AppleWin/source/CPU/cpu6502.h
TomCh ef913fe827
Removed 65d02 and used the regular 65c02/6502 headers instead (PR #825)
Removed 65d02.h and reconstructed this code using a combination of existing 6502.h/65c02.h and extra C Pre-Processor macros to include (or omit) the extra heatmap functionality.

We still end up with a normal 65c02 instance and also a debug 65c02 instance, but both will derive from the same 65c02.h file (+ same for the 6502 normal/debug instances).

Also:
. Added cpu_heatmap.inl for the built-in debugger's read/write operations.
. Support CpuRead/Write() from Z80 to hook the heatmap r/w.
2020-08-31 10:03:29 +01:00

340 lines
15 KiB
C

/*
AppleWin : An Apple //e emulator for Windows
Copyright (C) 1994-1996, Michael O'Brien
Copyright (C) 1999-2001, Oliver Schmidt
Copyright (C) 2002-2005, Tom Charlesworth
Copyright (C) 2006-2011, Tom Charlesworth, Michael Pohoreski
AppleWin is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
AppleWin is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with AppleWin; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
//===========================================================================
static DWORD Cpu6502(DWORD uTotalCycles, const bool bVideoUpdate)
{
WORD addr;
BOOL flagc; // must always be 0 or 1, no other values allowed
BOOL flagn; // must always be 0 or 0x80.
BOOL flagv; // any value allowed
BOOL flagz; // any value allowed
WORD temp;
WORD temp2;
WORD val;
AF_TO_EF
ULONG uExecutedCycles = 0;
WORD base;
do
{
UINT uExtraCycles = 0;
BYTE iOpcode;
// NTSC_BEGIN
ULONG uPreviousCycles = uExecutedCycles;
// NTSC_END
if (GetActiveCpu() == CPU_Z80)
{
const UINT uZ80Cycles = z80_mainloop(uTotalCycles, uExecutedCycles); CYC(uZ80Cycles)
}
else
{
HEATMAP_X( regs.pc );
Fetch(iOpcode, uExecutedCycles);
switch (iOpcode)
{
// TODO-MP Optimization Note: ?? Move CYC(#) to array ??
case 0x00: BRK CYC(7) break;
case 0x01: idx ORA CYC(6) break;
case 0x02: HLT CYC(2) break; // invalid
case 0x03: idx ASO CYC(8) break; // invalid
case 0x04: ZPG NOP CYC(3) break; // invalid
case 0x05: ZPG ORA CYC(3) break;
case 0x06: ZPG ASLn CYC(5) break;
case 0x07: ZPG ASO CYC(5) break; // invalid
case 0x08: PHP CYC(3) break;
case 0x09: IMM ORA CYC(2) break;
case 0x0A: asl CYC(2) break;
case 0x0B: IMM ANC CYC(2) break; // invalid
case 0x0C: ABSX_OPT NOP CYC(4) break; // invalid
case 0x0D: ABS ORA CYC(4) break;
case 0x0E: ABS ASLn CYC(6) break;
case 0x0F: ABS ASO CYC(6) break; // invalid
case 0x10: REL BPL CYC(2) break;
case 0x11: INDY_OPT ORA CYC(5) break;
case 0x12: HLT CYC(2) break; // invalid
case 0x13: INDY_CONST ASO CYC(8) break; // invalid
case 0x14: zpx NOP CYC(4) break; // invalid
case 0x15: zpx ORA CYC(4) break;
case 0x16: zpx ASLn CYC(6) break;
case 0x17: zpx ASO CYC(6) break; // invalid
case 0x18: CLC CYC(2) break;
case 0x19: ABSY_OPT ORA CYC(4) break;
case 0x1A: NOP CYC(2) break; // invalid
case 0x1B: ABSY_CONST ASO CYC(7) break; // invalid
case 0x1C: ABSX_OPT NOP CYC(4) break; // invalid
case 0x1D: ABSX_OPT ORA CYC(4) break;
case 0x1E: ABSX_CONST ASLn CYC(7) break;
case 0x1F: ABSX_CONST ASO CYC(7) break; // invalid
case 0x20: ABS JSR CYC(6) break;
case 0x21: idx AND CYC(6) break;
case 0x22: HLT CYC(2) break; // invalid
case 0x23: idx RLA CYC(8) break; // invalid
case 0x24: ZPG BIT CYC(3) break;
case 0x25: ZPG AND CYC(3) break;
case 0x26: ZPG ROLn CYC(5) break;
case 0x27: ZPG RLA CYC(5) break; // invalid
case 0x28: PLP CYC(4) break;
case 0x29: IMM AND CYC(2) break;
case 0x2A: rol CYC(2) break;
case 0x2B: IMM ANC CYC(2) break; // invalid
case 0x2C: ABS BIT CYC(4) break;
case 0x2D: ABS AND CYC(4) break;
case 0x2E: ABS ROLn CYC(6) break;
case 0x2F: ABS RLA CYC(6) break; // invalid
case 0x30: REL BMI CYC(2) break;
case 0x31: INDY_OPT AND CYC(5) break;
case 0x32: HLT CYC(2) break; // invalid
case 0x33: INDY_CONST RLA CYC(8) break; // invalid
case 0x34: zpx NOP CYC(4) break; // invalid
case 0x35: zpx AND CYC(4) break;
case 0x36: zpx ROLn CYC(6) break;
case 0x37: zpx RLA CYC(6) break; // invalid
case 0x38: SEC CYC(2) break;
case 0x39: ABSY_OPT AND CYC(4) break;
case 0x3A: NOP CYC(2) break; // invalid
case 0x3B: ABSY_CONST RLA CYC(7) break; // invalid
case 0x3C: ABSX_OPT NOP CYC(4) break; // invalid
case 0x3D: ABSX_OPT AND CYC(4) break;
case 0x3E: ABSX_CONST ROLn CYC(7) break;
case 0x3F: ABSX_CONST RLA CYC(7) break; // invalid
case 0x40: RTI CYC(6) DoIrqProfiling(uExecutedCycles); break;
case 0x41: idx EOR CYC(6) break;
case 0x42: HLT CYC(2) break; // invalid
case 0x43: idx LSE CYC(8) break; // invalid
case 0x44: ZPG NOP CYC(3) break; // invalid
case 0x45: ZPG EOR CYC(3) break;
case 0x46: ZPG LSRn CYC(5) break;
case 0x47: ZPG LSE CYC(5) break; // invalid
case 0x48: PHA CYC(3) break;
case 0x49: IMM EOR CYC(2) break;
case 0x4A: lsr CYC(2) break;
case 0x4B: IMM ALR CYC(2) break; // invalid
case 0x4C: ABS JMP CYC(3) break;
case 0x4D: ABS EOR CYC(4) break;
case 0x4E: ABS LSRn CYC(6) break;
case 0x4F: ABS LSE CYC(6) break; // invalid
case 0x50: REL BVC CYC(2) break;
case 0x51: INDY_OPT EOR CYC(5) break;
case 0x52: HLT CYC(2) break; // invalid
case 0x53: INDY_CONST LSE CYC(8) break; // invalid
case 0x54: zpx NOP CYC(4) break; // invalid
case 0x55: zpx EOR CYC(4) break;
case 0x56: zpx LSRn CYC(6) break;
case 0x57: zpx LSE CYC(6) break; // invalid
case 0x58: CLI CYC(2) break;
case 0x59: ABSY_OPT EOR CYC(4) break;
case 0x5A: NOP CYC(2) break; // invalid
case 0x5B: ABSY_CONST LSE CYC(7) break; // invalid
case 0x5C: ABSX_OPT NOP CYC(4) break; // invalid
case 0x5D: ABSX_OPT EOR CYC(4) break;
case 0x5E: ABSX_CONST LSRn CYC(7) break;
case 0x5F: ABSX_CONST LSE CYC(7) break; // invalid
case 0x60: RTS CYC(6) break;
case 0x61: idx ADCn CYC(6) break;
case 0x62: HLT CYC(2) break; // invalid
case 0x63: idx RRA CYC(8) break; // invalid
case 0x64: ZPG NOP CYC(3) break; // invalid
case 0x65: ZPG ADCn CYC(3) break;
case 0x66: ZPG RORn CYC(5) break;
case 0x67: ZPG RRA CYC(5) break; // invalid
case 0x68: PLA CYC(4) break;
case 0x69: IMM ADCn CYC(2) break;
case 0x6A: ror CYC(2) break;
case 0x6B: IMM ARR CYC(2) break; // invalid
case 0x6C: IABS_NMOS JMP CYC(5) break; // GH#264
case 0x6D: ABS ADCn CYC(4) break;
case 0x6E: ABS RORn CYC(6) break;
case 0x6F: ABS RRA CYC(6) break; // invalid
case 0x70: REL BVS CYC(2) break;
case 0x71: INDY_OPT ADCn CYC(5) break;
case 0x72: HLT CYC(2) break; // invalid
case 0x73: INDY_CONST RRA CYC(8) break; // invalid
case 0x74: zpx NOP CYC(4) break; // invalid
case 0x75: zpx ADCn CYC(4) break;
case 0x76: zpx RORn CYC(6) break;
case 0x77: zpx RRA CYC(6) break; // invalid
case 0x78: SEI CYC(2) break;
case 0x79: ABSY_OPT ADCn CYC(4) break;
case 0x7A: NOP CYC(2) break; // invalid
case 0x7B: ABSY_CONST RRA CYC(7) break; // invalid
case 0x7C: ABSX_OPT NOP CYC(4) break; // invalid
case 0x7D: ABSX_OPT ADCn CYC(4) break;
case 0x7E: ABSX_CONST RORn CYC(7) break;
case 0x7F: ABSX_CONST RRA CYC(7) break; // invalid
case 0x80: IMM NOP CYC(2) break; // invalid
case 0x81: idx STA CYC(6) break;
case 0x82: IMM NOP CYC(2) break; // invalid
case 0x83: idx AXS CYC(6) break; // invalid
case 0x84: ZPG STY CYC(3) break;
case 0x85: ZPG STA CYC(3) break;
case 0x86: ZPG STX CYC(3) break;
case 0x87: ZPG AXS CYC(3) break; // invalid
case 0x88: DEY CYC(2) break;
case 0x89: IMM NOP CYC(2) break; // invalid
case 0x8A: TXA CYC(2) break;
case 0x8B: IMM XAA CYC(2) break; // invalid
case 0x8C: ABS STY CYC(4) break;
case 0x8D: ABS STA CYC(4) break;
case 0x8E: ABS STX CYC(4) break;
case 0x8F: ABS AXS CYC(4) break; // invalid
case 0x90: REL BCC CYC(2) break;
case 0x91: INDY_CONST STA CYC(6) break;
case 0x92: HLT CYC(2) break; // invalid
case 0x93: INDY_CONST AXA CYC(6) break; // invalid
case 0x94: zpx STY CYC(4) break;
case 0x95: zpx STA CYC(4) break;
case 0x96: zpy STX CYC(4) break;
case 0x97: zpy AXS CYC(4) break; // invalid
case 0x98: TYA CYC(2) break;
case 0x99: ABSY_CONST STA CYC(5) break;
case 0x9A: TXS CYC(2) break;
case 0x9B: ABSY_CONST TAS CYC(5) break; // invalid
case 0x9C: ABSX_CONST SAY CYC(5) break; // invalid
case 0x9D: ABSX_CONST STA CYC(5) break;
case 0x9E: ABSY_CONST XAS CYC(5) break; // invalid
case 0x9F: ABSY_CONST AXA CYC(5) break; // invalid
case 0xA0: IMM LDY CYC(2) break;
case 0xA1: idx LDA CYC(6) break;
case 0xA2: IMM LDX CYC(2) break;
case 0xA3: idx LAX CYC(6) break; // invalid
case 0xA4: ZPG LDY CYC(3) break;
case 0xA5: ZPG LDA CYC(3) break;
case 0xA6: ZPG LDX CYC(3) break;
case 0xA7: ZPG LAX CYC(3) break; // invalid
case 0xA8: TAY CYC(2) break;
case 0xA9: IMM LDA CYC(2) break;
case 0xAA: TAX CYC(2) break;
case 0xAB: IMM OAL CYC(2) break; // invalid
case 0xAC: ABS LDY CYC(4) break;
case 0xAD: ABS LDA CYC(4) break;
case 0xAE: ABS LDX CYC(4) break;
case 0xAF: ABS LAX CYC(4) break; // invalid
case 0xB0: REL BCS CYC(2) break;
case 0xB1: INDY_OPT LDA CYC(5) break;
case 0xB2: HLT CYC(2) break; // invalid
case 0xB3: INDY_OPT LAX CYC(5) break; // invalid
case 0xB4: zpx LDY CYC(4) break;
case 0xB5: zpx LDA CYC(4) break;
case 0xB6: zpy LDX CYC(4) break;
case 0xB7: zpy LAX CYC(4) break; // invalid
case 0xB8: CLV CYC(2) break;
case 0xB9: ABSY_OPT LDA CYC(4) break;
case 0xBA: TSX CYC(2) break;
case 0xBB: ABSY_OPT LAS CYC(4) break; // invalid
case 0xBC: ABSX_OPT LDY CYC(4) break;
case 0xBD: ABSX_OPT LDA CYC(4) break;
case 0xBE: ABSY_OPT LDX CYC(4) break;
case 0xBF: ABSY_OPT LAX CYC(4) break; // invalid
case 0xC0: IMM CPY CYC(2) break;
case 0xC1: idx CMP CYC(6) break;
case 0xC2: IMM NOP CYC(2) break; // invalid
case 0xC3: idx DCM CYC(8) break; // invalid
case 0xC4: ZPG CPY CYC(3) break;
case 0xC5: ZPG CMP CYC(3) break;
case 0xC6: ZPG DEC CYC(5) break;
case 0xC7: ZPG DCM CYC(5) break; // invalid
case 0xC8: INY CYC(2) break;
case 0xC9: IMM CMP CYC(2) break;
case 0xCA: DEX CYC(2) break;
case 0xCB: IMM SAX CYC(2) break; // invalid
case 0xCC: ABS CPY CYC(4) break;
case 0xCD: ABS CMP CYC(4) break;
case 0xCE: ABS DEC CYC(6) break;
case 0xCF: ABS DCM CYC(6) break; // invalid
case 0xD0: REL BNE CYC(2) break;
case 0xD1: INDY_OPT CMP CYC(5) break;
case 0xD2: HLT CYC(2) break; // invalid
case 0xD3: INDY_CONST DCM CYC(8) break; // invalid
case 0xD4: zpx NOP CYC(4) break; // invalid
case 0xD5: zpx CMP CYC(4) break;
case 0xD6: zpx DEC CYC(6) break;
case 0xD7: zpx DCM CYC(6) break; // invalid
case 0xD8: CLD CYC(2) break;
case 0xD9: ABSY_OPT CMP CYC(4) break;
case 0xDA: NOP CYC(2) break; // invalid
case 0xDB: ABSY_CONST DCM CYC(7) break; // invalid
case 0xDC: ABSX_OPT NOP CYC(4) break; // invalid
case 0xDD: ABSX_OPT CMP CYC(4) break;
case 0xDE: ABSX_CONST DEC CYC(7) break;
case 0xDF: ABSX_CONST DCM CYC(7) break; // invalid
case 0xE0: IMM CPX CYC(2) break;
case 0xE1: idx SBCn CYC(6) break;
case 0xE2: IMM NOP CYC(2) break; // invalid
case 0xE3: idx INS CYC(8) break; // invalid
case 0xE4: ZPG CPX CYC(3) break;
case 0xE5: ZPG SBCn CYC(3) break;
case 0xE6: ZPG INC CYC(5) break;
case 0xE7: ZPG INS CYC(5) break; // invalid
case 0xE8: INX CYC(2) break;
case 0xE9: IMM SBCn CYC(2) break;
case 0xEA: NOP CYC(2) break;
case 0xEB: IMM SBCn CYC(2) break; // invalid
case 0xEC: ABS CPX CYC(4) break;
case 0xED: ABS SBCn CYC(4) break;
case 0xEE: ABS INC CYC(6) break;
case 0xEF: ABS INS CYC(6) break; // invalid
case 0xF0: REL BEQ CYC(2) break;
case 0xF1: INDY_OPT SBCn CYC(5) break;
case 0xF2: HLT CYC(2) break; // invalid
case 0xF3: INDY_CONST INS CYC(8) break; // invalid
case 0xF4: zpx NOP CYC(4) break; // invalid
case 0xF5: zpx SBCn CYC(4) break;
case 0xF6: zpx INC CYC(6) break;
case 0xF7: zpx INS CYC(6) break; // invalid
case 0xF8: SED CYC(2) break;
case 0xF9: ABSY_OPT SBCn CYC(4) break;
case 0xFA: NOP CYC(2) break; // invalid
case 0xFB: ABSY_CONST INS CYC(7) break; // invalid
case 0xFC: ABSX_OPT NOP CYC(4) break; // invalid
case 0xFD: ABSX_OPT SBCn CYC(4) break;
case 0xFE: ABSX_CONST INC CYC(7) break;
case 0xFF: ABSX_CONST INS CYC(7) break; // invalid
}
}
CheckInterruptSources(uExecutedCycles, bVideoUpdate);
NMI(uExecutedCycles, flagc, flagn, flagv, flagz);
IRQ(uExecutedCycles, flagc, flagn, flagv, flagz);
// NTSC_BEGIN
if (bVideoUpdate)
{
ULONG uElapsedCycles = uExecutedCycles - uPreviousCycles;
NTSC_VideoUpdateCycles( uElapsedCycles );
}
// NTSC_END
} while (uExecutedCycles < uTotalCycles);
EF_TO_AF
return uExecutedCycles;
}
//===========================================================================