AppleWin/source/Uthernet2.cpp

1478 lines
43 KiB
C++

/*
AppleWin : An Apple //e emulator for Windows
Copyright (C) 2022, Andrea Odetti
AppleWin is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
AppleWin is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with AppleWin; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <StdAfx.h>
#include "YamlHelper.h"
#include "Uthernet2.h"
#include "Interface.h"
#include "Tfe/NetworkBackend.h"
#include "Tfe/PCapBackend.h"
#include "Tfe/IPRaw.h"
#include "W5100.h"
// Linux uses EINPROGRESS while Windows returns WSAEWOULDBLOCK
// when the connect() calls is ongoing
//
// in the checks below we allow both in all cases
// (myErrno == SOCK_EINPROGRESS || myErrno == SOCK_EWOULDBLOCK)
// this works, bu we could instead define 2 functions and check only the correct one
#ifdef _MSC_VER
typedef int ssize_t;
typedef int socklen_t;
#define sock_error() WSAGetLastError()
// too complicated to call FormatMessage, just print number
#define ERROR_FMT "d"
#define STRERROR(x) x
#define SOCK_EAGAIN WSAEWOULDBLOCK
#define SOCK_EWOULDBLOCK WSAEWOULDBLOCK
#define SOCK_EINPROGRESS WSAEINPROGRESS
#else
#define sock_error() errno
#define ERROR_FMT "s"
#define STRERROR(x) strerror(x)
#define SOCK_EAGAIN EAGAIN
#define SOCK_EWOULDBLOCK EWOULDBLOCK
#define SOCK_EINPROGRESS EINPROGRESS
#include <sys/socket.h>
#include <arpa/inet.h>
#include <poll.h>
#include <unistd.h>
#include <sys/types.h>
#include <errno.h>
#endif
// fix SOCK_NONBLOCK for e.g. macOS
#ifndef SOCK_NONBLOCK
// DISCALIMER
// totally untested, use at your own risk
#include <fcntl.h>
#define SOCK_NONBLOCK O_NONBLOCK
#endif
// Dest MAC + Source MAC + Ether Type
#define ETH_MINIMUM_SIZE (6 + 6 + 2)
// #define U2_LOG_VERBOSE
// #define U2_LOG_TRAFFIC
// #define U2_LOG_STATE
// #define U2_LOG_UNKNOWN
#define MAC_FMT "%02X:%02X:%02X:%02X:%02X:%02X"
#define MAC_DEST(p) p[0], p[1], p[2], p[3], p[4], p[5]
#define MAC_SOURCE(p) p[6], p[7], p[8], p[9], p[10], p[11]
#include "Memory.h"
#include "Log.h"
namespace
{
uint16_t readNetworkWord(const uint8_t *address)
{
const uint16_t network = *reinterpret_cast<const uint16_t *>(address);
const uint16_t host = ntohs(network);
return host;
}
uint32_t readAddress(const uint8_t *ptr)
{
const uint32_t address = *reinterpret_cast<const uint32_t *>(ptr);
return address;
}
uint8_t getIByte(const uint16_t value, const size_t shift)
{
return (value >> shift) & 0xFF;
}
void write8(Socket &socket, std::vector<uint8_t> &memory, const uint8_t value)
{
const uint16_t base = socket.receiveBase;
const uint16_t address = base + socket.sn_rx_wr;
memory[address] = value;
socket.sn_rx_wr = (socket.sn_rx_wr + 1) % socket.receiveSize;
++socket.sn_rx_rsr;
}
// reverses the byte order
void write16(Socket &socket, std::vector<uint8_t> &memory, const uint16_t value)
{
write8(socket, memory, getIByte(value, 8)); // high
write8(socket, memory, getIByte(value, 0)); // low
}
void writeData(Socket &socket, std::vector<uint8_t> &memory, const uint8_t *data, const size_t len)
{
for (size_t c = 0; c < len; ++c)
{
write8(socket, memory, data[c]);
}
}
// no byte reversal
template <typename T>
void writeAny(Socket &socket, std::vector<uint8_t> &memory, const T &t)
{
const uint8_t *data = reinterpret_cast<const uint8_t *>(&t);
const uint16_t len = sizeof(T);
writeData(socket, memory, data, len);
}
void writeDataMacRaw(Socket &socket, std::vector<uint8_t> &memory, const uint8_t *data, const size_t len)
{
// size includes sizeof(size)
const size_t size = len + sizeof(uint16_t);
write16(socket, memory, static_cast<uint16_t>(size));
writeData(socket, memory, data, len);
}
void writeDataIPRaw(Socket &socket, std::vector<uint8_t> &memory, const uint8_t *data, const size_t len, const uint32_t destination)
{
writeAny(socket, memory, destination);
write16(socket, memory, static_cast<uint16_t>(len));
writeData(socket, memory, data, len);
}
void writeDataForProtocol(Socket &socket, std::vector<uint8_t> &memory, const uint8_t *data, const size_t len, const sockaddr_in &source)
{
if (socket.sn_sr == W5100_SN_SR_SOCK_UDP)
{
// these are already in network order
writeAny(socket, memory, source.sin_addr);
writeAny(socket, memory, source.sin_port);
// size does not include sizeof(size)
write16(socket, memory, static_cast<uint16_t>(len));
} // no header for TCP
writeData(socket, memory, data, len);
}
}
Socket::Socket()
: transmitBase(0)
, transmitSize(0)
, receiveBase(0)
, receiveSize(0)
, registerAddress(0)
, sn_rx_wr(0)
, sn_rx_rsr(0)
, sn_sr(W5100_SN_SR_CLOSED)
, myFD(INVALID_SOCKET)
, myErrno(0)
{
}
void Socket::clearFD()
{
if (myFD != INVALID_SOCKET)
{
#ifdef _MSC_VER
closesocket(myFD);
#else
close(myFD);
#endif
}
myFD = INVALID_SOCKET;
sn_sr = W5100_SN_SR_CLOSED;
}
void Socket::setFD(const socket_t fd, const int status)
{
clearFD();
myFD = fd;
myErrno = 0;
sn_sr = status;
}
Socket::~Socket()
{
clearFD();
}
bool Socket::isOpen() const
{
return (myFD != INVALID_SOCKET) &&
((sn_sr == W5100_SN_SR_ESTABLISHED) || (sn_sr == W5100_SN_SR_SOCK_UDP));
}
void Socket::process()
{
if (myFD != INVALID_SOCKET && sn_sr == W5100_SN_SR_SOCK_INIT && (myErrno == SOCK_EINPROGRESS || myErrno == SOCK_EWOULDBLOCK))
{
#ifdef _MSC_VER
FD_SET writefds, exceptfds;
FD_ZERO(&writefds);
FD_ZERO(&exceptfds);
FD_SET(myFD, &writefds);
FD_SET(myFD, &exceptfds);
const timeval timeout = {0, 0};
if (select(0, NULL, &writefds, &exceptfds, &timeout) > 0)
#else
pollfd pfd = {.fd = myFD, .events = POLLOUT};
if (poll(&pfd, 1, 0) > 0)
#endif
{
int err = 0;
socklen_t elen = sizeof(err);
const int res = getsockopt(myFD, SOL_SOCKET, SO_ERROR, reinterpret_cast<char *>(&err), &elen);
if (res == 0 && err == 0)
{
myErrno = 0;
sn_sr = W5100_SN_SR_ESTABLISHED;
#ifdef U2_LOG_STATE
LogFileOutput("U2: TCP[]: Connected\n");
#endif
}
else
{
clearFD();
#ifdef U2_LOG_STATE
LogFileOutput("U2: TCP[]: Connection error: %d - %" ERROR_FMT "\n", res, STRERROR(err));
#endif
}
}
}
}
bool Socket::isThereRoomFor(const size_t len, const size_t header) const
{
const uint16_t rsr = sn_rx_rsr; // already present
const uint16_t size = receiveSize; // total size
return rsr + len + header < size; // "not =": we do not want to fill the buffer.
}
uint16_t Socket::getFreeRoom() const
{
const uint16_t rsr = sn_rx_rsr; // already present
const uint16_t size = receiveSize; // total size
return size - rsr;
}
#define SS_YAML_KEY_SOCKET_RX_WRITE_REGISTER "RX Write Register"
#define SS_YAML_KEY_SOCKET_RX_SIZE_REGISTER "RX Size Register"
#define SS_YAML_KEY_SOCKET_REGISTER "Socket Register"
void Socket::SaveSnapshot(YamlSaveHelper &yamlSaveHelper)
{
yamlSaveHelper.SaveHexUint16(SS_YAML_KEY_SOCKET_RX_WRITE_REGISTER, sn_rx_wr);
yamlSaveHelper.SaveHexUint16(SS_YAML_KEY_SOCKET_RX_SIZE_REGISTER, sn_rx_rsr);
yamlSaveHelper.SaveHexUint8(SS_YAML_KEY_SOCKET_REGISTER, sn_sr);
}
bool Socket::LoadSnapshot(YamlLoadHelper &yamlLoadHelper)
{
sn_rx_wr = yamlLoadHelper.LoadUint(SS_YAML_KEY_SOCKET_RX_WRITE_REGISTER);
sn_rx_rsr = yamlLoadHelper.LoadUint(SS_YAML_KEY_SOCKET_RX_SIZE_REGISTER);
sn_sr = yamlLoadHelper.LoadUint(SS_YAML_KEY_SOCKET_REGISTER);
// transmit and receive sizes are restored from the card common registers
switch (sn_sr)
{
case W5100_SN_SR_SOCK_MACRAW:
case W5100_SN_SR_SOCK_IPRAW:
// we can restore RAW sockets
break;
default:
// no point in restoring a broken UDP or TCP connection
// just reset the socket
sn_sr = W5100_SN_SR_CLOSED;
// for the same reason there is no point in saving myFD and myErrno
break;
}
return true;
}
const std::string& Uthernet2::GetSnapshotCardName()
{
static const std::string name("Uthernet II");
return name;
}
Uthernet2::Uthernet2(UINT slot) : Card(CT_Uthernet2, slot)
{
Reset(true);
}
void Uthernet2::setSocketModeRegister(const size_t i, const uint16_t address, const uint8_t value)
{
myMemory[address] = value;
const uint8_t protocol = value & W5100_SN_MR_PROTO_MASK;
switch (protocol)
{
case W5100_SN_MR_CLOSED:
#ifdef U2_LOG_STATE
LogFileOutput("U2: Mode[%" SIZE_T_FMT "]: closed\n", i);
#endif
break;
case W5100_SN_MR_TCP:
#ifdef U2_LOG_STATE
LogFileOutput("U2: Mode[%" SIZE_T_FMT "]: TCP\n", i);
#endif
break;
case W5100_SN_MR_UDP:
#ifdef U2_LOG_STATE
LogFileOutput("U2: Mode[%" SIZE_T_FMT "]: UDP\n", i);
#endif
break;
case W5100_SN_MR_IPRAW:
#ifdef U2_LOG_STATE
LogFileOutput("U2: Mode[%" SIZE_T_FMT "]: IPRAW\n", i);
#endif
break;
case W5100_SN_MR_MACRAW:
#ifdef U2_LOG_STATE
LogFileOutput("U2: Mode[%" SIZE_T_FMT "]: MACRAW\n", i);
#endif
break;
#ifdef U2_LOG_UNKNOWN
default:
LogFileOutput("U2: Unknown protocol: %02x\n", protocol);
#endif
}
}
void Uthernet2::setTXSizes(const uint16_t address, uint8_t value)
{
myMemory[address] = value;
uint16_t base = W5100_TX_BASE;
const uint16_t end = W5100_RX_BASE;
for (Socket &socket : mySockets)
{
socket.transmitBase = base;
const uint8_t bits = value & 0x03;
value >>= 2;
const uint16_t size = 1 << (10 + bits);
base += size;
if (base > end)
{
base = end;
}
socket.transmitSize = base - socket.transmitBase;
}
}
void Uthernet2::setRXSizes(const uint16_t address, uint8_t value)
{
myMemory[address] = value;
uint16_t base = W5100_RX_BASE;
const uint16_t end = W5100_MEM_SIZE;
for (Socket &socket : mySockets)
{
socket.receiveBase = base;
const uint8_t bits = value & 0x03;
value >>= 2;
const uint16_t size = 1 << (10 + bits);
base += size;
if (base > end)
{
base = end;
}
socket.receiveSize = base - socket.receiveBase;
}
}
uint16_t Uthernet2::getTXDataSize(const size_t i) const
{
const Socket &socket = mySockets[i];
const uint16_t size = socket.transmitSize;
const uint16_t mask = size - 1;
const int sn_tx_rd = readNetworkWord(myMemory.data() + socket.registerAddress + W5100_SN_TX_RD0) & mask;
const int sn_tx_wr = readNetworkWord(myMemory.data() + socket.registerAddress + W5100_SN_TX_WR0) & mask;
int dataPresent = sn_tx_wr - sn_tx_rd;
if (dataPresent < 0)
{
dataPresent += size;
}
return dataPresent;
}
uint8_t Uthernet2::getTXFreeSizeRegister(const size_t i, const size_t shift) const
{
const int size = mySockets[i].transmitSize;
const uint16_t present = getTXDataSize(i);
const uint16_t free = size - present;
const uint8_t reg = getIByte(free, shift);
return reg;
}
uint8_t Uthernet2::getRXDataSizeRegister(const size_t i, const size_t shift) const
{
const uint16_t rsr = mySockets[i].sn_rx_rsr;
const uint8_t reg = getIByte(rsr, shift);
return reg;
}
void Uthernet2::updateRSR(const size_t i)
{
Socket &socket = mySockets[i];
const int size = socket.receiveSize;
const uint16_t mask = size - 1;
const int sn_rx_rd = readNetworkWord(myMemory.data() + socket.registerAddress + W5100_SN_RX_RD0) & mask;
const int sn_rx_wr = socket.sn_rx_wr & mask;
int dataPresent = sn_rx_wr - sn_rx_rd;
if (dataPresent < 0)
{
dataPresent += size;
}
// is this logic correct?
// here we are re-synchronising the size with the pointers
// elsewhere I have seen people updating this value
// by the amount of how much 0x28 has moved forward
// but then we need to keep track of where it was
// the final result should be the same
#ifdef U2_LOG_TRAFFIC
if (socket.sn_rx_rsr != dataPresent)
{
LogFileOutput("U2: Recv[%" SIZE_T_FMT "]: %d -> %d bytes\n", i, socket.sn_rx_rsr, dataPresent);
}
#endif
socket.sn_rx_rsr = dataPresent;
}
int Uthernet2::receiveForMacAddress(const bool acceptAll, const int size, uint8_t * data, PacketDestination & packetDestination)
{
const uint8_t * mac = myMemory.data() + W5100_SHAR0;
// loop until we receive a valid frame, or there is nothing to receive
int len;
while ((len = myNetworkBackend->receive(size, data)) > 0)
{
// smaller frames are not good anyway
if (len >= ETH_MINIMUM_SIZE)
{
if (data[0] == mac[0] &&
data[1] == mac[1] &&
data[2] == mac[2] &&
data[3] == mac[3] &&
data[4] == mac[4] &&
data[5] == mac[5])
{
packetDestination = HOST;
return len;
}
if (data[0] == 0xFF &&
data[1] == 0xFF &&
data[2] == 0xFF &&
data[3] == 0xFF &&
data[4] == 0xFF &&
data[5] == 0xFF)
{
packetDestination = BROADCAST;
return len;
}
if (acceptAll)
{
packetDestination = OTHER;
return len;
}
}
// skip this frame and try with another one
}
// no frames available to process
return len;
}
void Uthernet2::receiveOnePacketRaw()
{
bool acceptAll = false;
int macRawSocket = -1; // to which IPRaw soccket to send to (can only be 0)
Socket & socket0 = mySockets[0];
if (socket0.sn_sr == W5100_SN_SR_SOCK_MACRAW)
{
macRawSocket = 0; // the only MAC Raw socket is open, packet will go there as a fallback
const uint8_t mr = myMemory[socket0.registerAddress + W5100_SN_MR];
// see if MAC RAW filters or not
const bool filterMAC = mr & W5100_SN_MR_MF;
if (!filterMAC)
{
acceptAll = true;
}
}
uint8_t buffer[MAX_RXLENGTH];
PacketDestination packetDestination;
const int len = receiveForMacAddress(acceptAll, sizeof(buffer), buffer, packetDestination);
if (len > 0)
{
const uint8_t * payload;
size_t lengthOfPayload;
uint32_t destination;
uint8_t packetProtocol;
getIPPayload(len, buffer, lengthOfPayload, payload, destination, packetProtocol);
// see if there is a IPRAW socket that should accept thi spacket
int ipRawSocket = -1;
if (packetDestination != OTHER) // IPRaw always filters (HOST or BROADCAST, never OTHER)
{
for (size_t i = 0; i < mySockets.size(); ++i)
{
Socket & socket = mySockets[i];
if (socket.sn_sr == W5100_SN_SR_SOCK_IPRAW)
{
// IP only accepts by protocol & always filters MAC
const uint8_t socketProtocol = myMemory[socket.registerAddress + W5100_SN_PROTO];
if (payload && packetProtocol == socketProtocol)
{
ipRawSocket = i;
break; // a valid IPRAW socket has been found
}
}
// we should probably check for UDP & TCP sockets and filter these packets too
}
}
// priority to IPRAW
if (ipRawSocket >= 0)
{
receiveOnePacketIPRaw(ipRawSocket, lengthOfPayload, payload, destination, packetProtocol, len);
}
// fallback to MACRAW (if open)
else if (macRawSocket >= 0)
{
receiveOnePacketMacRaw(macRawSocket, len, buffer);
}
// else packet is dropped
}
}
void Uthernet2::receiveOnePacketMacRaw(const size_t i, const int size, uint8_t * data)
{
Socket &socket = mySockets[i];
if (socket.isThereRoomFor(size, sizeof(uint16_t)))
{
writeDataMacRaw(socket, myMemory, data, size);
#ifdef U2_LOG_TRAFFIC
LogFileOutput("U2: Read MACRAW[%" SIZE_T_FMT "]: " MAC_FMT " -> " MAC_FMT ": +%d -> %d bytes\n", i, MAC_SOURCE(data), MAC_DEST(data),
size, socket.sn_rx_rsr);
#endif
}
else
{
// drop it
#ifdef U2_LOG_TRAFFIC
LogFileOutput("U2: Skip MACRAW[%" SIZE_T_FMT "]: %d bytes\n", i, size);
#endif
}
}
void Uthernet2::receiveOnePacketIPRaw(const size_t i, const size_t lengthOfPayload, const uint8_t * payload, const uint32_t destination, const uint8_t protocol, const int len)
{
Socket &socket = mySockets[i];
if (socket.isThereRoomFor(lengthOfPayload, 4 + sizeof(uint16_t)))
{
writeDataIPRaw(socket, myMemory, payload, lengthOfPayload, destination);
#ifdef U2_LOG_TRAFFIC
LogFileOutput("U2: Read IPRAW[%" SIZE_T_FMT "]: +%" SIZE_T_FMT " (%d) -> %d bytes\n", i, lengthOfPayload, len, socket.sn_rx_rsr);
#endif
}
else
{
// drop it
#ifdef U2_LOG_TRAFFIC
LogFileOutput("U2: Skip IPRAW[%" SIZE_T_FMT "]: %" SIZE_T_FMT " (%d) bytes \n", i, lengthOfPayload, len);
#endif
}
}
// UDP & TCP
void Uthernet2::receiveOnePacketFromSocket(const size_t i)
{
Socket &socket = mySockets[i];
if (socket.isOpen())
{
const uint16_t freeRoom = socket.getFreeRoom();
if (freeRoom > 32) // avoid meaningless reads
{
std::vector<uint8_t> buffer(freeRoom - 1); // do not fill the buffer completely
sockaddr_in source = {0};
socklen_t len = sizeof(sockaddr_in);
const ssize_t data = recvfrom(socket.myFD, reinterpret_cast<char *>(buffer.data()), buffer.size(), 0, (struct sockaddr *)&source, &len);
#ifdef U2_LOG_TRAFFIC
const char *proto = socket.sn_sr == W5100_SN_SR_SOCK_UDP ? "UDP" : "TCP";
#endif
if (data > 0)
{
writeDataForProtocol(socket, myMemory, buffer.data(), data, source);
#ifdef U2_LOG_TRAFFIC
LogFileOutput("U2: Read %s[%" SIZE_T_FMT "]: +%" SIZE_T_FMT " -> %d bytes\n", proto, i, data, socket.sn_rx_rsr);
#endif
}
else if (data == 0)
{
// gracefull termination
socket.clearFD();
}
else // data < 0;
{
const int error = sock_error();
if (error != SOCK_EAGAIN && error != SOCK_EWOULDBLOCK)
{
#ifdef U2_LOG_TRAFFIC
LogFileOutput("U2: %s[%" SIZE_T_FMT "]: recvfrom error %" ERROR_FMT "\n", proto, i, STRERROR(error));
#endif
socket.clearFD();
}
}
}
}
}
void Uthernet2::receiveOnePacket(const size_t i)
{
const Socket &socket = mySockets[i];
switch (socket.sn_sr)
{
case W5100_SN_SR_SOCK_MACRAW:
case W5100_SN_SR_SOCK_IPRAW:
receiveOnePacketRaw();
break;
case W5100_SN_SR_ESTABLISHED:
case W5100_SN_SR_SOCK_UDP:
receiveOnePacketFromSocket(i);
break;
case W5100_SN_SR_CLOSED:
break; // nothing to do
#ifdef U2_LOG_UNKNOWN
default:
LogFileOutput("U2: Read[%" SIZE_T_FMT "]: unknown mode: %02x\n", i, socket.sn_sr);
#endif
};
}
void Uthernet2::sendDataIPRaw(const size_t i, std::vector<uint8_t> &payload)
{
const Socket &socket = mySockets[i];
const uint8_t ttl = myMemory[socket.registerAddress + W5100_SN_TTL];
const uint8_t tos = myMemory[socket.registerAddress + W5100_SN_TOS];
const uint8_t protocol = myMemory[socket.registerAddress + W5100_SN_PROTO];
const uint32_t source = readAddress(myMemory.data() + W5100_SIPR0);
const uint32_t destination = readAddress(myMemory.data() + socket.registerAddress + W5100_SN_DIPR0);
const MACAddress * sourceMac = reinterpret_cast<const MACAddress *>(myMemory.data() + W5100_SHAR0);
const MACAddress * destinationMac;
getMACAddress(destination, destinationMac);
std::vector<uint8_t> packet = createETH2Frame(payload, sourceMac, destinationMac, ttl, tos, protocol, source, destination);
#ifdef U2_LOG_TRAFFIC
LogFileOutput("U2: Send IPRAW[%" SIZE_T_FMT "]: %" SIZE_T_FMT " (%" SIZE_T_FMT ") bytes\n", i, payload.size(), packet.size());
#endif
myNetworkBackend->transmit(packet.size(), packet.data());
}
void Uthernet2::sendDataMacRaw(const size_t i, std::vector<uint8_t> &packet) const
{
#ifdef U2_LOG_TRAFFIC
if (packet.size() >= 12)
{
const uint8_t * data = packet.data();
LogFileOutput("U2: Send MACRAW[%" SIZE_T_FMT "]: " MAC_FMT " -> " MAC_FMT ": %" SIZE_T_FMT " bytes\n", i, MAC_SOURCE(data), MAC_DEST(data), packet.size());
}
else
{
// this is not a valid Ethernet Frame
LogFileOutput("U2: Send MACRAW[%" SIZE_T_FMT "]: XX:XX:XX:XX:XX:XX -> XX:XX:XX:XX:XX:XX: %" SIZE_T_FMT " bytes\n", i, packet.size());
}
#endif
myNetworkBackend->transmit(packet.size(), packet.data());
}
void Uthernet2::sendDataToSocket(const size_t i, std::vector<uint8_t> &data)
{
Socket &socket = mySockets[i];
if (socket.isOpen())
{
sockaddr_in destination = {};
destination.sin_family = AF_INET;
// already in network order
// this seems to be ignored for TCP, and so we reuse the same code
const uint8_t *dest = myMemory.data() + socket.registerAddress + W5100_SN_DIPR0;
destination.sin_addr.s_addr = *reinterpret_cast<const uint32_t *>(dest);
destination.sin_port = *reinterpret_cast<const uint16_t *>(myMemory.data() + socket.registerAddress + W5100_SN_DPORT0);
const ssize_t res = sendto(socket.myFD, reinterpret_cast<const char *>(data.data()), data.size(), 0, (const struct sockaddr *)&destination, sizeof(destination));
#ifdef U2_LOG_TRAFFIC
const char *proto = socket.sn_sr == W5100_SN_SR_SOCK_UDP ? "UDP" : "TCP";
LogFileOutput("U2: Send %s[%" SIZE_T_FMT "]: %" SIZE_T_FMT " of %" SIZE_T_FMT " bytes\n", proto, i, res, data.size());
#endif
if (res < 0)
{
const int error = sock_error();
if (error != SOCK_EAGAIN && error != SOCK_EWOULDBLOCK)
{
#ifdef U2_LOG_TRAFFIC
LogFileOutput("U2: %s[%" SIZE_T_FMT "]: sendto error %" ERROR_FMT "\n", proto, i, STRERROR(error));
#endif
socket.clearFD();
}
}
}
}
void Uthernet2::sendData(const size_t i)
{
const Socket &socket = mySockets[i];
const uint16_t size = socket.transmitSize;
const uint16_t mask = size - 1;
const int sn_tx_rr = readNetworkWord(myMemory.data() + socket.registerAddress + W5100_SN_TX_RD0) & mask;
const int sn_tx_wr = readNetworkWord(myMemory.data() + socket.registerAddress + W5100_SN_TX_WR0) & mask;
const uint16_t base = socket.transmitBase;
const uint16_t rr_address = base + sn_tx_rr;
const uint16_t wr_address = base + sn_tx_wr;
std::vector<uint8_t> data;
if (rr_address < wr_address)
{
data.assign(myMemory.begin() + rr_address, myMemory.begin() + wr_address);
}
else
{
const uint16_t end = base + size;
data.assign(myMemory.begin() + rr_address, myMemory.begin() + end);
data.insert(data.end(), myMemory.begin() + base, myMemory.begin() + wr_address);
}
// move read pointer to writer
myMemory[socket.registerAddress + W5100_SN_TX_RD0] = getIByte(sn_tx_wr, 8);
myMemory[socket.registerAddress + W5100_SN_TX_RD1] = getIByte(sn_tx_wr, 0);
switch (socket.sn_sr)
{
case W5100_SN_SR_SOCK_MACRAW:
sendDataMacRaw(i, data);
break;
case W5100_SN_SR_SOCK_IPRAW:
sendDataIPRaw(i, data);
break;
case W5100_SN_SR_ESTABLISHED:
case W5100_SN_SR_SOCK_UDP:
sendDataToSocket(i, data);
break;
#ifdef U2_LOG_UNKNOWN
default:
LogFileOutput("U2: Send[%" SIZE_T_FMT "]: unknown mode: %02x\n", i, socket.sn_sr);
#endif
}
}
void Uthernet2::resetRXTXBuffers(const size_t i)
{
Socket &socket = mySockets[i];
socket.sn_rx_wr = 0x00;
socket.sn_rx_rsr = 0x00;
myMemory[socket.registerAddress + W5100_SN_TX_RD0] = 0x00;
myMemory[socket.registerAddress + W5100_SN_TX_RD1] = 0x00;
myMemory[socket.registerAddress + W5100_SN_TX_WR0] = 0x00;
myMemory[socket.registerAddress + W5100_SN_TX_WR1] = 0x00;
myMemory[socket.registerAddress + W5100_SN_RX_RD0] = 0x00;
myMemory[socket.registerAddress + W5100_SN_RX_RD1] = 0x00;
}
void Uthernet2::openSystemSocket(const size_t i, const int type, const int protocol, const int status)
{
Socket &s = mySockets[i];
#ifdef _MSC_VER
const Socket::socket_t fd = socket(AF_INET, type, protocol);
#else
const Socket::socket_t fd = socket(AF_INET, type | SOCK_NONBLOCK, protocol);
#endif
if (fd == INVALID_SOCKET)
{
#ifdef U2_LOG_STATE
const char *proto = (status == W5100_SN_SR_SOCK_UDP) ? "UDP" : "TCP";
LogFileOutput("U2: %s[%" SIZE_T_FMT "]: socket error: %" ERROR_FMT "\n", proto, i, STRERROR(sock_error()));
#endif
s.clearFD();
}
else
{
#ifdef _MSC_VER
u_long on = 1;
ioctlsocket(fd, FIONBIO, &on);
#endif
s.setFD(fd, status);
}
}
void Uthernet2::openSocket(const size_t i)
{
Socket &socket = mySockets[i];
const uint8_t mr = myMemory[socket.registerAddress + W5100_SN_MR];
const uint8_t protocol = mr & W5100_SN_MR_PROTO_MASK;
uint8_t &sr = socket.sn_sr;
switch (protocol)
{
case W5100_SN_MR_IPRAW:
sr = W5100_SN_SR_SOCK_IPRAW;
break;
case W5100_SN_MR_MACRAW:
sr = W5100_SN_SR_SOCK_MACRAW;
break;
case W5100_SN_MR_TCP:
openSystemSocket(i, SOCK_STREAM, IPPROTO_TCP, W5100_SN_SR_SOCK_INIT);
break;
case W5100_SN_MR_UDP:
openSystemSocket(i, SOCK_DGRAM, IPPROTO_UDP, W5100_SN_SR_SOCK_UDP);
break;
#ifdef U2_LOG_UNKNOWN
default:
LogFileOutput("U2: Open[%" SIZE_T_FMT "]: unknown mode: %02x\n", i, mr);
#endif
}
resetRXTXBuffers(i); // needed?
#ifdef U2_LOG_STATE
LogFileOutput("U2: Open[%" SIZE_T_FMT "]: SR = %02x\n", i, sr);
#endif
}
void Uthernet2::closeSocket(const size_t i)
{
Socket &socket = mySockets[i];
socket.clearFD();
#ifdef U2_LOG_STATE
LogFileOutput("U2: Close[%" SIZE_T_FMT "]\n", i);
#endif
}
void Uthernet2::connectSocket(const size_t i)
{
Socket &socket = mySockets[i];
const uint8_t *dest = myMemory.data() + socket.registerAddress + W5100_SN_DIPR0;
sockaddr_in destination = {};
destination.sin_family = AF_INET;
// already in network order
destination.sin_port = *reinterpret_cast<const uint16_t *>(myMemory.data() + socket.registerAddress + W5100_SN_DPORT0);
destination.sin_addr.s_addr = *reinterpret_cast<const uint32_t *>(dest);
const int res = connect(socket.myFD, (struct sockaddr *)&destination, sizeof(destination));
if (res == 0)
{
socket.sn_sr = W5100_SN_SR_ESTABLISHED;
socket.myErrno = 0;
#ifdef U2_LOG_STATE
const uint16_t port = readNetworkWord(myMemory.data() + socket.registerAddress + W5100_SN_DPORT0);
LogFileOutput("U2: TCP[%" SIZE_T_FMT "]: CONNECT to %d.%d.%d.%d:%d\n", i, dest[0], dest[1], dest[2], dest[3], port);
#endif
}
else
{
const int error = sock_error();
if (error == SOCK_EINPROGRESS || error == SOCK_EWOULDBLOCK)
{
socket.myErrno = error;
}
else
{
#ifdef U2_LOG_STATE
LogFileOutput("U2: TCP[%" SIZE_T_FMT "]: connect error: %" ERROR_FMT "\n", i, STRERROR(error));
#endif
}
}
}
void Uthernet2::setCommandRegister(const size_t i, const uint8_t value)
{
switch (value)
{
case W5100_SN_CR_OPEN:
openSocket(i);
break;
case W5100_SN_CR_CONNECT:
connectSocket(i);
break;
case W5100_SN_CR_CLOSE:
case W5100_SN_CR_DISCON:
closeSocket(i);
break;
case W5100_SN_CR_SEND:
sendData(i);
break;
case W5100_SN_CR_RECV:
updateRSR(i);
break;
#ifdef U2_LOG_UNKNOWN
default:
LogFileOutput("U2: Unknown command[%" SIZE_T_FMT "]: %02x\n", i, value);
#endif
}
}
uint8_t Uthernet2::readSocketRegister(const uint16_t address)
{
const uint16_t i = (address >> 8) - 0x04;
const uint16_t loc = address & 0xFF;
uint8_t value;
switch (loc)
{
case W5100_SN_MR:
case W5100_SN_CR:
value = myMemory[address];
break;
case W5100_SN_SR:
value = mySockets[i].sn_sr;
break;
case W5100_SN_TX_FSR0:
value = getTXFreeSizeRegister(i, 8);
break;
case W5100_SN_TX_FSR1:
value = getTXFreeSizeRegister(i, 0);
break;
case W5100_SN_TX_RD0:
case W5100_SN_TX_RD1:
value = myMemory[address];
break;
case W5100_SN_TX_WR0:
case W5100_SN_TX_WR1:
value = myMemory[address];
break;
case W5100_SN_RX_RSR0:
receiveOnePacket(i);
value = getRXDataSizeRegister(i, 8);
break;
case W5100_SN_RX_RSR1:
receiveOnePacket(i);
value = getRXDataSizeRegister(i, 0);
break;
case W5100_SN_RX_RD0:
case W5100_SN_RX_RD1:
value = myMemory[address];
break;
default:
#ifdef U2_LOG_UNKNOWN
LogFileOutput("U2: Get unknown socket register[%d]: %04x\n", i, address);
#endif
value = myMemory[address];
break;
}
return value;
}
uint8_t Uthernet2::readValueAt(const uint16_t address)
{
uint8_t value;
if (address == W5100_MR)
{
value = myModeRegister;
}
else if (address >= W5100_GAR0 && address <= W5100_UPORT1)
{
value = myMemory[address];
}
else if (address >= W5100_S0_BASE && address <= W5100_S3_MAX)
{
value = readSocketRegister(address);
}
else if (address >= W5100_TX_BASE && address <= W5100_MEM_MAX)
{
value = myMemory[address];
}
else
{
#ifdef U2_LOG_UNKNOWN
LogFileOutput("U2: Read unknown location: %04x\n", address);
#endif
// this might not be 100% correct if address >= 0x8000
// see top of page 13 Uthernet II
value = myMemory[address & W5100_MEM_MAX];
}
return value;
}
void Uthernet2::autoIncrement()
{
if (myModeRegister & W5100_MR_AI)
{
++myDataAddress;
// Read bottom of Uthernet II page 12
// Setting the address to values >= 0x8000 is not really supported
switch (myDataAddress)
{
case W5100_RX_BASE:
case W5100_MEM_SIZE:
myDataAddress -= 0x2000;
break;
}
}
}
uint8_t Uthernet2::readValue()
{
const uint8_t value = readValueAt(myDataAddress);
autoIncrement();
return value;
}
void Uthernet2::setIPProtocol(const size_t i, const uint16_t address, const uint8_t value)
{
myMemory[address] = value;
#ifdef U2_LOG_STATE
LogFileOutput("U2: IP PROTO[%" SIZE_T_FMT "] = %d\n", i, value);
#endif
}
void Uthernet2::setIPTypeOfService(const size_t i, const uint16_t address, const uint8_t value)
{
myMemory[address] = value;
#ifdef U2_LOG_STATE
LogFileOutput("U2: IP TOS[%" SIZE_T_FMT "] = %d\n", i, value);
#endif
}
void Uthernet2::setIPTTL(const size_t i, const uint16_t address, const uint8_t value)
{
myMemory[address] = value;
#ifdef U2_LOG_STATE
LogFileOutput("U2: IP TTL[%" SIZE_T_FMT "] = %d\n", i, value);
#endif
}
void Uthernet2::writeSocketRegister(const uint16_t address, const uint8_t value)
{
const uint16_t i = (address >> 8) - 0x04;
const uint16_t loc = address & 0xFF;
switch (loc)
{
case W5100_SN_MR:
setSocketModeRegister(i, address, value);
break;
case W5100_SN_CR:
setCommandRegister(i, value);
break;
case W5100_SN_PORT0:
case W5100_SN_PORT1:
case W5100_SN_DPORT0:
case W5100_SN_DPORT1:
myMemory[address] = value;
break;
case W5100_SN_DIPR0:
case W5100_SN_DIPR1:
case W5100_SN_DIPR2:
case W5100_SN_DIPR3:
myMemory[address] = value;
break;
case W5100_SN_PROTO:
setIPProtocol(i, address, value);
break;
case W5100_SN_TOS:
setIPTypeOfService(i, address, value);
break;
case W5100_SN_TTL:
setIPTTL(i, address, value);
break;
case W5100_SN_TX_WR0:
myMemory[address] = value;
break;
case W5100_SN_TX_WR1:
myMemory[address] = value;
break;
case W5100_SN_RX_RD0:
myMemory[address] = value;
break;
case W5100_SN_RX_RD1:
myMemory[address] = value;
break;
#ifdef U2_LOG_UNKNOWN
default:
LogFileOutput("U2: Set unknown socket register[%d]: %04x\n", i, address);
break;
#endif
};
}
void Uthernet2::setModeRegister(const uint16_t address, const uint8_t value)
{
if (value & W5100_MR_RST)
{
Reset(false);
}
else
{
myModeRegister = value;
}
}
void Uthernet2::writeCommonRegister(const uint16_t address, const uint8_t value)
{
if (address == W5100_MR)
{
setModeRegister(address, value);
}
else if (address >= W5100_GAR0 && address <= W5100_GAR3 ||
address >= W5100_SUBR0 && address <= W5100_SUBR3 ||
address >= W5100_SHAR0 && address <= W5100_SHAR5 ||
address >= W5100_SIPR0 && address <= W5100_SIPR3)
{
myMemory[address] = value;
}
else if (address == W5100_RMSR)
{
setRXSizes(address, value);
}
else if (address == W5100_TMSR)
{
setTXSizes(address, value);
}
#ifdef U2_LOG_UNKNOWN
else
{
LogFileOutput("U2: Set unknown common register: %04x\n", address);
}
#endif
}
void Uthernet2::writeValueAt(const uint16_t address, const uint8_t value)
{
if (address >= W5100_MR && address <= W5100_UPORT1)
{
writeCommonRegister(address, value);
}
else if (address >= W5100_S0_BASE && address <= W5100_S3_MAX)
{
writeSocketRegister(address, value);
}
else if (address >= W5100_TX_BASE && address <= W5100_MEM_MAX)
{
myMemory[address] = value;
}
#ifdef U2_LOG_UNKNOWN
else
{
LogFileOutput("U2: Write to unknown location: %02x to %04x\n", value, address);
}
#endif
}
void Uthernet2::writeValue(const uint8_t value)
{
writeValueAt(myDataAddress, value);
autoIncrement();
}
void Uthernet2::Reset(const bool powerCycle)
{
LogFileOutput("U2: Uthernet II initialisation\n");
myModeRegister = 0;
if (powerCycle)
{
// dataAddress is NOT reset, see page 10 of Uthernet II
myDataAddress = 0;
myNetworkBackend = GetFrame().CreateNetworkBackend();
myARPCache.clear();
}
mySockets.clear();
mySockets.resize(4);
myMemory.clear();
myMemory.resize(W5100_MEM_SIZE, 0);
for (size_t i = 0; i < mySockets.size(); ++i)
{
resetRXTXBuffers(i);
mySockets[i].clearFD();
const uint16_t registerAddress = static_cast<uint16_t>(W5100_S0_BASE + (i << 8));
mySockets[i].registerAddress = registerAddress;
myMemory[registerAddress + W5100_SN_DHAR0] = 0xFF;
myMemory[registerAddress + W5100_SN_DHAR1] = 0xFF;
myMemory[registerAddress + W5100_SN_DHAR2] = 0xFF;
myMemory[registerAddress + W5100_SN_DHAR3] = 0xFF;
myMemory[registerAddress + W5100_SN_DHAR4] = 0xFF;
myMemory[registerAddress + W5100_SN_DHAR5] = 0xFF;
myMemory[registerAddress + W5100_SN_TTL] = 0x80;
}
// initial values
myMemory[W5100_RTR0] = 0x07;
myMemory[W5100_RTR1] = 0xD0;
myMemory[W5100_RCR] = 0x08;
setRXSizes(W5100_RMSR, 0x55);
setTXSizes(W5100_TMSR, 0x55);
myMemory[W5100_PTIMER] = 0x28;
}
BYTE Uthernet2::IO_C0(WORD programcounter, WORD address, BYTE write, BYTE value, ULONG nCycles)
{
BYTE res = write ? 0 : MemReadFloatingBus(nCycles);
#ifdef U2_LOG_VERBOSE
const uint16_t oldAddress = myDataAddress;
#endif
const uint8_t loc = address & 0x0F;
if (write)
{
switch (loc)
{
case U2_C0X_MODE_REGISTER:
setModeRegister(W5100_MR, value);
break;
case U2_C0X_ADDRESS_HIGH:
myDataAddress = (value << 8) | (myDataAddress & 0x00FF);
break;
case U2_C0X_ADDRESS_LOW:
myDataAddress = (value << 0) | (myDataAddress & 0xFF00);
break;
case U2_C0X_DATA_PORT:
writeValue(value);
break;
}
}
else
{
switch (loc)
{
case U2_C0X_MODE_REGISTER:
res = myModeRegister;
break;
case U2_C0X_ADDRESS_HIGH:
res = getIByte(myDataAddress, 8);
break;
case U2_C0X_ADDRESS_LOW:
res = getIByte(myDataAddress, 0);
break;
case U2_C0X_DATA_PORT:
res = readValue();
break;
}
}
#ifdef U2_LOG_VERBOSE
const char *mode = write ? "WRITE" : "READ ";
const char c = std::isprint(res) ? res : '.';
LogFileOutput("U2: %04x: %s %04x[%04x] %02x -> %02x, '%c' (%d -> %d)\n", programcounter, mode, address, oldAddress, value, res, c, value, res);
#endif
return res;
}
BYTE __stdcall u2_C0(WORD programcounter, WORD address, BYTE write, BYTE value, ULONG nCycles)
{
UINT uSlot = ((address & 0xff) >> 4) - 8;
Uthernet2 *pCard = (Uthernet2 *)MemGetSlotParameters(uSlot);
return pCard->IO_C0(programcounter, address, write, value, nCycles);
}
void Uthernet2::InitializeIO(LPBYTE pCxRomPeripheral)
{
RegisterIoHandler(m_slot, u2_C0, u2_C0, nullptr, nullptr, this, nullptr);
}
void Uthernet2::getMACAddress(const uint32_t address, const MACAddress * & mac)
{
const auto it = myARPCache.find(address);
if (it != myARPCache.end())
{
mac = &it->second;
}
else
{
MACAddress & macAddr = myARPCache[address];
const uint32_t source = readAddress(myMemory.data() + W5100_SIPR0);
if (address == source)
{
const uint8_t * sourceMac = myMemory.data() + W5100_SHAR0;
memcpy(macAddr.address, sourceMac, sizeof(macAddr.address));
}
else
{
memset(macAddr.address, 0xFF, sizeof(macAddr.address)); // fallback to broadcast
if (address != INADDR_BROADCAST)
{
const uint32_t subnet = readAddress(myMemory.data() + W5100_SUBR0);
if ((address & subnet) == (source & subnet))
{
// same network: send ARP request
myNetworkBackend->getMACAddress(address, macAddr);
}
else
{
const uint32_t gateway = readAddress(myMemory.data() + W5100_GAR0);
// different network: go via gateway
myNetworkBackend->getMACAddress(gateway, macAddr);
}
}
}
mac = &macAddr;
}
}
void Uthernet2::Update(const ULONG nExecutedCycles)
{
myNetworkBackend->update(nExecutedCycles);
for (Socket &socket : mySockets)
{
socket.process();
}
}
static const UINT kUNIT_VERSION = 1;
#define SS_YAML_KEY_NETWORK_INTERFACE "Network Interface"
#define SS_YAML_KEY_COMMON_REGISTERS "Common Registers"
#define SS_YAML_KEY_MODE_REGISTER "Mode Register"
#define SS_YAML_KEY_DATA_ADDRESS "Data Address"
#define SS_YAML_KEY_SOCKETS_REGISTERS "Socket Registers"
#define SS_YAML_KEY_SOCKET "Socket"
#define SS_YAML_KEY_TX_MEMORY "TX Memory"
#define SS_YAML_KEY_RX_MEMORY "RX Memory"
void Uthernet2::SaveSnapshot(YamlSaveHelper &yamlSaveHelper)
{
YamlSaveHelper::Slot slot(yamlSaveHelper, GetSnapshotCardName(), m_slot, kUNIT_VERSION);
YamlSaveHelper::Label unit(yamlSaveHelper, "%s:\n", SS_YAML_KEY_STATE);
yamlSaveHelper.SaveString(SS_YAML_KEY_NETWORK_INTERFACE, PCapBackend::tfe_interface);
yamlSaveHelper.SaveHexUint8(SS_YAML_KEY_MODE_REGISTER, myModeRegister);
yamlSaveHelper.SaveHexUint16(SS_YAML_KEY_DATA_ADDRESS, myDataAddress);
// we skip the reserved areas as seen @ P.14 2.MemoryMap of the W5100 Manual
{
YamlSaveHelper::Label state(yamlSaveHelper, "%s:\n", SS_YAML_KEY_COMMON_REGISTERS);
yamlSaveHelper.SaveMemory(myMemory.data(), W5100_UPORT1 + 1);
}
// 0x0030 to 0x0400 RESERVED
{
YamlSaveHelper::Label state(yamlSaveHelper, "%s:\n", SS_YAML_KEY_SOCKETS_REGISTERS);
yamlSaveHelper.SaveMemory(myMemory.data() + W5100_S0_BASE, (W5100_S3_MAX + 1) - W5100_S0_BASE);
}
// 0x0800 to 0x4000 RESERVED
{
YamlSaveHelper::Label state(yamlSaveHelper, "%s:\n", SS_YAML_KEY_TX_MEMORY);
yamlSaveHelper.SaveMemory(myMemory.data() + W5100_TX_BASE, W5100_RX_BASE - W5100_TX_BASE);
}
{
YamlSaveHelper::Label state(yamlSaveHelper, "%s:\n", SS_YAML_KEY_RX_MEMORY);
yamlSaveHelper.SaveMemory(myMemory.data() + W5100_RX_BASE, W5100_MEM_SIZE - W5100_RX_BASE);
}
for (size_t i = 0; i < mySockets.size(); ++i)
{
YamlSaveHelper::Label state(yamlSaveHelper, "%s %" SIZE_T_FMT ":\n", SS_YAML_KEY_SOCKET, i);
mySockets[i].SaveSnapshot(yamlSaveHelper);
}
}
bool Uthernet2::LoadSnapshot(YamlLoadHelper &yamlLoadHelper, UINT version)
{
if (version < 1 || version > kUNIT_VERSION)
ThrowErrorInvalidVersion(version);
PCapBackend::tfe_interface = yamlLoadHelper.LoadString(SS_YAML_KEY_NETWORK_INTERFACE);
PCapBackend::tfe_SetRegistryInterface(m_slot, PCapBackend::tfe_interface);
Reset(true); // AFTER the interface name has been restored
myModeRegister = yamlLoadHelper.LoadUint(SS_YAML_KEY_MODE_REGISTER);
myDataAddress = yamlLoadHelper.LoadUint(SS_YAML_KEY_DATA_ADDRESS);
if (yamlLoadHelper.GetSubMap(SS_YAML_KEY_COMMON_REGISTERS))
{
yamlLoadHelper.LoadMemory(myMemory.data(), W5100_UPORT1 + 1);
yamlLoadHelper.PopMap();
}
if (yamlLoadHelper.GetSubMap(SS_YAML_KEY_SOCKETS_REGISTERS))
{
yamlLoadHelper.LoadMemory(myMemory.data() + W5100_S0_BASE, (W5100_S3_MAX + 1) - W5100_S0_BASE);
yamlLoadHelper.PopMap();
}
if (yamlLoadHelper.GetSubMap(SS_YAML_KEY_TX_MEMORY))
{
yamlLoadHelper.LoadMemory(myMemory.data() + W5100_TX_BASE, W5100_RX_BASE - W5100_TX_BASE);
yamlLoadHelper.PopMap();
}
if (yamlLoadHelper.GetSubMap(SS_YAML_KEY_RX_MEMORY))
{
yamlLoadHelper.LoadMemory(myMemory.data() + W5100_RX_BASE, W5100_MEM_SIZE - W5100_RX_BASE);
yamlLoadHelper.PopMap();
}
setRXSizes(W5100_RMSR, myMemory[W5100_RMSR]);
setTXSizes(W5100_TMSR, myMemory[W5100_TMSR]);
for (size_t i = 0; i < mySockets.size(); ++i)
{
const std::string key = StrFormat("%s %" SIZE_T_FMT, SS_YAML_KEY_SOCKET, i);
if (yamlLoadHelper.GetSubMap(key))
{
mySockets[i].LoadSnapshot(yamlLoadHelper);
yamlLoadHelper.PopMap();
}
}
return true;
}