AppleWin/source/SSI263.cpp
Kelvin Lee 2d4f60452f
Add ByteToHexStr() and WordToHexStr() (PR #1064)
- Simplify common StrFormat(), especially in Debugger (changes upcoming)
- Add helpers StrAppendByteAsHex() and StrAppendWordAsHex()
- Add helpers StrBufferAppendByteAsHex() and StrBufferAppendWordAsHex() for plain string buffer
2022-03-22 19:19:50 +00:00

897 lines
28 KiB
C++

/*
AppleWin : An Apple //e emulator for Windows
Copyright (C) 1994-1996, Michael O'Brien
Copyright (C) 1999-2001, Oliver Schmidt
Copyright (C) 2002-2005, Tom Charlesworth
Copyright (C) 2006-2021, Tom Charlesworth, Michael Pohoreski, Nick Westgate
AppleWin is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
AppleWin is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with AppleWin; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
/* Description: SSI263 emulation
*
* Author: Various
*/
#include "StdAfx.h"
#include "6522.h"
#include "Core.h"
#include "CPU.h"
#include "Log.h"
#include "Memory.h"
#include "SoundCore.h"
#include "SSI263.h"
#include "SSI263Phonemes.h"
#include "YamlHelper.h"
#define LOG_SSI263 0
#define LOG_SSI263B 0 // Alternate SSI263 logging (use in conjunction with CPU.cpp's LOG_IRQ_TAKEN_AND_RTI)
#define LOG_SC01 0
// SSI263A registers:
#define SSI_DURPHON 0x00
#define SSI_INFLECT 0x01
#define SSI_RATEINF 0x02
#define SSI_CTTRAMP 0x03
#define SSI_FILFREQ 0x04
const DWORD SAMPLE_RATE_SSI263 = 22050;
// Duration/Phonome
const BYTE DURATION_MODE_MASK = 0xC0;
const BYTE DURATION_SHIFT = 6;
const BYTE PHONEME_MASK = 0x3F;
const BYTE MODE_PHONEME_TRANSITIONED_INFLECTION = 0xC0; // IRQ active
const BYTE MODE_PHONEME_IMMEDIATE_INFLECTION = 0x80; // IRQ active
const BYTE MODE_FRAME_IMMEDIATE_INFLECTION = 0x40; // IRQ active
const BYTE MODE_IRQ_DISABLED = 0x00;
// Rate/Inflection
const BYTE RATE_MASK = 0xF0;
const BYTE INFLECTION_MASK_H = 0x08; // I11
const BYTE INFLECTION_MASK_L = 0x07; // I2..I0
// Ctrl/Art/Amp
const BYTE CONTROL_MASK = 0x80;
const BYTE ARTICULATION_MASK = 0x70;
const BYTE AMPLITUDE_MASK = 0x0F;
//-----------------------------------------------------------------------------
#if LOG_SSI263B
static int ssiRegs[5]={-1,-1,-1,-1,-1};
static int totalDuration_ms = 0;
void SSI_Output(void)
{
int ssi0 = ssiRegs[SSI_DURPHON];
int ssi2 = ssiRegs[SSI_RATEINF];
LogOutput("SSI: ");
for (int i = 0; i <= 4; i++)
{
std::string r = (ssiRegs[i] >= 0) ? ByteToHexStr(ssiRegs[i]) : "--";
LogOutput("%s ", r.c_str());
ssiRegs[i] = -1;
}
if (ssi0 != -1 && ssi2 != -1)
{
int phonemeDuration_ms = (((16-(ssi2>>4))*4096)/1023) * (4-(ssi0>>6));
totalDuration_ms += phonemeDuration_ms;
LogOutput("/ duration = %d (total = %d) ms", phonemeDuration_ms, totalDuration_ms);
}
LogOutput("\n");
}
#endif
//-----------------------------------------------------------------------------
BYTE SSI263::Read(ULONG nExecutedCycles)
{
// Regardless of register, just return inverted A/!R in bit7
// . inverted "A/!R" is high for REQ (ie. Request, as phoneme nearly complete)
return MemReadFloatingBus(m_currentMode & 1, nExecutedCycles);
}
void SSI263::Write(BYTE nReg, BYTE nValue)
{
#if LOG_SSI263B
_ASSERT(nReg < 5);
if (nReg>4) nReg=4;
if (ssiRegs[nReg]>=0) SSI_Output(); // overwriting a reg
ssiRegs[nReg] = nValue;
#endif
switch(nReg)
{
case SSI_DURPHON:
#if LOG_SSI263
if(g_fh) fprintf(g_fh, "DUR = 0x%02X, PHON = 0x%02X\n\n", nValue>>6, nValue&PHONEME_MASK);
LogOutput("DUR = %d, PHON = 0x%02X\n", nValue>>6, nValue&PHONEME_MASK);
#endif
#if LOG_SSI263B
SSI_Output();
#endif
// Notes:
// . Phasor's text-to-speech playback has no CTL H->L
// - ISR just writes CTL=0 (and new ART+AMP values), and writes DUR=x (and new PHON)
// - since no CTL H->L, then DUR value doesn't take affect (so continue using previous)
// - so the write to DURPHON must clear the IRQ
// . Does a write of CTL=0 clear IRQ? (ie. CTL 0->0)
// . Does a write of CTL=1 clear IRQ? (ie. CTL 0->1)
// - SSI263 datasheet says: "Setting the Control bit (CTL) to a logic one puts the device into Power Down mode..."
// . Does phoneme output only happen when CTL=0? (Otherwise device is in PD mode)
// SSI263 datasheet is not clear, but a write to DURPHON must clear the IRQ.
// NB. For Mockingboard, A/!R is ack'ed by 6522's PCR handshake.
if (m_cardMode == PH_Phasor)
{
CpuIrqDeassert(IS_SPEECH);
}
m_currentMode &= ~1; // Clear SSI263's D7 pin
m_durationPhoneme = nValue;
Play(nValue & PHONEME_MASK);
break;
case SSI_INFLECT:
#if LOG_SSI263
if(g_fh) fprintf(g_fh, "INF = 0x%02X\n", nValue);
#endif
m_inflection = nValue;
break;
case SSI_RATEINF:
#if LOG_SSI263
if(g_fh) fprintf(g_fh, "RATE = 0x%02X, INF = 0x%02X\n", nValue>>4, nValue&0x0F);
#endif
m_rateInflection = nValue;
break;
case SSI_CTTRAMP:
#if LOG_SSI263
if(g_fh) fprintf(g_fh, "CTRL = %d, ART = 0x%02X, AMP=0x%02X\n", nValue>>7, (nValue&ARTICULATION_MASK)>>4, nValue&AMPLITUDE_MASK);
//
{
bool H2L = (m_ctrlArtAmp & CONTROL_MASK) && !(nValue & CONTROL_MASK);
std::string newMode = StrFormat(" (new mode=%d)", m_durationPhoneme>>6);
LogOutput("CTRL = %d->%d, ART = 0x%02X, AMP=0x%02X%s\n", m_ctrlArtAmp>>7, nValue>>7, (nValue&ARTICULATION_MASK)>>4, nValue&AMPLITUDE_MASK, H2L?newMode.c_str() : "");
}
#endif
#if LOG_SSI263B
if ( ((m_ctrlArtAmp & CONTROL_MASK) && !(nValue & CONTROL_MASK)) || ((nValue&0xF) == 0x0) ) // H->L or amp=0
SSI_Output();
#endif
if((m_ctrlArtAmp & CONTROL_MASK) && !(nValue & CONTROL_MASK)) // H->L
{
m_currentMode = m_durationPhoneme & DURATION_MODE_MASK;
if (m_currentMode == MODE_IRQ_DISABLED)
{
// "Disables A/!R output only; does not change previous A/!R response" (SSI263 datasheet)
// CpuIrqDeassert(IS_SPEECH);
}
}
m_ctrlArtAmp = nValue;
// "Setting the Control bit (CTL) to a logic one puts the device into Power Down mode..." (SSI263 datasheet)
if (m_ctrlArtAmp & CONTROL_MASK)
{
// CpuIrqDeassert(IS_SPEECH);
// m_currentMode &= ~1; // Clear SSI263's D7 pin
}
break;
case SSI_FILFREQ: // RegAddr.b2=1 (b1 & b0 are: don't care)
default:
#if LOG_SSI263
if(g_fh) fprintf(g_fh, "FFREQ = 0x%02X\n", nValue);
#endif
m_filterFreq = nValue;
break;
}
}
//-----------------------------------------------------------------------------
const BYTE SSI263::m_Votrax2SSI263[/*64*/] =
{
0x02, // 00: EH3 jackEt -> E1 bEnt
0x0A, // 01: EH2 Enlist -> EH nEst
0x0B, // 02: EH1 hEAvy -> EH1 bElt
0x00, // 03: PA0 no sound -> PA
0x28, // 04: DT buTTer -> T Tart
0x08, // 05: A2 mAde -> A mAde
0x08, // 06: A1 mAde -> A mAde
0x2F, // 07: ZH aZure -> Z Zero
0x0E, // 08: AH2 hOnest -> AH gOt
0x07, // 09: I3 inhibIt -> I sIx
0x07, // 0A: I2 Inhibit -> I sIx
0x07, // 0B: I1 inhIbit -> I sIx
0x37, // 0C: M Mat -> More
0x38, // 0D: N suN -> N NiNe
0x24, // 0E: B Bag -> B Bag
0x33, // 0F: V Van -> V Very
//
0x32, // 10: CH* CHip -> SCH SHip (!)
0x32, // 11: SH SHop -> SCH SHip
0x2F, // 12: Z Zoo -> Z Zero
0x10, // 13: AW1 lAWful -> AW Office
0x39, // 14: NG thiNG -> NG raNG
0x0F, // 15: AH1 fAther -> AH1 fAther
0x13, // 16: OO1 lOOking -> OO lOOk
0x13, // 17: OO bOOK -> OO lOOk
0x20, // 18: L Land -> L Lift
0x29, // 19: K triCK -> Kit
0x25, // 1A: J* juDGe -> D paiD (!)
0x2C, // 1B: H Hello -> HF Heart
0x26, // 1C: G Get -> KV taG
0x34, // 1D: F Fast -> F Four
0x25, // 1E: D paiD -> D paiD
0x30, // 1F: S paSS -> S Same
//
0x08, // 20: A dAY -> A mAde
0x09, // 21: AY dAY -> AI cAre
0x03, // 22: Y1 Yard -> YI Year
0x1B, // 23: UH3 missIOn -> UH3 nUt
0x0E, // 24: AH mOp -> AH gOt
0x27, // 25: P Past -> P Pen
0x11, // 26: O cOld -> O stOre
0x07, // 27: I pIn -> I sIx
0x16, // 28: U mOve -> U tUne
0x05, // 29: Y anY -> AY plEAse
0x28, // 2A: T Tap -> T Tart
0x1D, // 2B: R Red -> R Roof
0x01, // 2C: E mEEt -> E mEEt
0x23, // 2D: W Win -> W Water
0x0C, // 2E: AE dAd -> AE dAd
0x0D, // 2F: AE1 After -> AE1 After
//
0x10, // 30: AW2 sAlty -> AW Office
0x1A, // 31: UH2 About -> UH2 whAt
0x19, // 32: UH1 Uncle -> UH1 lOve
0x18, // 33: UH cUp -> UH wOnder
0x11, // 34: O2 fOr -> O stOre
0x11, // 35: O1 abOArd -> O stOre
0x14, // 36: IU yOU -> IU yOU
0x14, // 37: U1 yOU -> IU yOU
0x35, // 38: THV THe -> THV THere
0x36, // 39: TH THin -> TH wiTH
0x1C, // 3A: ER bIrd -> ER bIrd
0x0A, // 3B: EH gEt -> EH nEst
0x01, // 3C: E1 bE -> E mEEt
0x10, // 3D: AW cAll -> AW Office
0x00, // 3E: PA1 no sound -> PA
0x00, // 3F: STOP no sound -> PA
};
void SSI263::Votrax_Write(BYTE value)
{
#if LOG_SC01
LogOutput("SC01: %02X (= SSI263: %02X)\n", value, m_Votrax2SSI263[value & PHONEME_MASK]);
#endif
m_isVotraxPhoneme = true;
// !A/R: Acknowledge receipt of phoneme data (signal goes from high to low)
MB_UpdateIFR(m_device, SY6522::IxR_VOTRAX, 0);
// NB. Don't set reg0.DUR, as SC01's phoneme duration doesn't change with pitch (empirically determined from MAME's SC01 emulation)
//m_durationPhoneme = value; // Set reg0.DUR = I1:0 (inflection or pitch)
m_durationPhoneme = 0;
Play(m_Votrax2SSI263[value & PHONEME_MASK]);
}
//-----------------------------------------------------------------------------
void SSI263::Play(unsigned int nPhoneme)
{
if (!SSI263SingleVoice.bActive)
{
bool bRes = DSZeroVoiceBuffer(&SSI263SingleVoice, m_kDSBufferByteSize);
LogFileOutput("SSI263::Play: DSZeroVoiceBuffer(), res=%d\n", bRes ? 1 : 0);
if (!bRes)
return;
}
if (m_dbgFirst)
{
m_dbgStartTime = g_nCumulativeCycles;
#if LOG_SSI263 || LOG_SSI263B || LOG_SC01
LogOutput("1st phoneme = 0x%02X\n", nPhoneme);
#endif
}
#if LOG_SSI263 || LOG_SSI263B || LOG_SC01
if (m_currentActivePhoneme != -1)
LogOutput("Overlapping phonemes: current=%02X, next=%02X\n", m_currentActivePhoneme&0xff, nPhoneme&0xff);
#endif
m_currentActivePhoneme = nPhoneme;
bool bPause = false;
if (nPhoneme == 1)
nPhoneme = 2; // Missing this sample, so map to phoneme-2
if (nPhoneme == 0)
bPause = true;
else
nPhoneme-=2; // Missing phoneme-1
m_phonemeLengthRemaining = g_nPhonemeInfo[nPhoneme].nLength;
m_phonemeAccurateLengthRemaining = m_phonemeLengthRemaining;
m_phonemePlaybackAndDebugger = (g_nAppMode == MODE_STEPPING || g_nAppMode == MODE_DEBUG);
m_phonemeCompleteByFullSpeed = false;
if (bPause)
{
if (!m_pPhonemeData00)
{
// 'pause' length is length of 1st phoneme (arbitrary choice, since don't know real length)
m_pPhonemeData00 = new short [m_phonemeLengthRemaining];
memset(m_pPhonemeData00, 0x00, m_phonemeLengthRemaining*sizeof(short));
}
m_pPhonemeData = m_pPhonemeData00;
}
else
{
m_pPhonemeData = (const short*) &g_nPhonemeData[g_nPhonemeInfo[nPhoneme].nOffset];
}
m_currSampleSum = 0;
m_currNumSamples = 0;
m_currSampleMod4 = 0;
}
void SSI263::Stop(void)
{
if (SSI263SingleVoice.lpDSBvoice && SSI263SingleVoice.bActive)
DSVoiceStop(&SSI263SingleVoice);
}
//-----------------------------------------------------------------------------
//#define DBG_SSI263_UPDATE // NB. This outputs for all active SSI263 ring-buffers (eg. for mb-audit this may be 2 or 4)
// Called by:
// . PeriodicUpdate()
void SSI263::Update(void)
{
UpdateAccurateLength();
if (!SSI263SingleVoice.bActive)
return;
if (g_bFullSpeed) // ie. only true when IsPhonemeActive() is true
{
if (m_phonemeLengthRemaining)
{
// Willy Byte does SSI263 detection with drive motor on
m_phonemeLengthRemaining = 0;
#if LOG_SSI263 || LOG_SSI263B || LOG_SC01
if (m_dbgFirst) LogOutput("1st phoneme short-circuited by fullspeed\n");
#endif
if (m_phonemeAccurateLengthRemaining)
{
m_phonemeCompleteByFullSpeed = true; // Let UpdateAccurateLength() call UpdateIRQ()
m_lastUpdateCycle = MB_GetLastCumulativeCycles(); // Set m_lastUpdateCycle, otherwise UpdateAccurateLength() just early-returns!
}
else
{
UpdateIRQ();
}
}
m_updateWasFullSpeed = true;
return;
}
//
const bool nowNormalSpeed = m_updateWasFullSpeed; // Just transitioned from full-speed to normal speed
m_updateWasFullSpeed = false;
// NB. next call to this function: nowNormalSpeed = false
if (nowNormalSpeed)
m_byteOffset = (DWORD)-1; // ...which resets m_numSamplesError below
//-------------
DWORD dwCurrentPlayCursor, dwCurrentWriteCursor;
HRESULT hr = SSI263SingleVoice.lpDSBvoice->GetCurrentPosition(&dwCurrentPlayCursor, &dwCurrentWriteCursor);
if (FAILED(hr))
return;
bool prefillBufferOnInit = false;
if (m_byteOffset == (DWORD)-1)
{
// First time in this func (or transitioned from full-speed to normal speed, or a ring-buffer reset)
#ifdef DBG_SSI263_UPDATE
double fTicksSecs = (double)GetTickCount() / 1000.0;
LogOutput("%010.3f: [SSUpdtInit%1d]PC=%08X, WC=%08X, Diff=%08X, Off=%08X xxx\n", fTicksSecs, m_device, dwCurrentPlayCursor, dwCurrentWriteCursor, dwCurrentWriteCursor - dwCurrentPlayCursor, m_byteOffset);
#endif
m_byteOffset = dwCurrentWriteCursor;
m_numSamplesError = 0;
prefillBufferOnInit = true;
}
else
{
// Check that our offset isn't between Play & Write positions
if (dwCurrentWriteCursor > dwCurrentPlayCursor)
{
// |-----PxxxxxW-----|
if ((m_byteOffset > dwCurrentPlayCursor) && (m_byteOffset < dwCurrentWriteCursor))
{
#ifdef DBG_SSI263_UPDATE
double fTicksSecs = (double)GetTickCount() / 1000.0;
LogOutput("%010.3f: [SSUpdt%1d] PC=%08X, WC=%08X, Diff=%08X, Off=%08X xxx\n", fTicksSecs, m_device, dwCurrentPlayCursor, dwCurrentWriteCursor, dwCurrentWriteCursor - dwCurrentPlayCursor, m_byteOffset);
#endif
m_byteOffset = dwCurrentWriteCursor;
m_numSamplesError = 0;
}
}
else
{
// |xxW----------Pxxx|
if ((m_byteOffset > dwCurrentPlayCursor) || (m_byteOffset < dwCurrentWriteCursor))
{
#ifdef DBG_SSI263_UPDATE
double fTicksSecs = (double)GetTickCount() / 1000.0;
LogOutput("%010.3f: [SSUpdt%1d] PC=%08X, WC=%08X, Diff=%08X, Off=%08X XXX\n", fTicksSecs, m_device, dwCurrentPlayCursor, dwCurrentWriteCursor, dwCurrentWriteCursor - dwCurrentPlayCursor, m_byteOffset);
#endif
m_byteOffset = dwCurrentWriteCursor;
m_numSamplesError = 0;
}
}
}
//-------------
const UINT kMinBytesInBuffer = m_kDSBufferByteSize / 4; // 25% full
int nNumSamples = 0;
double updateInterval = 0.0;
if (prefillBufferOnInit)
{
// Just prefill first 25% of buffer with zeros:
// . so we have a quarter buffer of silence/lag before the real sample data begins.
// . NB. this is fine, since it's the steady state; and it's likely that no actual data will ever occur during this initial time.
// This means that the '1st phoneme playback time' (in cycles) will be a bit longer for subsequent times.
m_lastUpdateCycle = MB_GetLastCumulativeCycles();
nNumSamples = kMinBytesInBuffer / sizeof(short);
memset(&m_mixBufferSSI263[0], 0, nNumSamples);
}
else
{
// For small timer periods, wait for a period of 500cy before updating DirectSound ring-buffer.
// NB. A timer period of less than 24cy will yield nNumSamplesPerPeriod=0.
const double kMinimumUpdateInterval = 500.0; // Arbitary (500 cycles = 21 samples)
const double kMaximumUpdateInterval = (double)(0xFFFF + 2); // Max 6522 timer interval (1372 samples)
if (m_lastUpdateCycle == 0)
m_lastUpdateCycle = MB_GetLastCumulativeCycles(); // Initial call to SSI263_Update() after reset/power-cycle
_ASSERT(MB_GetLastCumulativeCycles() >= m_lastUpdateCycle);
updateInterval = (double)(MB_GetLastCumulativeCycles() - m_lastUpdateCycle);
if (updateInterval < kMinimumUpdateInterval)
return;
if (updateInterval > kMaximumUpdateInterval)
updateInterval = kMaximumUpdateInterval;
m_lastUpdateCycle = MB_GetLastCumulativeCycles();
const double nIrqFreq = g_fCurrentCLK6502 / updateInterval + 0.5; // Round-up
const int nNumSamplesPerPeriod = (int)((double)(SAMPLE_RATE_SSI263) / nIrqFreq); // Eg. For 60Hz this is 367
nNumSamples = nNumSamplesPerPeriod + m_numSamplesError; // Apply correction
if (nNumSamples <= 0)
nNumSamples = 0;
if (nNumSamples > 2 * nNumSamplesPerPeriod)
nNumSamples = 2 * nNumSamplesPerPeriod;
if (nNumSamples > m_kDSBufferByteSize / sizeof(short))
nNumSamples = m_kDSBufferByteSize / sizeof(short); // Clamp to prevent buffer overflow
// if (nNumSamples)
// { /* Generate new sample data - ie. could merge from all the SSI263 sources */ }
//
int nBytesRemaining = m_byteOffset - dwCurrentPlayCursor;
if (nBytesRemaining < 0)
nBytesRemaining += m_kDSBufferByteSize;
// Calc correction factor so that play-buffer doesn't under/overflow
const int nErrorInc = SoundCore_GetErrorInc();
if (nBytesRemaining < kMinBytesInBuffer)
m_numSamplesError += nErrorInc; // < 0.25 of buffer remaining
else if (nBytesRemaining > m_kDSBufferByteSize / 2)
m_numSamplesError -= nErrorInc; // > 0.50 of buffer remaining
else
m_numSamplesError = 0; // Acceptable amount of data in buffer
}
#if defined(DBG_SSI263_UPDATE)
double fTicksSecs = (double)GetTickCount() / 1000.0;
LogOutput("%010.3f: [SSUpdt%1d] PC=%08X, WC=%08X, Diff=%08X, Off=%08X, NS=%08X, NSE=%08X, Interval=%f\n", fTicksSecs, m_device, dwCurrentPlayCursor, dwCurrentWriteCursor, dwCurrentWriteCursor - dwCurrentPlayCursor, m_byteOffset, nNumSamples, m_numSamplesError, updateInterval);
#endif
if (nNumSamples == 0)
{
if (m_numSamplesError)
{
// Reset ring-buffer if we've had a major interruption, eg. F7 (enter debugger), F8 (configure), F11/12 (save-state), Pause, etc
// - this can cause Apple II SSI263 detection code to fail (when either timing one or a sequence of phonemes)
// When the AppleWin code restarts and reads the ring-buffer position it'll be at a random point, and maybe nearly full (>50% full)
// - so the code waits until it drains (nNumSamples=0 each time)
// - but it takes a large number of calls to this func to drain to an acceptable level
m_byteOffset = (DWORD)-1;
#if defined(DBG_SSI263_UPDATE)
double fTicksSecs = (double)GetTickCount() / 1000.0;
LogOutput("%010.3f: [SSUpdt%1d] Reset ring-buffer\n", fTicksSecs, m_device);
#endif
}
return;
}
//-------------
bool bSpeechIRQ = false;
{
const BYTE DUR = m_durationPhoneme >> DURATION_SHIFT;
const BYTE numSamplesToAvg = (DUR <= 1) ? 1 :
(DUR == 2) ? 2 :
4;
short* pMixBuffer = &m_mixBufferSSI263[0];
int zeroSize = nNumSamples;
if (m_phonemeLengthRemaining && !prefillBufferOnInit)
{
UINT samplesWritten = 0;
while (samplesWritten < (UINT)nNumSamples)
{
m_currSampleSum += (int)*m_pPhonemeData;
m_currNumSamples++;
m_pPhonemeData++;
m_phonemeLengthRemaining--;
if (m_currNumSamples == numSamplesToAvg)
{
*pMixBuffer++ = (short)(m_currSampleSum / numSamplesToAvg);
samplesWritten++;
m_currSampleSum = 0;
m_currNumSamples = 0;
}
m_currSampleMod4 = (m_currSampleMod4 + 1) & 3;
if (DUR == 1 && m_currSampleMod4 == 3 && m_phonemeLengthRemaining)
{
m_pPhonemeData++;
m_phonemeLengthRemaining--;
}
if (!m_phonemeLengthRemaining)
{
bSpeechIRQ = true;
break;
}
}
zeroSize = nNumSamples - samplesWritten;
_ASSERT(zeroSize >= 0);
}
if (zeroSize)
memset(pMixBuffer, 0, zeroSize * sizeof(short));
}
//
DWORD dwDSLockedBufferSize0, dwDSLockedBufferSize1;
short *pDSLockedBuffer0, *pDSLockedBuffer1;
hr = DSGetLock(SSI263SingleVoice.lpDSBvoice,
m_byteOffset, (DWORD)nNumSamples * sizeof(short) * m_kNumChannels,
&pDSLockedBuffer0, &dwDSLockedBufferSize0,
&pDSLockedBuffer1, &dwDSLockedBufferSize1);
if (FAILED(hr))
return;
memcpy(pDSLockedBuffer0, &m_mixBufferSSI263[0], dwDSLockedBufferSize0);
if(pDSLockedBuffer1)
memcpy(pDSLockedBuffer1, &m_mixBufferSSI263[dwDSLockedBufferSize0/sizeof(short)], dwDSLockedBufferSize1);
// Commit sound buffer
hr = SSI263SingleVoice.lpDSBvoice->Unlock((void*)pDSLockedBuffer0, dwDSLockedBufferSize0,
(void*)pDSLockedBuffer1, dwDSLockedBufferSize1);
if (FAILED(hr))
return;
m_byteOffset = (m_byteOffset + (DWORD)nNumSamples*sizeof(short)*m_kNumChannels) % m_kDSBufferByteSize;
//
if (bSpeechIRQ)
{
// NB. if m_phonemePlaybackAndDebugger==true, then "m_phonemeAccurateLengthRemaining!=0" must be true.
// Since in UpdateAccurateLength(), (when m_phonemePlaybackAndDebugger==true) then m_phonemeAccurateLengthRemaining decs to zero.
if (!m_phonemePlaybackAndDebugger /*|| m_phonemeAccurateLengthRemaining*/) // superfluous, so commented out (see above)
UpdateIRQ();
}
}
//-----------------------------------------------------------------------------
// The primary way for phonemes to generate IRQ is via the ring-buffer in Update(),
// but when single-stepping (eg. timing-sensitive SSI263 detection code), then this secondary method is used.
void SSI263::UpdateAccurateLength(void)
{
if (!m_phonemeAccurateLengthRemaining)
return;
if (m_lastUpdateCycle == 0)
return;
double updateInterval = (double)(MB_GetLastCumulativeCycles() - m_lastUpdateCycle);
const double nIrqFreq = g_fCurrentCLK6502 / updateInterval + 0.5; // Round-up
const int nNumSamplesPerPeriod = (int)((double)(SAMPLE_RATE_SSI263) / nIrqFreq); // Eg. For 60Hz this is 367
const BYTE DUR = m_durationPhoneme >> DURATION_SHIFT;
const UINT numSamples = nNumSamplesPerPeriod * (DUR+1);
if (m_phonemeAccurateLengthRemaining > numSamples)
{
m_phonemeAccurateLengthRemaining -= numSamples;
}
else
{
m_phonemeAccurateLengthRemaining = 0;
if (m_phonemePlaybackAndDebugger || m_phonemeCompleteByFullSpeed)
UpdateIRQ();
}
}
// Called by:
// . Update() when m_phonemeLengthRemaining -> 0
// . UpdateAccurateLength() when m_phonemeAccurateLengthRemaining -> 0
// . LoadSnapshot()
void SSI263::UpdateIRQ(void)
{
m_phonemeLengthRemaining = m_phonemeAccurateLengthRemaining = 0; // Prevent an IRQ from the other source
_ASSERT(m_currentActivePhoneme != -1);
m_currentActivePhoneme = -1;
if (m_dbgFirst && m_dbgStartTime)
{
#if LOG_SSI263 || LOG_SSI263B || LOG_SC01
UINT64 diff = g_nCumulativeCycles - m_dbgStartTime;
LogOutput("1st phoneme playback time = 0x%08X cy\n", (UINT32)diff);
#endif
m_dbgFirst = false;
}
// Phoneme complete, so generate IRQ if necessary
SetSpeechIRQ();
}
//-----------------------------------------------------------------------------
// Pre: m_isVotraxPhoneme, m_cardMode, m_device
void SSI263::SetSpeechIRQ(void)
{
if (!m_isVotraxPhoneme)
{
// Always set SSI263's D7 pin regardless of SSI263 mode (DR1:0), including MODE_IRQ_DISABLED
m_currentMode |= 1; // Set SSI263's D7 pin
if ((m_currentMode & DURATION_MODE_MASK) != MODE_IRQ_DISABLED)
{
if (m_cardMode == PH_Mockingboard)
{
if ((MB_GetPCR(m_device) & 1) == 0) // CA1 Latch/Input = 0 (Negative active edge)
MB_UpdateIFR(m_device, 0, SY6522::IxR_SSI263);
if (MB_GetPCR(m_device) == 0x0C) // CA2 Control = b#110 (Low output)
m_currentMode &= ~1; // Clear SSI263's D7 pin (cleared by 6522's PCR CA1/CA2 handshake)
// NB. Don't set CTL=1, as Mockingboard(SMS) speech doesn't work (it sets MODE_IRQ_DISABLED mode during ISR)
//pMB->SpeechChip.CtrlArtAmp |= CONTROL_MASK; // 6522's CA2 sets Power Down mode (pin 18), which sets Control bit
}
else if (m_cardMode == PH_Phasor) // Phasor's SSI263 IRQ (A/!R) line is *also* wired directly to the 6502's IRQ (as well as the 6522's CA1)
{
CpuIrqAssert(IS_SPEECH);
}
else
{
_ASSERT(0);
}
}
}
//
if (m_isVotraxPhoneme && MB_GetPCR(m_device) == 0xB0)
{
// !A/R: Time-out of old phoneme (signal goes from low to high)
MB_UpdateIFR(m_device, 0, SY6522::IxR_VOTRAX);
m_isVotraxPhoneme = false;
}
}
//-----------------------------------------------------------------------------
bool SSI263::DSInit(void)
{
//
// Create single SSI263 voice
//
HRESULT hr = DSGetSoundBuffer(&SSI263SingleVoice, DSBCAPS_CTRLVOLUME, m_kDSBufferByteSize, SAMPLE_RATE_SSI263, m_kNumChannels, "SSI263");
LogFileOutput("SSI263::DSInit: DSGetSoundBuffer(), hr=0x%08X\n", hr);
if (FAILED(hr))
{
LogFileOutput("SSI263::DSInit: DSGetSoundBuffer failed (%08X)\n", hr);
return false;
}
// Don't DirectSoundBuffer::Play() via DSZeroVoiceBuffer() - instead wait until this SSI263 is actually first used
// . different to Speaker & Mockingboard ring buffers
// . NB. we have 2x SSI263 per MB card, and it's rare if 1 is used (and *extremely* rare if 2 are used!)
// Volume might've been setup from value in Registry
if (!SSI263SingleVoice.nVolume)
SSI263SingleVoice.nVolume = DSBVOLUME_MAX;
hr = SSI263SingleVoice.lpDSBvoice->SetVolume(SSI263SingleVoice.nVolume);
LogFileOutput("SSI263::DSInit: SetVolume(), hr=0x%08X\n", hr);
return true;
}
void SSI263::DSUninit(void)
{
Stop();
DSReleaseSoundBuffer(&SSI263SingleVoice);
}
//-----------------------------------------------------------------------------
void SSI263::Reset(void)
{
Stop();
ResetState();
CpuIrqDeassert(IS_SPEECH);
}
//-----------------------------------------------------------------------------
void SSI263::Mute(void)
{
if (SSI263SingleVoice.bActive && !SSI263SingleVoice.bMute)
{
SSI263SingleVoice.lpDSBvoice->SetVolume(DSBVOLUME_MIN);
SSI263SingleVoice.bMute = true;
}
}
void SSI263::Unmute(void)
{
if (SSI263SingleVoice.bActive && SSI263SingleVoice.bMute)
{
SSI263SingleVoice.lpDSBvoice->SetVolume(SSI263SingleVoice.nVolume);
SSI263SingleVoice.bMute = false;
}
}
void SSI263::SetVolume(DWORD dwVolume, DWORD dwVolumeMax)
{
SSI263SingleVoice.dwUserVolume = dwVolume;
SSI263SingleVoice.nVolume = NewVolume(dwVolume, dwVolumeMax);
if (SSI263SingleVoice.bActive && !SSI263SingleVoice.bMute)
SSI263SingleVoice.lpDSBvoice->SetVolume(SSI263SingleVoice.nVolume);
}
//-----------------------------------------------------------------------------
void SSI263::PeriodicUpdate(UINT executedCycles)
{
const UINT kCyclesPerAudioFrame = 1000;
m_cyclesThisAudioFrame += executedCycles;
if (m_cyclesThisAudioFrame < kCyclesPerAudioFrame)
return;
m_cyclesThisAudioFrame %= kCyclesPerAudioFrame;
Update();
}
//=============================================================================
#define SS_YAML_KEY_SSI263 "SSI263"
// NB. No version - this is determined by the parent "Mockingboard C" or "Phasor" unit
#define SS_YAML_KEY_SSI263_REG_DUR_PHON "Duration / Phoneme"
#define SS_YAML_KEY_SSI263_REG_INF "Inflection"
#define SS_YAML_KEY_SSI263_REG_RATE_INF "Rate / Inflection"
#define SS_YAML_KEY_SSI263_REG_CTRL_ART_AMP "Control / Articulation / Amplitude"
#define SS_YAML_KEY_SSI263_REG_FILTER_FREQ "Filter Frequency"
#define SS_YAML_KEY_SSI263_CURRENT_MODE "Current Mode"
#define SS_YAML_KEY_SSI263_ACTIVE_PHONEME "Active Phoneme"
void SSI263::SaveSnapshot(YamlSaveHelper& yamlSaveHelper)
{
YamlSaveHelper::Label label(yamlSaveHelper, "%s:\n", SS_YAML_KEY_SSI263);
yamlSaveHelper.SaveHexUint8(SS_YAML_KEY_SSI263_REG_DUR_PHON, m_durationPhoneme);
yamlSaveHelper.SaveHexUint8(SS_YAML_KEY_SSI263_REG_INF, m_inflection);
yamlSaveHelper.SaveHexUint8(SS_YAML_KEY_SSI263_REG_RATE_INF, m_rateInflection);
yamlSaveHelper.SaveHexUint8(SS_YAML_KEY_SSI263_REG_CTRL_ART_AMP, m_ctrlArtAmp);
yamlSaveHelper.SaveHexUint8(SS_YAML_KEY_SSI263_REG_FILTER_FREQ, m_filterFreq);
yamlSaveHelper.SaveHexUint8(SS_YAML_KEY_SSI263_CURRENT_MODE, m_currentMode);
yamlSaveHelper.SaveBool(SS_YAML_KEY_SSI263_ACTIVE_PHONEME, IsPhonemeActive());
}
void SSI263::LoadSnapshot(YamlLoadHelper& yamlLoadHelper, UINT device, PHASOR_MODE mode, UINT version)
{
if (!yamlLoadHelper.GetSubMap(SS_YAML_KEY_SSI263))
throw std::runtime_error("Card: Expected key: " SS_YAML_KEY_SSI263);
m_durationPhoneme = yamlLoadHelper.LoadUint(SS_YAML_KEY_SSI263_REG_DUR_PHON);
m_inflection = yamlLoadHelper.LoadUint(SS_YAML_KEY_SSI263_REG_INF);
m_rateInflection = yamlLoadHelper.LoadUint(SS_YAML_KEY_SSI263_REG_RATE_INF);
m_ctrlArtAmp = yamlLoadHelper.LoadUint(SS_YAML_KEY_SSI263_REG_CTRL_ART_AMP);
m_filterFreq = yamlLoadHelper.LoadUint(SS_YAML_KEY_SSI263_REG_FILTER_FREQ);
m_currentMode = yamlLoadHelper.LoadUint(SS_YAML_KEY_SSI263_CURRENT_MODE);
bool activePhoneme = (version >= 7) ? yamlLoadHelper.LoadBool(SS_YAML_KEY_SSI263_ACTIVE_PHONEME) : false;
m_currentActivePhoneme = !activePhoneme ? -1 : 0x00; // Not important which phoneme, since UpdateIRQ() resets this
yamlLoadHelper.PopMap();
//
_ASSERT(m_device != -1);
SetCardMode(mode);
// Only need to directly assert IRQ for Phasor mode (for Mockingboard mode it's done via UpdateIFR() in parent)
if (m_cardMode == PH_Phasor && (m_currentMode & DURATION_MODE_MASK) != MODE_IRQ_DISABLED && (m_currentMode & 1))
CpuIrqAssert(IS_SPEECH);
if (IsPhonemeActive())
UpdateIRQ(); // Pre: m_device, m_cardMode
m_lastUpdateCycle = MB_GetLastCumulativeCycles();
}