBitOffset;
UpdateBitStreamOffsets(floppy);
int nibbleStartBitOffset = -1;
bool newLine = true;
bool doneLastBit = false;
while (1)
{
if (newLine && nibbleStartBitOffset >= 0)
{
newLine = false;
LogOutput("%04X:", nibbleStartBitOffset);
nibbleStartBitOffset = -1;
}
BYTE n = floppy.m_trackimage[floppy.m_byte];
BYTE outputBit = (n & floppy.m_bitMask) ? 1 : 0;
IncBitStream(floppy);
if (startBitOffset == floppy.m_bitOffset) // done complete track?
doneLastBit = true;
else if (doneLastBit)
break;
if (shiftReg & 0x80)
{
if (outputBit == 0) // zero, so LSS holds nibble in latch
{
zeroCount++;
continue;
}
// else: start of next nibble
nibbleCount++;
char syncBits = zeroCount <= 9 ? '0' + zeroCount : '+';
if (zeroCount == 0) LogOutput("%02X ", shiftReg);
else LogOutput("%02X(%c)", shiftReg, syncBits);
formatTrack.DecodeLatchNibbleRead(shiftReg);
if ((nibbleCount % 32) == 0)
{
std::string strReadDetected = formatTrack.GetReadD5AAxxDetectedString();
if (!strReadDetected.empty())
{
OutputDebugString("\t; ");
OutputDebugString(strReadDetected.c_str());
}
OutputDebugString("\n");
newLine = true;
}
shiftReg = 0;
zeroCount = 0;
}
shiftReg <<= 1;
shiftReg |= outputBit;
if (shiftReg == 0x01)
{
nibbleStartBitOffset = floppy.m_bitOffset - 1;
if (nibbleStartBitOffset < 0) nibbleStartBitOffset += floppy.m_bitCount;
}
}
// Output any partial nibble
if (shiftReg & 0x80)
{
LogOutput("%02X", shiftReg);
// Output any remaining zeroCount
if (zeroCount)
{
char syncBits = zeroCount <= 9 ? '0' + zeroCount : '+';
LogOutput("(%c)", syncBits);
}
}
else if (shiftReg)
{
LogOutput("%02X/Partial Nibble", shiftReg);
}
// Output any remaining "read D5AAxx detected"
if (nibbleCount % 32)
{
std::string strReadDetected = formatTrack.GetReadD5AAxxDetectedString();
if (!strReadDetected.empty())
{
OutputDebugString("\t; ");
OutputDebugString(strReadDetected.c_str());
}
OutputDebugString("\n");
}
}
#endif
//===========================================================================
void Disk2InterfaceCard::Reset(const bool bIsPowerCycle)
{
// RESET forces all switches off (UTAIIe Table 9.1)
ResetSwitches();
m_formatTrack.Reset();
ResetLogicStateSequencer();
if (bIsPowerCycle) // GH#460
{
// NB. This doesn't affect the drive head (ie. drive's track position)
// . The initial machine start-up state is track=0, but after a power-cycle the track could be any value.
// . (For DiskII firmware, this results in a subtle extra latch read in this latter case, for the track!=0 case)
m_floppyDrive[DRIVE_1].m_spinning = 0;
m_floppyDrive[DRIVE_1].m_writelight = 0;
m_floppyDrive[DRIVE_2].m_spinning = 0;
m_floppyDrive[DRIVE_2].m_writelight = 0;
GetFrame().FrameRefreshStatus(DRAW_LEDS);
}
InitFirmware(GetCxRomPeripheral());
GetFrame().FrameRefreshStatus(DRAW_TITLE);
}
void Disk2InterfaceCard::ResetSwitches(void)
{
m_currDrive = 0;
m_floppyMotorOn = 0;
m_magnetStates = 0;
m_seqFunc.function = readSequencing;
}
//===========================================================================
bool Disk2InterfaceCard::UserSelectNewDiskImage(const int drive, LPCSTR pszFilename/*=""*/)
{
if (!IsDriveConnected(drive))
{
GetFrame().FrameMessageBox("Drive not connected!", "Insert disk", MB_ICONEXCLAMATION|MB_SETFOREGROUND|MB_OK);
return false;
}
TCHAR directory[MAX_PATH];
TCHAR filename[MAX_PATH];
StringCbCopy(filename, MAX_PATH, pszFilename);
RegLoadString(TEXT(REG_PREFS), TEXT(REGVALUE_PREF_START_DIR), 1, directory, MAX_PATH, TEXT(""));
std::string title = StrFormat("Select Disk Image For Drive %d", drive + 1);
OPENFILENAME ofn;
memset(&ofn, 0, sizeof(OPENFILENAME));
ofn.lStructSize = sizeof(OPENFILENAME);
ofn.hwndOwner = GetFrame().g_hFrameWindow;
ofn.hInstance = GetFrame().g_hInstance;
ofn.lpstrFilter = TEXT("All Images\0*.bin;*.do;*.dsk;*.nib;*.po;*.gz;*.woz;*.zip;*.2mg;*.2img;*.iie;*.apl\0")
TEXT("Disk Images (*.bin,*.do,*.dsk,*.nib,*.po,*.gz,*.woz,*.zip,*.2mg,*.2img,*.iie)\0*.bin;*.do;*.dsk;*.nib;*.po;*.gz;*.woz;*.zip;*.2mg;*.2img;*.iie\0")
TEXT("All Files\0*.*\0");
ofn.lpstrFile = filename;
ofn.nMaxFile = MAX_PATH;
ofn.lpstrInitialDir = directory;
ofn.Flags = OFN_PATHMUSTEXIST;
ofn.lpstrTitle = title.c_str();
bool bRes = false;
if (GetOpenFileName(&ofn))
{
std::string openFilename = filename;
if ((!ofn.nFileExtension) || !filename[ofn.nFileExtension])
openFilename += TEXT(".dsk");
ImageError_e Error = InsertDisk(drive, openFilename, ofn.Flags & OFN_READONLY, IMAGE_CREATE);
if (Error == eIMAGE_ERROR_NONE)
{
bRes = true;
}
else
{
NotifyInvalidImage(drive, openFilename, Error);
}
}
return bRes;
}
//===========================================================================
void __stdcall Disk2InterfaceCard::LoadWriteProtect(WORD, WORD, BYTE write, BYTE value, ULONG uExecutedCycles)
{
// Don't change latch if drive off after 1 second drive-off delay (UTAIIe page 9-13)
// "DRIVES OFF forces the data register to hold its present state." (UTAIIe page 9-12)
// Note: Gemstone Warrior sets load mode with the drive off.
if (!m_floppyDrive[m_currDrive].m_spinning) // GH#599
return;
// Notes:
// . Only READ-LOAD mode ($C08E,X & $C08D,X) can issue the SR (shift write-protect) operation - UTAIIe page 9-20, fig 9.11
// . Phase 1 on also forces write protect in the Disk II drive (UTAIIe page 9-7) but we don't implement that.
// . write mode doesn't prevent reading write protect (GH#537):
// "If for some reason the above write protect check were entered with the READ/WRITE switch in WRITE,
// the write protect switch would still be read correctly" (UTAIIe page 9-21)
// . Sequencer "SR" (Shift Right) command shifts the data register right and loads QA (bit7) with write protect (UTAIIe page 9-21)
// . A read or write will shift 'write protect' in QA.
// . The LSS saturates the data register before the CPU can read an intermediate value: so set to 0xFF or 0x00 (GH#1078)
FloppyDisk& floppy = m_floppyDrive[m_currDrive].m_disk;
if (floppy.m_bWriteProtected)
m_floppyLatch = 0xFF;
else
m_floppyLatch = 0x00;
if (m_writeStarted) // Prevent ResetLogicStateSequencer() from resetting m_writeStarted
return;
if (ImageIsWOZ(floppy.m_imagehandle))
{
#if LOG_DISK_NIBBLES_READ
LOG_DISK("%08X: reset LSS: ~PC=%04X\r\n", (UINT32)g_nCumulativeCycles, regs.pc);
#endif
const UINT bitCellDelta = GetBitCellDelta(uExecutedCycles);
UpdateBitStreamPosition(floppy, bitCellDelta); // Fix E7-copy protection
ResetLogicStateSequencer(); // "Set the sequencer to State 0" (UTAIIe page 9-21)
}
}
//===========================================================================
void __stdcall Disk2InterfaceCard::SetReadMode(WORD, WORD, BYTE, BYTE, ULONG uExecutedCycles)
{
m_formatTrack.DriveSwitchedToReadMode(&m_floppyDrive[m_currDrive].m_disk);
#if LOG_DISK_RW_MODE
LOG_DISK("%08X: rw mode: read\r\n", (UINT32)g_nCumulativeCycles);
#endif
}
//===========================================================================
void __stdcall Disk2InterfaceCard::SetWriteMode(WORD, WORD, BYTE, BYTE, ULONG uExecutedCycles)
{
m_formatTrack.DriveSwitchedToWriteMode(m_floppyDrive[m_currDrive].m_disk.m_byte);
BOOL modechange = !m_floppyDrive[m_currDrive].m_writelight;
#if LOG_DISK_RW_MODE
LOG_DISK("rw mode: write (mode changed=%d)\r\n", modechange ? 1 : 0);
#endif
#if LOG_DISK_NIBBLES_WRITE
m_uWriteLastCycle = 0;
#endif
m_floppyDrive[m_currDrive].m_writelight = WRITELIGHT_CYCLES;
if (modechange)
GetFrame().FrameDrawDiskLEDS();
}
//===========================================================================
void Disk2InterfaceCard::Update(const ULONG cycles)
{
int loop = NUM_DRIVES;
while (loop--)
{
FloppyDrive* pDrive = &m_floppyDrive[loop];
if (pDrive->m_spinning && !m_floppyMotorOn)
{
if (!(pDrive->m_spinning -= MIN(pDrive->m_spinning, cycles)))
{
GetFrame().FrameDrawDiskLEDS();
GetFrame().FrameDrawDiskStatus();
}
}
if (m_seqFunc.writeMode && (m_currDrive == loop) && pDrive->m_spinning)
{
pDrive->m_writelight = WRITELIGHT_CYCLES;
}
else if (pDrive->m_writelight)
{
if (!(pDrive->m_writelight -= MIN(pDrive->m_writelight, cycles)))
{
GetFrame().FrameDrawDiskLEDS();
GetFrame().FrameDrawDiskStatus();
}
}
}
}
//===========================================================================
bool Disk2InterfaceCard::DriveSwap(void)
{
// Refuse to swap if either Disk][ is active
// TODO: if Shift-Click then FORCE drive swap to bypass message
if (m_floppyDrive[DRIVE_1].m_spinning || m_floppyDrive[DRIVE_2].m_spinning)
{
// 1.26.2.4 Prompt when trying to swap disks while drive is on instead of silently failing
int status = GetFrame().FrameMessageBox(
"WARNING:\n"
"\n"
"\tAttempting to swap a disk while a drive is on\n"
"\t\t--> is NOT recommended <--\n"
"\tas this will most likely read/write incorrect data!\n"
"\n"
"If the other drive is empty then swapping is harmless. The"
" computer will appear to 'hang' trying to read non-existent data but"
" you can safely swap disks once more to restore the original disk.\n"
"\n"
"Do you still wish to swap disks?",
"Trying to swap a disk while a drive is on ...",
MB_ICONWARNING | MB_YESNOCANCEL
);
switch( status )
{
case IDNO:
case IDCANCEL:
return false;
default:
break; // User is OK with swapping disks so let them proceed at their own risk
}
}
FlushCurrentTrack(DRIVE_1);
FlushCurrentTrack(DRIVE_2);
// Swap disks between drives
// . NB. We swap trackimage ptrs (so don't need to swap the buffers' data)
std::swap(m_floppyDrive[DRIVE_1].m_disk, m_floppyDrive[DRIVE_2].m_disk);
// Invalidate the trackimage so that a read latch will re-read the track for the new floppy (GH#543)
m_floppyDrive[DRIVE_1].m_disk.m_trackimagedata = false;
m_floppyDrive[DRIVE_2].m_disk.m_trackimagedata = false;
SaveLastDiskImage(DRIVE_1);
SaveLastDiskImage(DRIVE_2);
GetFrame().FrameRefreshStatus(DRAW_LEDS | DRAW_BUTTON_DRIVES);
return true;
}
//===========================================================================
bool Disk2InterfaceCard::GetFirmware(WORD lpNameId, BYTE* pDst)
{
BYTE* pData = GetFrame().GetResource(lpNameId, "FIRMWARE", DISK2_FW_SIZE);
if (!pData)
return false;
memcpy(pDst, pData, DISK2_FW_SIZE);
return true;
}
void Disk2InterfaceCard::InitFirmware(LPBYTE pCxRomPeripheral)
{
if (pCxRomPeripheral == NULL)
return;
ImageInfo* pImage = m_floppyDrive[DRIVE_1].m_disk.m_imagehandle;
if (m_force13SectorFirmware)
m_is13SectorFirmware = true;
else
m_is13SectorFirmware = ImageIsBootSectorFormatSector13(pImage);
if (m_is13SectorFirmware)
memcpy(pCxRomPeripheral + m_slot*APPLE_SLOT_SIZE, m_13SectorFirmware, DISK2_FW_SIZE);
else
memcpy(pCxRomPeripheral + m_slot*APPLE_SLOT_SIZE, m_16SectorFirmware, DISK2_FW_SIZE);
}
void Disk2InterfaceCard::InitializeIO(LPBYTE pCxRomPeripheral)
{
bool res = GetFirmware(IDR_DISK2_13SECTOR_FW, m_13SectorFirmware);
_ASSERT(res);
res = GetFirmware(IDR_DISK2_16SECTOR_FW, m_16SectorFirmware);
_ASSERT(res);
// Note: We used to disable the track stepping delay in the Disk II controller firmware by
// patching $C64C with $A9,$00,$EA. Now not doing this since:
// . Authentic Speed should be authentic
// . Enhanced Speed runs emulation unthrottled, so removing the delay has negligible effect
// . Patching the firmware breaks the ADC checksum used by "The CIA Files" (Tricky Dick)
// . In this case we can patch to compensate for an ADC or EOR checksum but not both (nickw)
RegisterIoHandler(m_slot, &Disk2InterfaceCard::IORead, &Disk2InterfaceCard::IOWrite, NULL, NULL, this, NULL);
InitFirmware(pCxRomPeripheral);
}
//===========================================================================
void Disk2InterfaceCard::SetSequencerFunction(WORD addr, ULONG executedCycles)
{
if ((addr & 0xf) < 0xc)
return;
const SEQFUNC oldSeqFunc = m_seqFunc.function;
switch ((addr & 3) ^ 2)
{
case 0: m_seqFunc.writeMode = 0; break; // $C08E,X (sequence addr A3 input)
case 1: m_seqFunc.writeMode = 1; break; // $C08F,X (sequence addr A3 input)
case 2: m_seqFunc.loadMode = 0; break; // $C08C,X (sequence addr A2 input)
case 3: m_seqFunc.loadMode = 1; break; // $C08D,X (sequence addr A2 input)
}
if (!m_seqFunc.writeMode)
m_writeStarted = false;
if (oldSeqFunc == checkWriteProtAndInitWrite && m_seqFunc.function != checkWriteProtAndInitWrite)
{
// Use up remaining cycles before switching out of "checkWriteProtAndInitWrite" mode
// Done when checking write-protect, but also for bit-slip (eg. E7) copy-protections
FloppyDisk& floppy = m_floppyDrive[m_currDrive].m_disk;
if (ImageIsWOZ(floppy.m_imagehandle))
{
const UINT bitCellDelta = GetBitCellDelta(executedCycles);
UpdateBitStreamPosition(floppy, bitCellDelta);
}
}
}
BYTE __stdcall Disk2InterfaceCard::IORead(WORD pc, WORD addr, BYTE bWrite, BYTE d, ULONG nExecutedCycles)
{
CpuCalcCycles(nExecutedCycles); // g_nCumulativeCycles needed by most Disk I/O functions
UINT uSlot = ((addr & 0xff) >> 4) - 8;
Disk2InterfaceCard* pCard = (Disk2InterfaceCard*) MemGetSlotParameters(uSlot);
ImageInfo* pImage = pCard->m_floppyDrive[pCard->m_currDrive].m_disk.m_imagehandle;
bool isWOZ = ImageIsWOZ(pImage);
if (isWOZ && pCard->m_seqFunc.function == dataShiftWrite) // Occurs at end of sector write ($C0EE)
pCard->DataShiftWriteWOZ(pc, addr, nExecutedCycles); // Finish any previous write
pCard->SetSequencerFunction(addr, nExecutedCycles);
switch (addr & 0xF)
{
case 0x0: pCard->ControlStepper(pc, addr, bWrite, d, nExecutedCycles); break;
case 0x1: pCard->ControlStepper(pc, addr, bWrite, d, nExecutedCycles); break;
case 0x2: pCard->ControlStepper(pc, addr, bWrite, d, nExecutedCycles); break;
case 0x3: pCard->ControlStepper(pc, addr, bWrite, d, nExecutedCycles); break;
case 0x4: pCard->ControlStepper(pc, addr, bWrite, d, nExecutedCycles); break;
case 0x5: pCard->ControlStepper(pc, addr, bWrite, d, nExecutedCycles); break;
case 0x6: pCard->ControlStepper(pc, addr, bWrite, d, nExecutedCycles); break;
case 0x7: pCard->ControlStepper(pc, addr, bWrite, d, nExecutedCycles); break;
case 0x8: pCard->ControlMotor(pc, addr, bWrite, d, nExecutedCycles); break;
case 0x9: pCard->ControlMotor(pc, addr, bWrite, d, nExecutedCycles); break;
case 0xA: isWOZ = pCard->Enable(pc, addr, bWrite, d, nExecutedCycles); break;
case 0xB: isWOZ = pCard->Enable(pc, addr, bWrite, d, nExecutedCycles); break;
case 0xC: if (!isWOZ) pCard->ReadWrite(pc, addr, bWrite, d, nExecutedCycles); break;
case 0xD: pCard->LoadWriteProtect(pc, addr, bWrite, d, nExecutedCycles); break;
case 0xE: pCard->SetReadMode(pc, addr, bWrite, d, nExecutedCycles); break;
case 0xF: pCard->SetWriteMode(pc, addr, bWrite, d, nExecutedCycles); break;
}
// only even addresses return the latch (UTAIIe Table 9.1)
if (!(addr & 1))
{
if (isWOZ && pCard->m_seqFunc.function != dataShiftWrite)
pCard->DataLatchReadWriteWOZ(pc, addr, bWrite, nExecutedCycles);
return pCard->m_floppyLatch;
}
return MemReadFloatingBus(nExecutedCycles);
}
BYTE __stdcall Disk2InterfaceCard::IOWrite(WORD pc, WORD addr, BYTE bWrite, BYTE d, ULONG nExecutedCycles)
{
CpuCalcCycles(nExecutedCycles); // g_nCumulativeCycles needed by most Disk I/O functions
UINT uSlot = ((addr & 0xff) >> 4) - 8;
Disk2InterfaceCard* pCard = (Disk2InterfaceCard*) MemGetSlotParameters(uSlot);
ImageInfo* pImage = pCard->m_floppyDrive[pCard->m_currDrive].m_disk.m_imagehandle;
bool isWOZ = ImageIsWOZ(pImage);
if (isWOZ && pCard->m_seqFunc.function == dataShiftWrite)
pCard->DataShiftWriteWOZ(pc, addr, nExecutedCycles); // Finish any previous write
pCard->SetSequencerFunction(addr, nExecutedCycles);
switch (addr & 0xF)
{
case 0x0: pCard->ControlStepper(pc, addr, bWrite, d, nExecutedCycles); break;
case 0x1: pCard->ControlStepper(pc, addr, bWrite, d, nExecutedCycles); break;
case 0x2: pCard->ControlStepper(pc, addr, bWrite, d, nExecutedCycles); break;
case 0x3: pCard->ControlStepper(pc, addr, bWrite, d, nExecutedCycles); break;
case 0x4: pCard->ControlStepper(pc, addr, bWrite, d, nExecutedCycles); break;
case 0x5: pCard->ControlStepper(pc, addr, bWrite, d, nExecutedCycles); break;
case 0x6: pCard->ControlStepper(pc, addr, bWrite, d, nExecutedCycles); break;
case 0x7: pCard->ControlStepper(pc, addr, bWrite, d, nExecutedCycles); break;
case 0x8: pCard->ControlMotor(pc, addr, bWrite, d, nExecutedCycles); break;
case 0x9: pCard->ControlMotor(pc, addr, bWrite, d, nExecutedCycles); break;
case 0xA: isWOZ = pCard->Enable(pc, addr, bWrite, d, nExecutedCycles); break;
case 0xB: isWOZ = pCard->Enable(pc, addr, bWrite, d, nExecutedCycles); break;
case 0xC: if (!isWOZ) pCard->ReadWrite(pc, addr, bWrite, d, nExecutedCycles); break;
case 0xD: pCard->LoadWriteProtect(pc, addr, bWrite, d, nExecutedCycles); break;
case 0xE: pCard->SetReadMode(pc, addr, bWrite, d, nExecutedCycles); break;
case 0xF: pCard->SetWriteMode(pc, addr, bWrite, d, nExecutedCycles); break;
}
// any address writes the latch via sequencer LD command (74LS323 datasheet)
if (pCard->m_seqFunc.function == dataLoadWrite)
{
pCard->m_floppyLatch = d;
if (isWOZ)
pCard->DataLatchReadWriteWOZ(pc, addr, bWrite, nExecutedCycles);
}
return 0;
}
//===========================================================================
// Unit version history:
// 2: Added: Format Track state & DiskLastCycle
// 3: Added: DiskLastReadLatchCycle
// 4: Added: WOZ state
// Split up 'Unit' putting some state into a new 'Floppy'
// 5: Added: Sequencer Function
// 6: Added: Drive Connected & Motor On Cycle
// 7: Deprecated SS_YAML_KEY_LSS_RESET_SEQUENCER, SS_YAML_KEY_DISK_ACCESSED
// 8: Added: deferred stepper: event, address & cycle
static const UINT kUNIT_VERSION = 8;
#define SS_YAML_VALUE_CARD_DISK2 "Disk]["
#define SS_YAML_KEY_PHASES "Phases"
#define SS_YAML_KEY_CURRENT_DRIVE "Current Drive"
#define SS_YAML_KEY_DISK_ACCESSED "Disk Accessed" // deprecated at v7
#define SS_YAML_KEY_ENHANCE_DISK "Enhance Disk"
#define SS_YAML_KEY_FLOPPY_LATCH "Floppy Latch"
#define SS_YAML_KEY_FLOPPY_MOTOR_ON "Floppy Motor On"
#define SS_YAML_KEY_FLOPPY_WRITE_MODE "Floppy Write Mode" // deprecated at v5
#define SS_YAML_KEY_LAST_CYCLE "Last Cycle"
#define SS_YAML_KEY_LAST_READ_LATCH_CYCLE "Last Read Latch Cycle"
#define SS_YAML_KEY_LSS_SHIFT_REG "LSS Shift Reg"
#define SS_YAML_KEY_LSS_LATCH_DELAY "LSS Latch Delay"
#define SS_YAML_KEY_LSS_RESET_SEQUENCER "LSS Reset Sequencer" // deprecated at v7
#define SS_YAML_KEY_LSS_SEQUENCER_FUNCTION "LSS Sequencer Function"
#define SS_YAML_KEY_DEFERRED_STEPPER_EVENT "Deferred Stepper Event"
#define SS_YAML_KEY_DEFERRED_STEPPER_ADDRESS "Deferred Stepper Address"
#define SS_YAML_KEY_DEFERRED_STEPPER_CYCLE "Deferred Stepper Cycle"
#define SS_YAML_KEY_DISK2UNIT "Unit"
#define SS_YAML_KEY_DRIVE_CONNECTED "Drive Connected"
#define SS_YAML_KEY_PHASE "Phase"
#define SS_YAML_KEY_PHASE_PRECISE "Phase (precise)"
#define SS_YAML_KEY_TRACK "Track" // deprecated at v4
#define SS_YAML_KEY_HEAD_WINDOW "Head Window"
#define SS_YAML_KEY_LAST_STEPPER_CYCLE "Last Stepper Cycle"
#define SS_YAML_KEY_MOTOR_ON_CYCLE "Motor On Cycle"
#define SS_YAML_KEY_FLOPPY "Floppy"
#define SS_YAML_KEY_FILENAME "Filename"
#define SS_YAML_KEY_BYTE "Byte"
#define SS_YAML_KEY_NIBBLES "Nibbles"
#define SS_YAML_KEY_BIT_OFFSET "Bit Offset"
#define SS_YAML_KEY_BIT_COUNT "Bit Count"
#define SS_YAML_KEY_EXTRA_CYCLES "Extra Cycles"
#define SS_YAML_KEY_WRITE_PROTECTED "Write Protected"
#define SS_YAML_KEY_SPINNING "Spinning"
#define SS_YAML_KEY_WRITE_LIGHT "Write Light"
#define SS_YAML_KEY_TRACK_IMAGE_DATA "Track Image Data"
#define SS_YAML_KEY_TRACK_IMAGE_DIRTY "Track Image Dirty"
#define SS_YAML_KEY_TRACK_IMAGE "Track Image"
const std::string& Disk2InterfaceCard::GetSnapshotCardName(void)
{
static const std::string name(SS_YAML_VALUE_CARD_DISK2);
return name;
}
void Disk2InterfaceCard::SaveSnapshotFloppy(YamlSaveHelper& yamlSaveHelper, UINT unit)
{
YamlSaveHelper::Label label(yamlSaveHelper, "%s:\n", SS_YAML_KEY_FLOPPY);
yamlSaveHelper.SaveString(SS_YAML_KEY_FILENAME, m_floppyDrive[unit].m_disk.m_fullname);
yamlSaveHelper.SaveHexUint16(SS_YAML_KEY_BYTE, m_floppyDrive[unit].m_disk.m_byte);
yamlSaveHelper.SaveHexUint16(SS_YAML_KEY_NIBBLES, m_floppyDrive[unit].m_disk.m_nibbles);
yamlSaveHelper.SaveHexUint32(SS_YAML_KEY_BIT_OFFSET, m_floppyDrive[unit].m_disk.m_bitOffset); // v4
yamlSaveHelper.SaveHexUint32(SS_YAML_KEY_BIT_COUNT, m_floppyDrive[unit].m_disk.m_bitCount); // v4
yamlSaveHelper.SaveDouble(SS_YAML_KEY_EXTRA_CYCLES, m_floppyDrive[unit].m_disk.m_extraCycles); // v4
yamlSaveHelper.SaveBool(SS_YAML_KEY_WRITE_PROTECTED, m_floppyDrive[unit].m_disk.m_bWriteProtected);
yamlSaveHelper.SaveUint(SS_YAML_KEY_TRACK_IMAGE_DATA, m_floppyDrive[unit].m_disk.m_trackimagedata);
yamlSaveHelper.SaveUint(SS_YAML_KEY_TRACK_IMAGE_DIRTY, m_floppyDrive[unit].m_disk.m_trackimagedirty);
if (m_floppyDrive[unit].m_disk.m_trackimage)
{
YamlSaveHelper::Label image(yamlSaveHelper, "%s:\n", SS_YAML_KEY_TRACK_IMAGE);
yamlSaveHelper.SaveMemory(m_floppyDrive[unit].m_disk.m_trackimage, ImageGetMaxNibblesPerTrack(m_floppyDrive[unit].m_disk.m_imagehandle));
}
}
void Disk2InterfaceCard::SaveSnapshotDriveUnit(YamlSaveHelper& yamlSaveHelper, UINT unit)
{
YamlSaveHelper::Label label(yamlSaveHelper, "%s%d:\n", SS_YAML_KEY_DISK2UNIT, unit);
yamlSaveHelper.SaveBool(SS_YAML_KEY_DRIVE_CONNECTED, m_floppyDrive[unit].m_isConnected);
yamlSaveHelper.SaveUint(SS_YAML_KEY_PHASE, m_floppyDrive[unit].m_phase);
yamlSaveHelper.SaveFloat(SS_YAML_KEY_PHASE_PRECISE, m_floppyDrive[unit].m_phasePrecise); // v4
yamlSaveHelper.SaveHexUint4(SS_YAML_KEY_HEAD_WINDOW, m_floppyDrive[unit].m_headWindow); // v4
yamlSaveHelper.SaveHexUint64(SS_YAML_KEY_LAST_STEPPER_CYCLE, m_floppyDrive[unit].m_lastStepperCycle); // v4
yamlSaveHelper.SaveHexUint64(SS_YAML_KEY_MOTOR_ON_CYCLE, m_floppyDrive[unit].m_motorOnCycle); // v6
yamlSaveHelper.SaveUint(SS_YAML_KEY_SPINNING, m_floppyDrive[unit].m_spinning);
yamlSaveHelper.SaveUint(SS_YAML_KEY_WRITE_LIGHT, m_floppyDrive[unit].m_writelight);
SaveSnapshotFloppy(yamlSaveHelper, unit);
}
void Disk2InterfaceCard::SaveSnapshot(YamlSaveHelper& yamlSaveHelper)
{
YamlSaveHelper::Slot slot(yamlSaveHelper, GetSnapshotCardName(), m_slot, kUNIT_VERSION);
YamlSaveHelper::Label state(yamlSaveHelper, "%s:\n", SS_YAML_KEY_STATE);
yamlSaveHelper.SaveUint(SS_YAML_KEY_CURRENT_DRIVE, m_currDrive);
yamlSaveHelper.SaveHexUint4(SS_YAML_KEY_PHASES, m_magnetStates);
yamlSaveHelper.SaveBool(SS_YAML_KEY_ENHANCE_DISK, m_enhanceDisk);
yamlSaveHelper.SaveHexUint8(SS_YAML_KEY_FLOPPY_LATCH, m_floppyLatch);
yamlSaveHelper.SaveBool(SS_YAML_KEY_FLOPPY_MOTOR_ON, m_floppyMotorOn == TRUE);
yamlSaveHelper.SaveHexUint64(SS_YAML_KEY_LAST_CYCLE, m_diskLastCycle); // v2
yamlSaveHelper.SaveHexUint64(SS_YAML_KEY_LAST_READ_LATCH_CYCLE, m_diskLastReadLatchCycle); // v3
yamlSaveHelper.SaveHexUint8(SS_YAML_KEY_LSS_SHIFT_REG, m_shiftReg); // v4
yamlSaveHelper.SaveInt(SS_YAML_KEY_LSS_LATCH_DELAY, m_latchDelay); // v4
yamlSaveHelper.SaveInt(SS_YAML_KEY_LSS_SEQUENCER_FUNCTION, m_seqFunc.function); // v5
yamlSaveHelper.SaveBool(SS_YAML_KEY_DEFERRED_STEPPER_EVENT, m_deferredStepperEvent); // v8
yamlSaveHelper.SaveHexUint16(SS_YAML_KEY_DEFERRED_STEPPER_ADDRESS, m_deferredStepperAddress); // v8
yamlSaveHelper.SaveHexUint64(SS_YAML_KEY_DEFERRED_STEPPER_CYCLE, m_deferredStepperCumulativeCycles); // v8
m_formatTrack.SaveSnapshot(yamlSaveHelper); // v2
SaveSnapshotDriveUnit(yamlSaveHelper, DRIVE_1);
SaveSnapshotDriveUnit(yamlSaveHelper, DRIVE_2);
}
bool Disk2InterfaceCard::LoadSnapshotFloppy(YamlLoadHelper& yamlLoadHelper, UINT unit, UINT version, std::vector<BYTE>& track)
{
std::string filename = yamlLoadHelper.LoadString(SS_YAML_KEY_FILENAME);
bool bImageError = filename.empty();
if (!bImageError)
{
DWORD dwAttributes = GetFileAttributes(filename.c_str());
if (dwAttributes == INVALID_FILE_ATTRIBUTES)
{
// Get user to browse for file
UserSelectNewDiskImage(unit, filename.c_str());
dwAttributes = GetFileAttributes(filename.c_str());
}
bImageError = (dwAttributes == INVALID_FILE_ATTRIBUTES);
if (!bImageError)
{
if (InsertDisk(unit, filename, dwAttributes & FILE_ATTRIBUTE_READONLY, IMAGE_DONT_CREATE) != eIMAGE_ERROR_NONE)
bImageError = true;
// InsertDisk() zeros m_floppyDrive[unit], then sets up:
// . m_imagename
// . m_fullname
// . m_bWriteProtected
}
}
yamlLoadHelper.LoadBool(SS_YAML_KEY_WRITE_PROTECTED); // Consume
m_floppyDrive[unit].m_disk.m_byte = yamlLoadHelper.LoadUint(SS_YAML_KEY_BYTE);
m_floppyDrive[unit].m_disk.m_nibbles = yamlLoadHelper.LoadUint(SS_YAML_KEY_NIBBLES);
m_floppyDrive[unit].m_disk.m_trackimagedata = yamlLoadHelper.LoadUint(SS_YAML_KEY_TRACK_IMAGE_DATA) ? true : false;
m_floppyDrive[unit].m_disk.m_trackimagedirty = yamlLoadHelper.LoadUint(SS_YAML_KEY_TRACK_IMAGE_DIRTY) ? true : false;
if (version >= 4)
{
m_floppyDrive[unit].m_disk.m_bitOffset = yamlLoadHelper.LoadUint(SS_YAML_KEY_BIT_OFFSET);
m_floppyDrive[unit].m_disk.m_bitCount = yamlLoadHelper.LoadUint(SS_YAML_KEY_BIT_COUNT);
m_floppyDrive[unit].m_disk.m_extraCycles = yamlLoadHelper.LoadDouble(SS_YAML_KEY_EXTRA_CYCLES);
if (m_floppyDrive[unit].m_disk.m_bitCount && (m_floppyDrive[unit].m_disk.m_bitOffset >= m_floppyDrive[unit].m_disk.m_bitCount))
throw std::runtime_error("Disk image: bitOffset >= bitCount");
if (ImageIsWOZ(m_floppyDrive[unit].m_disk.m_imagehandle))
UpdateBitStreamOffsets(m_floppyDrive[unit].m_disk); // overwrites m_byte, inits m_bitMask
}
if (yamlLoadHelper.GetSubMap(SS_YAML_KEY_TRACK_IMAGE))
{
yamlLoadHelper.LoadMemory(track, ImageGetMaxNibblesPerTrack(m_floppyDrive[unit].m_disk.m_imagehandle));
yamlLoadHelper.PopMap();
}
return bImageError;
}
bool Disk2InterfaceCard::LoadSnapshotDriveUnitv3(YamlLoadHelper& yamlLoadHelper, UINT unit, UINT version, std::vector<BYTE>& track)
{
_ASSERT(version <= 3);
std::string disk2UnitName = std::string(SS_YAML_KEY_DISK2UNIT) + (unit == DRIVE_1 ? std::string("0") : std::string("1"));
if (!yamlLoadHelper.GetSubMap(disk2UnitName))
throw std::runtime_error("Card: Expected key: " + disk2UnitName);
bool bImageError = LoadSnapshotFloppy(yamlLoadHelper, unit, version, track);
yamlLoadHelper.LoadUint(SS_YAML_KEY_TRACK); // consume
m_floppyDrive[unit].m_phase = yamlLoadHelper.LoadUint(SS_YAML_KEY_PHASE);
m_floppyDrive[unit].m_phasePrecise = (float) m_floppyDrive[unit].m_phase;
m_floppyDrive[unit].m_spinning = yamlLoadHelper.LoadUint(SS_YAML_KEY_SPINNING);
m_floppyDrive[unit].m_writelight = yamlLoadHelper.LoadUint(SS_YAML_KEY_WRITE_LIGHT);
yamlLoadHelper.PopMap();
return bImageError;
}
bool Disk2InterfaceCard::LoadSnapshotDriveUnitv4(YamlLoadHelper& yamlLoadHelper, UINT unit, UINT version, std::vector<BYTE>& track)
{
_ASSERT(version >= 4);
std::string disk2UnitName = std::string(SS_YAML_KEY_DISK2UNIT) + (unit == DRIVE_1 ? std::string("0") : std::string("1"));
if (!yamlLoadHelper.GetSubMap(disk2UnitName))
throw std::runtime_error("Card: Expected key: " + disk2UnitName);
if (!yamlLoadHelper.GetSubMap(SS_YAML_KEY_FLOPPY))
throw std::runtime_error("Card: Expected key: " SS_YAML_KEY_FLOPPY);
bool bImageError = LoadSnapshotFloppy(yamlLoadHelper, unit, version, track);
yamlLoadHelper.PopMap();
//
m_floppyDrive[unit].m_phase = yamlLoadHelper.LoadUint(SS_YAML_KEY_PHASE);
m_floppyDrive[unit].m_phasePrecise = yamlLoadHelper.LoadFloat(SS_YAML_KEY_PHASE_PRECISE);
m_floppyDrive[unit].m_headWindow = yamlLoadHelper.LoadUint(SS_YAML_KEY_HEAD_WINDOW) & 0xf;
m_floppyDrive[unit].m_lastStepperCycle = yamlLoadHelper.LoadUint64(SS_YAML_KEY_LAST_STEPPER_CYCLE);
m_floppyDrive[unit].m_spinning = yamlLoadHelper.LoadUint(SS_YAML_KEY_SPINNING);
m_floppyDrive[unit].m_writelight = yamlLoadHelper.LoadUint(SS_YAML_KEY_WRITE_LIGHT);
if (version >= 6)
{
m_floppyDrive[unit].m_isConnected = yamlLoadHelper.LoadBool(SS_YAML_KEY_DRIVE_CONNECTED);
m_floppyDrive[unit].m_motorOnCycle = yamlLoadHelper.LoadUint64(SS_YAML_KEY_MOTOR_ON_CYCLE);
}
yamlLoadHelper.PopMap();
return bImageError;
}
void Disk2InterfaceCard::LoadSnapshotDriveUnit(YamlLoadHelper& yamlLoadHelper, UINT unit, UINT version)
{
bool bImageError = false;
std::vector<BYTE> track(NIBBLES_PER_TRACK); // Default size - may expand vector after loading disk image (eg. WOZ Info.largestTrack)
if (version <= 3)
bImageError = LoadSnapshotDriveUnitv3(yamlLoadHelper, unit, version, track);
else
bImageError = LoadSnapshotDriveUnitv4(yamlLoadHelper, unit, version, track);
if (!bImageError)
{
if ((m_floppyDrive[unit].m_disk.m_trackimage == NULL) && m_floppyDrive[unit].m_disk.m_nibbles)
AllocTrack(unit, track.size());
if (m_floppyDrive[unit].m_disk.m_trackimage == NULL)
bImageError = true;
else
memcpy(m_floppyDrive[unit].m_disk.m_trackimage, &track[0], track.size());
}
if (bImageError)
{
m_floppyDrive[unit].m_disk.m_trackimagedata = false;
m_floppyDrive[unit].m_disk.m_trackimagedirty = false;
m_floppyDrive[unit].m_disk.m_nibbles = 0;
}
}
bool Disk2InterfaceCard::LoadSnapshot(YamlLoadHelper& yamlLoadHelper, UINT version)
{
if (version < 1 || version > kUNIT_VERSION)
ThrowErrorInvalidVersion(version);
m_currDrive = yamlLoadHelper.LoadUint(SS_YAML_KEY_CURRENT_DRIVE);
m_magnetStates = yamlLoadHelper.LoadUint(SS_YAML_KEY_PHASES);
m_enhanceDisk = yamlLoadHelper.LoadBool(SS_YAML_KEY_ENHANCE_DISK);
m_floppyLatch = yamlLoadHelper.LoadUint(SS_YAML_KEY_FLOPPY_LATCH);
m_floppyMotorOn = yamlLoadHelper.LoadBool(SS_YAML_KEY_FLOPPY_MOTOR_ON);
if (version >= 2)
{
m_diskLastCycle = yamlLoadHelper.LoadUint64(SS_YAML_KEY_LAST_CYCLE);
m_formatTrack.LoadSnapshot(yamlLoadHelper);
}
if (version >= 3)
{
m_diskLastReadLatchCycle = yamlLoadHelper.LoadUint64(SS_YAML_KEY_LAST_READ_LATCH_CYCLE);
}
if (version >= 4)
{
m_shiftReg = yamlLoadHelper.LoadUint(SS_YAML_KEY_LSS_SHIFT_REG) & 0xff;
m_latchDelay = yamlLoadHelper.LoadInt(SS_YAML_KEY_LSS_LATCH_DELAY);
}
if (version >= 4 && version <= 6)
{
(void) yamlLoadHelper.LoadBool(SS_YAML_KEY_LSS_RESET_SEQUENCER); // deprecated
}
if (version >= 5)
{
m_seqFunc.function = (SEQFUNC) yamlLoadHelper.LoadInt(SS_YAML_KEY_LSS_SEQUENCER_FUNCTION);
}
else
{
m_seqFunc.writeMode = yamlLoadHelper.LoadBool(SS_YAML_KEY_FLOPPY_WRITE_MODE) ? 1 : 0;
m_seqFunc.loadMode = 0; // Wasn't saved until v5
}
if (version <= 6)
{
(void) yamlLoadHelper.LoadBool(SS_YAML_KEY_DISK_ACCESSED); // deprecated - but retrieve the value to avoid the "State: Unknown key (Disk Accessed)" warning
}
if (version >= 8)
{
m_deferredStepperEvent = yamlLoadHelper.LoadBool(SS_YAML_KEY_DEFERRED_STEPPER_EVENT);
m_deferredStepperAddress = yamlLoadHelper.LoadUint(SS_YAML_KEY_DEFERRED_STEPPER_ADDRESS);
m_deferredStepperCumulativeCycles = yamlLoadHelper.LoadUint64(SS_YAML_KEY_DEFERRED_STEPPER_CYCLE);
}
// Eject all disks first in case Drive-2 contains disk to be inserted into Drive-1
for (UINT i=0; i<NUM_DRIVES; i++)
{
EjectDisk(i); // Remove any disk & update Registry to reflect empty drive
m_floppyDrive[i].clear();
}
LoadSnapshotDriveUnit(yamlLoadHelper, DRIVE_1, version);
LoadSnapshotDriveUnit(yamlLoadHelper, DRIVE_2, version);
GetFrame().FrameRefreshStatus(DRAW_LEDS | DRAW_BUTTON_DRIVES | DRAW_DISK_STATUS);
if (m_deferredStepperEvent)
InsertSyncEvent();
return true;
}