AppleWin/source/Mockingboard.cpp

1442 lines
48 KiB
C++

/*
AppleWin : An Apple //e emulator for Windows
Copyright (C) 1994-1996, Michael O'Brien
Copyright (C) 1999-2001, Oliver Schmidt
Copyright (C) 2002-2005, Tom Charlesworth
Copyright (C) 2006-2007, Tom Charlesworth, Michael Pohoreski
AppleWin is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
AppleWin is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with AppleWin; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
/* Description: Mockingboard/Phasor emulation
*
*/
// Notes on Votrax chip (on original Mockingboards):
// From Crimewave (Penguin Software):
// . Init:
// . DDRB = 0xFF
// . PCR = 0xB0
// . IER = 0x90
// . ORB = 0x03 (PAUSE0) or 0x3F (STOP)
// . IRQ:
// . ORB = Phoneme value
// . IRQ last phoneme complete:
// . IER = 0x10
// . ORB = 0x3F (STOP)
//
#include "StdAfx.h"
#include "Mockingboard.h"
#include "MockingboardDefs.h"
#include "6522.h"
#include "Core.h"
#include "CardManager.h"
#include "CPU.h"
#include "Log.h"
#include "Memory.h"
#include "SoundCore.h"
#include "SynchronousEventManager.h"
#include "YamlHelper.h"
#include "AY8910.h"
#include "SSI263.h"
#define DBG_MB_SS_CARD 0 // NB. From UI, select Mockingboard (not Phasor)
#define DBG_SUPPORT_ECHOPLUS 0 // Allow Phasor (in Echo+ mode) to pass the TMS5220 detection used by Echo+ disk
//---------------------------------------------------------------------------
MockingboardCard::MockingboardCard(UINT slot, SS_CARDTYPE type) : Card(type, slot), m_MBSubUnit{ {slot, type}, {slot, type} }
{
m_lastCumulativeCycle = 0;
m_lastAYUpdateCycle = 0;
for (UINT i = 0; i < NUM_VOICES; i++)
m_ppAYVoiceBuffer[i] = new short[MAX_SAMPLES]; // Buffer can hold a max of 0.37 seconds worth of samples (16384/44100)
m_inActiveCycleCount = 0;
m_regAccessedFlag = false;
m_isActive = false;
m_phasorEnable = (QueryType() == CT_Phasor);
m_phasorMode = PH_Mockingboard;
m_phasorClockScaleFactor = 1;
m_lastMBUpdateCycle = 0;
m_numSamplesError = 0;
//
for (int id = 0; id < kNumSyncEvents; id++)
{
int syncId = (m_slot << 4) + id; // NB. Encode the slot# into the id - used by MB_SyncEventCallback()
m_syncEvent[id] = new SyncEvent(syncId, 0, MB_SyncEventCallback);
}
for (UINT i = 0; i < NUM_SUBUNITS_PER_MB; i++)
{
m_MBSubUnit[i].nAY8910Number = i;
m_MBSubUnit[i].Reset(QueryType());
const UINT id0 = i * SY6522::kNumTimersPer6522 + 0; // TIMER1
const UINT id1 = i * SY6522::kNumTimersPer6522 + 1; // TIMER2
m_MBSubUnit[i].sy6522.InitSyncEvents(m_syncEvent[id0], m_syncEvent[id1]);
m_MBSubUnit[i].ssi263.SetDevice(i);
}
AY8910_InitAll((int)g_fCurrentCLK6502, SAMPLE_RATE);
LogFileOutput("MockingboardCard::ctor: AY8910_InitAll()\n");
Reset(true);
LogFileOutput("MockingboardCard::ctor: Reset()\n");
}
MockingboardCard::~MockingboardCard(void)
{
Destroy();
}
//---------------------------------------------------------------------------
bool MockingboardCard::IsAnyTimer1Active(void)
{
bool active = false;
for (UINT i = 0; i < NUM_SUBUNITS_PER_MB; i++)
active |= m_MBSubUnit[i].sy6522.IsTimer1Active();
return active;
}
//---------------------------------------------------------------------------
#ifdef _DEBUG
void MockingboardCard::Get6522IrqDescription(std::string& desc)
{
bool isIRQ = false;
for (UINT i = 0; i < NUM_SUBUNITS_PER_MB; i++)
{
if (m_MBSubUnit[i].sy6522.GetReg(SY6522::rIFR) & SY6522::IFR_IRQ)
{
isIRQ = true;
break;
}
}
if (!isIRQ)
return;
//
desc += "Slot-";
desc += m_slot;
desc += ": ";
for (UINT i = 0; i < NUM_SUBUNITS_PER_MB; i++)
{
if (m_MBSubUnit[i].sy6522.GetReg(SY6522::rIFR) & SY6522::IFR_IRQ)
{
if (m_MBSubUnit[i].sy6522.GetReg(SY6522::rIFR) & SY6522::IxR_TIMER1)
{
desc += ((i&1)==0) ? "A:" : "B:";
desc += "TIMER1 ";
}
if (m_MBSubUnit[i].sy6522.GetReg(SY6522::rIFR) & SY6522::IxR_TIMER2)
{
desc += ((i&1)==0) ? "A:" : "B:";
desc += "TIMER2 ";
}
if (m_MBSubUnit[i].sy6522.GetReg(SY6522::rIFR) & SY6522::IxR_VOTRAX)
{
desc += ((i&1)==0) ? "A:" : "B:";
desc += "VOTRAX ";
}
if (m_MBSubUnit[i].sy6522.GetReg(SY6522::rIFR) & SY6522::IxR_SSI263)
{
desc += ((i&1)==0) ? "A:" : "B:";
desc += "SSI263 ";
}
}
}
desc += "\n";
}
#endif
//-----------------------------------------------------------------------------
// Notes on Phasor's AY-3-8913 chip-select & r/w: (GH#1192)
// ----------------------------------------------
//
// Where: AY1 is the primary AY-3-8913 connected to 6522, and AY2 is the 2nd-ary.
//
// AFAICT, inputs to the Phasor GAL are:
// . ORB.b4:3 = Chip Select (CS) for AY1 & AY2 (active low)
// .(ORB.b2 : AY /RESET is not an input - see below)
// . ORB.b1:0 = PSG Function (INACTIVE, READ, WRITE, LATCH) [Or since LATCH=%11, then maybe a 2-input AND: b1.b0 -> GAL?]
// . Phasor mode (Mockingboard, Echo+, Phasor-native)
// . Slot inputs (address, reset, etc)
// And outputs from the GAL are:
// . GAL CS' for AY1 & AY2 (not just passed-through, but dependent on PSG Function)
// (Not PSG Function - probably just passed-through from 6522 to the chip-selected AY-3-8913's)
//
// Not an input to Phasor GAL:
// . ORB.b2 = AY /RESET (NB. not a PSG Function). Directly connected to AY's /RESET pin (or in Phasor's case: both AYs' /RESET pins).
//
// In Phasor-native mode, GAL logic:
// . AY2 LATCH func selects AY2 and AY1; sets latch addr for AY2 and AY1
// . AY1 LATCH func selects AY1; deselects AY2; sets latch addr for AY1
// . AY2 & AY1 LATCH func selects AY2 and AY1; sets latch addr for AY2 and AY1
// . AY2 WRITE(READ) func writes(reads) AY2 if it's selected
// . AY1 WRITE(READ) func writes(reads) AY1; writes(reads) AY2 if it's selected. NB. If both chips, then the READ is the OR-sum.
//
// EG, to do a "AY1 LATCH", then write 6522 ORB with b4:3=%01, b2:0=%111
//
void MockingboardCard::WriteToORB(BYTE subunit, BYTE subunitForAY/*=0*/)
{
BYTE value = m_MBSubUnit[subunit].sy6522.Read(SY6522::rORB);
if ((QueryType() == CT_MockingboardC || QueryType() == CT_Phasor) && // Not CT_MegaAudio/CT_SDMusic
subunit == 0 && // SC01 only at $Cn00 (not $Cn80)
m_MBSubUnit[subunit].sy6522.Read(SY6522::rPCR) == 0xB0)
{
// Votrax speech data
const BYTE DDRB = m_MBSubUnit[subunit].sy6522.Read(SY6522::rDDRB);
m_MBSubUnit[subunit].ssi263.Votrax_Write((value & DDRB) | (DDRB ^ 0xff)); // DDRB's zero bits (inputs) are high impedence, so output as 1 (GH#952)
return;
}
#if DBG_MB_SS_CARD
if ((subunit & 1) == 1)
AY8910_Write(subunit, 0, nValue);
#else
if (m_phasorEnable)
{
const int kAY1 = 2; // Phasor mode: bit4=0 (active low) selects the 1st AY8913, ie. the only AY8913 in Mockingboard mode (confirmed on real Phasor h/w)
// Echo+ mode: bit3=1 (active high) selects the 1st AY8913
const int kAY2 = 1; // Phasor mode: bit3=0 (active low) selects the 2nd AY8913 attached to this 6522 (unavailable in Mockingboard mode)
// Echo+ mode: bit4=1 (active high) selects the 2nd AY8913
const int nAY_CS = (m_phasorMode == PH_EchoPlus) ? ((value >> 4) & 1) | ((value >> 2) & 2) // swap bits 4 & 3
: (m_phasorMode == PH_Phasor) ? (~(value >> 3) & 3)
: kAY1; // Anything else is Mockingboard
if (m_phasorMode == PH_EchoPlus)
subunit = SY6522_DEVICE_B;
if ((value & 4) == 0)
{
AY8913_Reset(subunit);
return;
}
// NB. For PH_Phasor, when selecting *both* AYs, then order matters: first do AY8913_DEVICE_A then AY8913_DEVICE_B
// Reason: from GAL logic: 'AY1 LATCH func' deselects AY2, then 'AY2 LATCH func' selects AY2 and AY1. (And we want both selected)
if (nAY_CS & kAY1)
AY8913_Write(subunit, AY8913_DEVICE_A, value);
if (nAY_CS & kAY2)
AY8913_Write(subunit, AY8913_DEVICE_B, value);
if (nAY_CS == 0)
m_MBSubUnit[subunit].sy6522.UpdatePortAForHiZ();
}
else
{
if ((value & 4) == 0)
{
AY8913_Reset(subunit);
return;
}
if (QueryType() == CT_SDMusic)
AY8913_Write(subunitForAY, AY8913_DEVICE_A, value);
else
AY8913_Write(subunit, AY8913_DEVICE_A, value);
}
#endif
}
//-----------------------------------------------------------------------------
void MockingboardCard::AY8913_Reset(BYTE subunit)
{
AY8910_reset(subunit, AY8913_DEVICE_A);
if (QueryType() == CT_Phasor)
AY8910_reset(subunit, AY8913_DEVICE_B); // GH#1197: Reset both AYs regardless of Phasor mode & chip-select bits
m_MBSubUnit[subunit].Reset(QueryType());
}
void MockingboardCard::AY8913_Write(BYTE subunit, BYTE ay, BYTE value)
{
m_regAccessedFlag = true;
MB_SUBUNIT* pMB = &m_MBSubUnit[subunit];
SY6522& r6522 = (QueryType() != CT_SDMusic) ? pMB->sy6522 : m_MBSubUnit[0].sy6522;
// Determine the AY8913 inputs
int nBDIR = (value & 2) ? 1 : 0;
const int nBC2 = 1; // Hardwired to +5V
int nBC1 = value & 1;
MockingboardUnitState_e nAYFunc = (MockingboardUnitState_e) ((nBDIR<<2) | (nBC2<<1) | nBC1);
MockingboardUnitState_e& state = pMB->state[ay]; // GH#659
#if _DEBUG
if (!m_phasorEnable || m_phasorMode == PH_Mockingboard)
_ASSERT(ay == AY8913_DEVICE_A);
if (nAYFunc == AY_READ || nAYFunc == AY_WRITE || nAYFunc == AY_LATCH)
_ASSERT(state == AY_INACTIVE);
#endif
if (state == AY_INACTIVE) // GH#320: functions only work from inactive state
{
switch (nAYFunc)
{
case AY_INACTIVE: // 4: INACTIVE
break;
case AY_READ: // 5: READ FROM PSG (need to set DDRA to input)
if (QueryType() != CT_MegaAudio)
{
if (pMB->isChipSelected[ay] && pMB->isAYLatchedAddressValid[ay])
r6522.SetRegORA(AYReadReg(subunit, ay, pMB->nAYCurrentRegister[ay]) & (r6522.GetReg(SY6522::rDDRA) ^ 0xff));
else
r6522.UpdatePortAForHiZ();
}
else
{
r6522.SetRegORA(0x00); // Reads not supported.
}
if (m_phasorEnable && m_phasorMode == PH_Phasor) // GH#1192
{
if (ay == AY8913_DEVICE_A)
{
if (pMB->isChipSelected[AY8913_DEVICE_B] && pMB->isAYLatchedAddressValid[AY8913_DEVICE_B])
r6522.SetRegORA(r6522.GetReg(SY6522::rORA) | (AYReadReg(subunit, AY8913_DEVICE_B, pMB->nAYCurrentRegister[AY8913_DEVICE_B]) & (r6522.GetReg(SY6522::rDDRA) ^ 0xff)));
}
}
break;
case AY_WRITE: // 6: WRITE TO PSG
if (pMB->isChipSelected[ay] && pMB->isAYLatchedAddressValid[ay])
_AYWriteReg(subunit, ay, pMB->nAYCurrentRegister[ay], r6522.GetReg(SY6522::rORA));
// else if invalid then just ignore
if (m_phasorEnable && m_phasorMode == PH_Phasor) // GH#1192
{
if (ay == AY8913_DEVICE_A)
{
if (pMB->isChipSelected[AY8913_DEVICE_B] && pMB->isAYLatchedAddressValid[AY8913_DEVICE_B])
_AYWriteReg(subunit, AY8913_DEVICE_B, pMB->nAYCurrentRegister[AY8913_DEVICE_B], r6522.GetReg(SY6522::rORA));
}
}
break;
case AY_LATCH: // 7: LATCH ADDRESS
// http://www.worldofspectrum.org/forums/showthread.php?t=23327
// Selecting an unused register number above 0x0f puts the AY into a state where
// any values written to the data/address bus are ignored, but can be read back
// within a few tens of thousands of cycles before they decay to zero.
if (r6522.GetReg(SY6522::rORA) <= 0x0F)
{
pMB->nAYCurrentRegister[ay] = r6522.GetReg(SY6522::rORA) & 0x0F;
pMB->isChipSelected[ay] = true;
pMB->isAYLatchedAddressValid[ay] = true;
if (m_phasorEnable && m_phasorMode == PH_Phasor) // GH#1192
{
if (ay == AY8913_DEVICE_A)
{
pMB->isChipSelected[AY8913_DEVICE_B] = false;
}
else // AY8913_DEVICE_B
{
pMB->isChipSelected[AY8913_DEVICE_A] = true;
pMB->nAYCurrentRegister[AY8913_DEVICE_A] = pMB->nAYCurrentRegister[AY8913_DEVICE_B];
pMB->isAYLatchedAddressValid[AY8913_DEVICE_A] = true;
}
}
}
// else Pro-Mockingboard (clone from HK)
break;
}
}
state = nAYFunc;
if (state == AY_INACTIVE && m_phasorEnable) // Phasor(even in MB mode) will read PortA inputs as high.
r6522.UpdatePortAForHiZ(); // Float high any PortA input bits (GH#1193)
}
//-----------------------------------------------------------------------------
void MockingboardCard::UpdateIFRandIRQ(MB_SUBUNIT* pMB, BYTE clr_mask, BYTE set_mask)
{
pMB->sy6522.UpdateIFR(clr_mask, set_mask); // which calls UpdateIRQ()
}
//---------------------------------------------------------------------------
// Called from MockingboardCardMgr
bool MockingboardCard::Is6522IRQ(void)
{
// Now update the IRQ signal from all 6522s
// . OR-sum of all active TIMER1, TIMER2 & SPEECH sources (from all 6522s)
bool irq = false;
for (UINT i = 0; i < NUM_SUBUNITS_PER_MB; i++)
irq |= m_MBSubUnit[i].sy6522.GetReg(SY6522::rIFR) & 0x80 ? true : false;
// NB. Mockingboard generates IRQ on both 6522s:
// . SSI263's IRQ (A/!R) is routed via the 2nd 6522 (at $Cn80) and must generate a 6502 IRQ (not NMI)
// - NB. 2nd SSI263's IRQ is routed via the 1st 6522 (at $Cn00) and again generates a 6502 IRQ
// . SC-01's IRQ (A/!R) is routed via the 6522 at $Cn00 (NB. Only the Mockingboard "Sound/Speech I" card supports the SC-01)
// Phasor's SSI263 IRQ (A/!R) line is *also* wired directly to the 6502's IRQ (as well as the 6522's CA1)
return irq;
}
//---------------------------------------------------------------------------
// Called from class SSI263
UINT64 MockingboardCard::GetLastCumulativeCycles(void)
{
return m_lastCumulativeCycle;
}
void MockingboardCard::UpdateIFR(BYTE nDevice, BYTE clr_mask, BYTE set_mask)
{
UpdateIFRandIRQ(&m_MBSubUnit[nDevice], clr_mask, set_mask);
}
BYTE MockingboardCard::GetPCR(BYTE nDevice)
{
return m_MBSubUnit[nDevice].sy6522.GetReg(SY6522::rPCR);
}
//===========================================================================
// Called by:
// . MB_SyncEventCallback() -> MockingboardCardManager::UpdateSoundBuffer() on a TIMER1 (not TIMER2) underflow - when IsAnyTimer1Active() == true (for any MB)
// . MockingboardCardManager::Update() - when IsAnyTimer1Active() == false (for all MB's)
UINT MockingboardCard::MB_Update(void)
{
if (g_bFullSpeed)
{
// Keep AY reg writes relative to the current 'frame'
// - Required for Ultima3:
// . Tune ends
// . g_bFullSpeed:=true (disk-spinning) for ~50 frames
// . U3 sets AY_ENABLE:=0xFF (as a side-effect, this sets g_bFullSpeed:=false)
// o Without this, the write to AY_ENABLE gets ignored (since AY8910's /m_lastCumulativeCycle/ was last set 50 frame ago)
AY8910UpdateSetCycles();
// TODO:
// If any AY regs have changed then push them out to the AY chip
return 0;
}
//
if (!m_regAccessedFlag)
{
if (!m_inActiveCycleCount)
{
m_inActiveCycleCount = g_nCumulativeCycles;
}
else if (g_nCumulativeCycles - m_inActiveCycleCount > (unsigned __int64)g_fCurrentCLK6502 / 10)
{
// After 0.1 sec of Apple time, assume MB is not active
m_isActive = false;
}
}
else
{
m_inActiveCycleCount = 0;
m_regAccessedFlag = false;
m_isActive = true;
}
//
// For small timer periods, wait for a period of 500cy before updating DirectSound ring-buffer.
// NB. A timer period of less than 24cy will yield nNumSamplesPerPeriod=0.
const double kMinimumUpdateInterval = 500.0; // Arbitary (500 cycles = 21 samples)
const double kMaximumUpdateInterval = (double)(0xFFFF + 2); // Max 6522 timer interval (2756 samples)
if (m_lastMBUpdateCycle == 0)
m_lastMBUpdateCycle = m_lastCumulativeCycle; // Initial call to MB_Update() after reset/power-cycle
_ASSERT(m_lastCumulativeCycle >= m_lastMBUpdateCycle);
double updateInterval = (double)(m_lastCumulativeCycle - m_lastMBUpdateCycle);
if (updateInterval < kMinimumUpdateInterval)
return 0;
if (updateInterval > kMaximumUpdateInterval)
updateInterval = kMaximumUpdateInterval;
m_lastMBUpdateCycle = m_lastCumulativeCycle;
const double nIrqFreq = g_fCurrentCLK6502 / updateInterval + 0.5; // Round-up
const int nNumSamplesPerPeriod = (int)((double)SAMPLE_RATE / nIrqFreq); // Eg. For 60Hz this is 735
int nNumSamples = nNumSamplesPerPeriod + m_numSamplesError; // Apply correction
if (nNumSamples <= 0)
nNumSamples = 0;
if (nNumSamples > 2 * nNumSamplesPerPeriod)
nNumSamples = 2 * nNumSamplesPerPeriod;
if (nNumSamples > MAX_SAMPLES)
nNumSamples = MAX_SAMPLES; // Clamp to prevent buffer overflow
if (nNumSamples)
{
for (BYTE subunit = 0; subunit < NUM_SUBUNITS_PER_MB; subunit++)
{
for (BYTE ay = 0; ay < NUM_AY8913_PER_SUBUNIT; ay++)
{
const UINT chip = subunit * NUM_AY8913_PER_SUBUNIT + ay;
AY8910Update(subunit, ay, &m_ppAYVoiceBuffer[chip * NUM_VOICES_PER_AY8913], nNumSamples);
}
}
// Echo+ right speaker is also output to left speaker
if (m_phasorEnable && m_phasorMode == PH_EchoPlus)
{
for (UINT j = 0; j < NUM_VOICES_PER_AY8913; j++)
{
memcpy(m_ppAYVoiceBuffer[0 * NUM_VOICES_PER_AY8913 + j], m_ppAYVoiceBuffer[2 * NUM_VOICES_PER_AY8913 + j], nNumSamples * sizeof(short));
memcpy(m_ppAYVoiceBuffer[1 * NUM_VOICES_PER_AY8913 + j], m_ppAYVoiceBuffer[3 * NUM_VOICES_PER_AY8913 + j], nNumSamples * sizeof(short));
}
}
}
return (UINT) nNumSamples;
}
//-----------------------------------------------------------------------------
// NB. Called when /g_fCurrentCLK6502/ changes
void MockingboardCard::ReinitializeClock(void)
{
AY8910_InitClock((int)g_fCurrentCLK6502); // todo: account for g_PhasorClockScaleFactor?
// NB. Other calls to AY8910_InitClock() use the constant CLK_6502
}
//-----------------------------------------------------------------------------
void MockingboardCard::Destroy(void)
{
for (UINT i = 0; i < NUM_SSI263; i++)
m_MBSubUnit[i].ssi263.DSUninit();
for (UINT i = 0; i < NUM_VOICES; i++)
{
delete[] m_ppAYVoiceBuffer[i];
m_ppAYVoiceBuffer[i] = NULL;
}
for (UINT id = 0; id < kNumSyncEvents; id++)
{
if (m_syncEvent[id] && m_syncEvent[id]->m_active)
g_SynchronousEventMgr.Remove(m_syncEvent[id]->m_id);
delete m_syncEvent[id];
m_syncEvent[id] = NULL;
}
}
//-----------------------------------------------------------------------------
void MockingboardCard::Reset(const bool powerCycle) // CTRL+RESET or power-cycle
{
for (BYTE subunit = 0; subunit < NUM_SUBUNITS_PER_MB; subunit++)
{
m_MBSubUnit[subunit].sy6522.Reset(powerCycle);
for (BYTE ay = 0; ay < NUM_AY8913_PER_SUBUNIT; ay++)
AY8910_reset(subunit, ay);
m_MBSubUnit[subunit].Reset(QueryType());
m_MBSubUnit[subunit].ssi263.SetCardMode(PH_Mockingboard); // Revert to PH_Mockingboard mode
m_MBSubUnit[subunit].ssi263.Reset();
}
// Reset state
{
SetCumulativeCycles();
m_inActiveCycleCount = 0;
m_regAccessedFlag = false;
m_isActive = false;
m_phasorMode = PH_Mockingboard;
m_phasorClockScaleFactor = 1;
m_lastMBUpdateCycle = 0;
for (int id = 0; id < kNumSyncEvents; id++)
{
if (m_syncEvent[id] && m_syncEvent[id]->m_active)
g_SynchronousEventMgr.Remove(m_syncEvent[id]->m_id);
}
// Not this, since no change on a CTRL+RESET or power-cycle:
// m_phasorEnable = false;
}
ReinitializeClock(); // Reset CLK for AY8910s
}
//-----------------------------------------------------------------------------
// Echo+ mode - Phasor's 2nd 6522 is mapped to every 16-byte offset in $Cnxx (Echo+ has a single 6522 controlling two AY-3-8913's)
BYTE __stdcall MockingboardCard::IORead(WORD PC, WORD nAddr, BYTE bWrite, BYTE nValue, ULONG nExecutedCycles)
{
UINT slot = (nAddr >> 8) & 0xf;
MockingboardCard* pCard = (MockingboardCard*)MemGetSlotParameters(slot);
return pCard->IOReadInternal(PC, nAddr, bWrite, nValue, nExecutedCycles);
}
BYTE MockingboardCard::IOReadInternal(WORD PC, WORD nAddr, BYTE bWrite, BYTE nValue, ULONG nExecutedCycles)
{
GetCardMgr().GetMockingboardCardMgr().UpdateCycles(nExecutedCycles);
#ifdef _DEBUG
if (!IS_APPLE2 && MemCheckINTCXROM())
{
_ASSERT(0); // Card ROM disabled, so IO_Cxxx() returns the internal ROM
return mem[nAddr];
}
#endif
if (m_phasorEnable)
{
int CS = 0;
if (m_phasorMode == PH_Mockingboard)
CS = ( ( nAddr & 0x80 ) >> 7 ) + 1; // 1 or 2
else if (m_phasorMode == PH_Phasor)
CS = ( ( nAddr & 0x80 ) >> 6 ) | ( ( nAddr & 0x10 ) >> 4 ); // 0, 1, 2 or 3
else if (m_phasorMode == PH_EchoPlus)
CS = 2;
BYTE nRes = 0;
if (CS & 1)
nRes |= m_MBSubUnit[SY6522_DEVICE_A].sy6522.Read(nAddr & 0xf);
if (CS & 2)
nRes |= m_MBSubUnit[SY6522_DEVICE_B].sy6522.Read(nAddr & 0xf);
bool bAccessedDevice = (CS & 3) ? true : false;
bool CS_SSI263 = !(nAddr & 0x10) && (nAddr & 0x60) && !(nAddr & 0x80); // SSI263 at $Cn2x and/or $Cn4x
if (m_phasorMode == PH_Phasor && CS_SSI263) // NB. Mockingboard mode: SSI263.bit7 not readable
{
_ASSERT(!bAccessedDevice); // In Phasor native mode, 6522 & SSI263 are interleaved in $Cn10-$Cn7F card I/O memory
if (nAddr & 0x40) // Primary SSI263
nRes = m_MBSubUnit[1].ssi263.Read(nExecutedCycles); // SSI263 only drives bit7
if (nAddr & 0x20) // Secondary SSI263
nRes = m_MBSubUnit[0].ssi263.Read(nExecutedCycles); // SSI263 only drives bit7
bAccessedDevice = true;
}
return bAccessedDevice ? nRes : MemReadFloatingBus(nExecutedCycles);
}
#if DBG_MB_SS_CARD
if (nMB == 1)
return MemReadFloatingBus(nExecutedCycles);
#endif
// NB. Mockingboard: SSI263.bit7 not readable (TODO: check this with real h/w)
const BYTE subunit = QueryType() == CT_SDMusic ? SY6522_DEVICE_A : !(nAddr & 0x80) ? SY6522_DEVICE_A : SY6522_DEVICE_B;
const BYTE reg = nAddr & 0xf;
return m_MBSubUnit[subunit].sy6522.Read(reg);
}
//-----------------------------------------------------------------------------
BYTE __stdcall MockingboardCard::IOWrite(WORD PC, WORD nAddr, BYTE bWrite, BYTE nValue, ULONG nExecutedCycles)
{
UINT slot = (nAddr >> 8) & 0xf;
MockingboardCard* pCard = (MockingboardCard*)MemGetSlotParameters(slot);
return pCard->IOWriteInternal(PC, nAddr, bWrite, nValue, nExecutedCycles);
}
BYTE MockingboardCard::IOWriteInternal(WORD PC, WORD nAddr, BYTE bWrite, BYTE nValue, ULONG nExecutedCycles)
{
GetCardMgr().GetMockingboardCardMgr().UpdateCycles(nExecutedCycles);
#ifdef _DEBUG
if (!IS_APPLE2 && MemCheckINTCXROM())
{
_ASSERT(0); // Card ROM disabled, so IO_Cxxx() returns the internal ROM
return 0;
}
#endif
// Support 6502/65C02 false-reads of 6522 (GH#52)
if ( ((mem[(PC-2)&0xffff] == 0x91) && GetMainCpu() == CPU_6502) || // sta (zp),y - 6502 only (no-PX variant only) (UTAIIe:4-23)
(mem[(PC-3)&0xffff] == 0x99) || // sta abs16,y - 6502/65C02, but for 65C02 only the no-PX variant that does the false-read (UTAIIe:4-27)
(mem[(PC-3)&0xffff] == 0x9D) ) // sta abs16,x - 6502/65C02, but for 65C02 only the no-PX variant that does the false-read (UTAIIe:4-27)
{
WORD base;
WORD addr16;
if (mem[(PC-2)&0xffff] == 0x91)
{
BYTE zp = mem[(PC-1)&0xffff];
base = (mem[zp] | (mem[(zp+1)&0xff]<<8));
addr16 = base + regs.y;
}
else
{
base = mem[(PC-2)&0xffff] | (mem[(PC-1)&0xffff]<<8);
addr16 = base + ((mem[(PC-3)&0xffff] == 0x99) ? regs.y : regs.x);
}
if (((base ^ addr16) >> 8) == 0) // Only the no-PX variant does the false read (to the same I/O SELECT page)
{
_ASSERT(addr16 == nAddr);
if (addr16 == nAddr) // Check we've reverse looked-up the 6502 opcode correctly
{
if ( ((nAddr&0xf) == 4) || ((nAddr&0xf) == 8) ) // Only reading 6522 reg-4 or reg-8 actually has an effect
IOReadInternal(PC, nAddr, 0, 0, nExecutedCycles);
}
}
}
if (m_phasorEnable)
{
int CS = 0;
if (m_phasorMode == PH_Mockingboard)
CS = ( ( nAddr & 0x80 ) >> 7 ) + 1; // 1 or 2
else if (m_phasorMode == PH_Phasor)
CS = ( ( nAddr & 0x80 ) >> 6 ) | ( ( nAddr & 0x10 ) >> 4 ); // 0, 1, 2 or 3
else if (m_phasorMode == PH_EchoPlus)
CS = 2;
if (CS & 1)
{
const BYTE reg = nAddr & 0xf;
m_MBSubUnit[SY6522_DEVICE_A].sy6522.Write(reg, nValue);
if (reg == SY6522::rORB)
WriteToORB(SY6522_DEVICE_A);
}
if (CS & 2)
{
const BYTE reg = nAddr & 0xf;
m_MBSubUnit[SY6522_DEVICE_B].sy6522.Write(reg, nValue);
if (reg == SY6522::rORB)
WriteToORB(SY6522_DEVICE_B);
}
bool CS_SSI263_A = (m_phasorMode == PH_Phasor) ? !(nAddr & 0x80) && (nAddr & 0x40) // SSI263 at $Cn4x, $Cn6x
: nAddr & 0x40; // SSI263 at $Cn4x-Cn7x, $CnCx-CnFx
bool CS_SSI263_B = (m_phasorMode == PH_Phasor) ? !(nAddr & 0x80) && (nAddr & 0x20) // SSI263 at $Cn2x, $Cn6x
: nAddr & 0x20; // SSI263 at $Cn2x-Cn3x, $Cn6x-Cn7x, $CnAx-CnBx, $CnEx-CnFx
if (m_phasorMode == PH_Mockingboard || m_phasorMode == PH_Phasor) // No SSI263 for Echo+
{
// NB. Mockingboard mode: writes to $Cn4x/SSI263 also get written to 1st 6522 (have confirmed on real Phasor h/w)
if (CS_SSI263_A) // Primary SSI263
m_MBSubUnit[1].ssi263.Write(nAddr&0x7, nValue); // 2nd 6522 is used for 1st speech chip
if (CS_SSI263_B) // Secondary SSI263
m_MBSubUnit[0].ssi263.Write(nAddr&0x7, nValue); // 1st 6522 is used for 2nd speech chip
}
return 0;
}
if (QueryType() == CT_SDMusic)
{
const BYTE subunit = SY6522_DEVICE_A; // Only one 6522
const BYTE reg = nAddr & 0xf;
m_MBSubUnit[subunit].sy6522.Write(reg, nValue);
if (reg == SY6522::rORB)
WriteToORB(subunit, !(nAddr & 0x80) ? SY6522_DEVICE_A : SY6522_DEVICE_B);
}
else
{
const BYTE subunit = !(nAddr & 0x80) ? SY6522_DEVICE_A : SY6522_DEVICE_B;
const BYTE reg = nAddr & 0xf;
m_MBSubUnit[subunit].sy6522.Write(reg, nValue);
if (reg == SY6522::rORB)
WriteToORB(subunit);
}
#if !DBG_MB_SS_CARD
if (QueryType() == CT_MockingboardC || QueryType() == CT_Phasor) // Not CT_MegaAudio/CT_SDMusic
{
if (nAddr & 0x40)
m_MBSubUnit[1].ssi263.Write(nAddr & 0x7, nValue); // 2nd 6522 is used for 1st speech chip
if (nAddr & 0x20)
m_MBSubUnit[0].ssi263.Write(nAddr & 0x7, nValue); // 1st 6522 is used for 2nd speech chip
}
#endif
return 0;
}
//-----------------------------------------------------------------------------
// Phasor's DEVICE SELECT' logic:
// . if addr.[b3]==1, then clear the card's mode bits b2:b0
// . if any of addr.[b2:b0] are a logic 1, then set these bits in the card's mode
//
// Example DEVICE SELECT' accesses for Phasor in slot-4: (from empirical observations on real Phasor h/w)
// 1)
// . RESET -> Mockingboard mode (b#000)
// . $C0C5 -> Phasor mode (b#101)
// 2)
// . RESET -> Mockingboard mode (b#000)
// . $C0C1, then $C0C4 (or $C0C4, then $C0C1) -> Phasor mode (b#101)
// . $C0C2 -> Echo+ mode (b#111)
// . $C0C5 -> remaining in Echo+ mode (b#111)
// So $C0C5 seemingly results in 2 different modes.
//
BYTE __stdcall MockingboardCard::PhasorIO(WORD PC, WORD nAddr, BYTE bWrite, BYTE nValue, ULONG nExecutedCycles)
{
UINT slot = ((nAddr & 0xff) >> 4) - 8;
MockingboardCard* pCard = (MockingboardCard*)MemGetSlotParameters(slot);
return pCard->PhasorIOInternal(PC, nAddr, bWrite, nValue, nExecutedCycles);
}
BYTE MockingboardCard::PhasorIOInternal(WORD PC, WORD nAddr, BYTE bWrite, BYTE nValue, ULONG nExecutedCycles)
{
if (!m_phasorEnable)
return MemReadFloatingBus(nExecutedCycles);
UINT bits = (UINT) m_phasorMode;
if (nAddr & 8)
bits = 0;
bits |= (nAddr & 7);
m_phasorMode = (PHASOR_MODE) bits;
if (m_phasorMode == PH_Mockingboard || m_phasorMode == PH_EchoPlus)
m_phasorClockScaleFactor = 1;
else if (m_phasorMode == PH_Phasor)
m_phasorClockScaleFactor = 2;
if (m_phasorMode == PH_Mockingboard)
{
for (BYTE subunit = 0; subunit < NUM_SUBUNITS_PER_MB; subunit++)
m_MBSubUnit[subunit].isChipSelected[0] = true;
}
AY8910_InitClock((int)(Get6502BaseClock() * m_phasorClockScaleFactor));
for (UINT i = 0; i < NUM_SSI263; i++)
m_MBSubUnit[i].ssi263.SetCardMode(m_phasorMode);
#if DBG_SUPPORT_ECHOPLUS
if (m_phasorMode == PH_EchoPlus && (nAddr & 0xf) == 0)
return 0x1f; // for TMS5220 detection
#endif
return MemReadFloatingBus(nExecutedCycles);
}
//-----------------------------------------------------------------------------
void MockingboardCard::InitializeIO(LPBYTE pCxRomPeripheral)
{
if (QueryType() == CT_Phasor)
RegisterIoHandler(m_slot, PhasorIO, PhasorIO, IORead, IOWrite, this, NULL);
else // All other Mockingboard variants
RegisterIoHandler(m_slot, IO_Null, IO_Null, IORead, IOWrite, this, NULL);
if (g_bDisableDirectSound || g_bDisableDirectSoundMockingboard)
return;
#ifdef NO_DIRECT_X
#else // NO_DIRECT_X
for (UINT i = 0; i < NUM_SSI263; i++)
{
if (!m_MBSubUnit[i].ssi263.DSInit())
break;
}
#endif // NO_DIRECT_X
}
//-----------------------------------------------------------------------------
void MockingboardCard::MuteControl(bool mute)
{
if (mute)
{
for (UINT i = 0; i < NUM_SSI263; i++)
m_MBSubUnit[i].ssi263.Mute();
}
else
{
for (UINT i = 0; i < NUM_SSI263; i++)
m_MBSubUnit[i].ssi263.Unmute();
}
}
//-----------------------------------------------------------------------------
#ifdef _DEBUG
void MockingboardCard::CheckCumulativeCycles(void)
{
_ASSERT(m_lastCumulativeCycle == g_nCumulativeCycles);
m_lastCumulativeCycle = g_nCumulativeCycles;
}
#endif
// Called by: ResetState() and Snapshot_LoadState_v2()
void MockingboardCard::SetCumulativeCycles(void)
{
m_lastCumulativeCycle = g_nCumulativeCycles;
}
// Called by ContinueExecution() at the end of every execution period (~1000 cycles or ~3 cycles when MODE_STEPPING)
void MockingboardCard::Update(const ULONG executedCycles)
{
for (UINT i = 0; i < NUM_SSI263; i++)
m_MBSubUnit[i].ssi263.PeriodicUpdate(executedCycles);
}
//-----------------------------------------------------------------------------
// Called by:
// . CpuExecute() every ~1000 cycles @ 1MHz (or ~3 cycles when MODE_STEPPING)
// . MB_SyncEventCallback() on a TIMER1/2 underflow
// . MB_Read() / MB_Write() (for both normal & full-speed)
void MockingboardCard::UpdateCycles(ULONG executedCycles)
{
CpuCalcCycles(executedCycles);
UINT64 uCycles = g_nCumulativeCycles - m_lastCumulativeCycle;
_ASSERT(uCycles >= 0);
if (uCycles == 0)
return;
m_lastCumulativeCycle = g_nCumulativeCycles;
_ASSERT(uCycles < 0x10000 || g_nAppMode == MODE_BENCHMARK);
USHORT nClocks = (USHORT)uCycles;
for (UINT i = 0; i < NUM_SUBUNITS_PER_MB; i++)
{
m_MBSubUnit[i].sy6522.UpdateTimer1(nClocks);
m_MBSubUnit[i].sy6522.UpdateTimer2(nClocks);
}
}
//-----------------------------------------------------------------------------
// Called on a 6522 TIMER1/2 underflow
int MockingboardCard::MB_SyncEventCallback(int id, int /*cycles*/, ULONG uExecutedCycles)
{
UINT slot = (id >> 4);
MockingboardCard* pCard = (MockingboardCard*)MemGetSlotParameters(slot);
return pCard->MB_SyncEventCallbackInternal(id, 0, uExecutedCycles);
}
int MockingboardCard::MB_SyncEventCallbackInternal(int id, int /*cycles*/, ULONG uExecutedCycles)
{
//UpdateCycles(uExecutedCycles); // Underflow: so keep TIMER1/2 counters in sync
// Update all MBs, so that m_lastCumulativeCycle remains in sync for all
GetCardMgr().GetMockingboardCardMgr().UpdateCycles(uExecutedCycles); // Underflow: so keep TIMER1/2 counters in sync
MB_SUBUNIT* pMB = &m_MBSubUnit[(id & 0xf) / SY6522::kNumTimersPer6522];
if ((id & 1) == 0)
{
_ASSERT(pMB->sy6522.IsTimer1Active());
UpdateIFRandIRQ(pMB, 0, SY6522::IxR_TIMER1);
GetCardMgr().GetMockingboardCardMgr().UpdateSoundBuffer();
if ((pMB->sy6522.GetReg(SY6522::rACR) & SY6522::ACR_RUNMODE) == SY6522::ACR_RM_FREERUNNING)
{
pMB->sy6522.StartTimer1();
if (pMB->sy6522.IsTimer1IrqDelay())
return 0x0001; // T1C=0xFFFF, which is really -1, as there's 1 cycle until underflow occurs
// TODO: can also be 0x0002 for MegaAudio
return pMB->sy6522.GetRegT1C() + SY6522::kExtraTimerCycles;
}
// One-shot mode
// - Phasor's playback code uses one-shot mode
pMB->sy6522.StopTimer1();
return 0; // Don't repeat event
}
else
{
// NB. Since not calling UpdateSoundBuffer(), then AppleWin doesn't (accurately?) support AY-playback using T2 (which is one-shot only)
_ASSERT(pMB->sy6522.IsTimer2Active());
UpdateIFRandIRQ(pMB, 0, SY6522::IxR_TIMER2);
pMB->sy6522.StopTimer2(); // TIMER2 only runs in one-shot mode
return 0; // Don't repeat event
}
}
//-----------------------------------------------------------------------------
bool MockingboardCard::IsActive(void)
{
bool isSSI263Active = false;
for (UINT i = 0; i <NUM_SSI263; i++)
isSSI263Active |= m_MBSubUnit[i].ssi263.IsPhonemeActive();
return m_isActive || isSSI263Active;
}
//-----------------------------------------------------------------------------
void MockingboardCard::SetVolume(DWORD volume, DWORD volumeMax)
{
for (UINT i =0; i < NUM_SSI263; i++)
m_MBSubUnit[i].ssi263.SetVolume(volume, volumeMax);
}
//===========================================================================
void MockingboardCard::GetSnapshotForDebugger(DEBUGGER_MB_CARD* const pMBForDebugger)
{
pMBForDebugger->type = QueryType();
for (UINT i = 0; i < NUM_SUBUNITS_PER_MB; i++)
{
MB_SUBUNIT* pMB = &m_MBSubUnit[i];
pMB->sy6522.GetRegs(pMBForDebugger->subUnit[i].regsSY6522); // continuous 16-byte array
pMBForDebugger->subUnit[i].timer1Active = pMB->sy6522.IsTimer1Active();
pMBForDebugger->subUnit[i].timer2Active = pMB->sy6522.IsTimer2Active();
for (UINT j = 0; j < NUM_AY8913_PER_SUBUNIT; j++)
{
for (UINT k = 0; k < 16; k++)
pMBForDebugger->subUnit[i].regsAY8913[j][k] = AYReadReg(i, j, k);
pMBForDebugger->subUnit[i].nAYCurrentRegister[j] = pMB->nAYCurrentRegister[j];
pMBForDebugger->subUnit[i].isAYLatchedAddressValid[j] = pMB->isAYLatchedAddressValid[j];
switch (pMB->state[j])
{
case AY_READ:
strcpy((char*)&pMBForDebugger->subUnit[i].szState[j], "RD"); break;
case AY_WRITE:
strcpy((char*)&pMBForDebugger->subUnit[i].szState[j], "WR"); break;
case AY_LATCH:
strcpy((char*)&pMBForDebugger->subUnit[i].szState[j], "LA"); break;
default: //AY_INACTIVE
strcpy((char*)&pMBForDebugger->subUnit[i].szState[j], "--"); break;
}
}
}
}
//=============================================================================
// AY8913 interface
BYTE MockingboardCard::AYReadReg(BYTE subunit, BYTE ay, int r)
{
_ASSERT(subunit < NUM_SUBUNITS_PER_MB && ay < NUM_AY8913_PER_SUBUNIT);
return m_MBSubUnit[subunit].ay8913[ay].sound_ay_read(r);
}
void MockingboardCard::_AYWriteReg(BYTE subunit, BYTE ay, int r, int v)
{
_ASSERT(subunit < NUM_SUBUNITS_PER_MB && ay < NUM_AY8913_PER_SUBUNIT);
libspectrum_dword uOffset = (libspectrum_dword)(g_nCumulativeCycles - m_lastAYUpdateCycle);
m_MBSubUnit[subunit].ay8913[ay].sound_ay_write(r, v, uOffset);
}
void MockingboardCard::AY8910_reset(BYTE subunit, BYTE ay)
{
// Don't reset the AY CLK, as this is a property of the card (MB/Phasor), not the AY chip
_ASSERT(subunit < NUM_SUBUNITS_PER_MB && ay < NUM_AY8913_PER_SUBUNIT);
m_MBSubUnit[subunit].ay8913[ay].sound_ay_reset(); // Calls: sound_ay_init();
}
void MockingboardCard::AY8910UpdateSetCycles()
{
m_lastAYUpdateCycle = g_nCumulativeCycles;
}
void MockingboardCard::AY8910Update(BYTE subunit, BYTE ay, INT16** buffer, int nNumSamples)
{
_ASSERT(subunit < NUM_SUBUNITS_PER_MB && ay < NUM_AY8913_PER_SUBUNIT);
AY8910UpdateSetCycles();
m_MBSubUnit[subunit].ay8913[ay].SetFramesize(nNumSamples);
m_MBSubUnit[subunit].ay8913[ay].SetSoundBuffers(buffer);
m_MBSubUnit[subunit].ay8913[ay].sound_frame();
}
void MockingboardCard::AY8910_InitAll(int nClock, int nSampleRate)
{
for (UINT subunit = 0; subunit < NUM_SUBUNITS_PER_MB; subunit++)
{
for (UINT ay = 0; ay < 2; ay++)
{
m_MBSubUnit[subunit].ay8913[ay].sound_init(NULL); // Inits mainly static members (except ay_tick_incr)
m_MBSubUnit[subunit].ay8913[ay].sound_ay_init();
}
}
}
void MockingboardCard::AY8910_InitClock(int nClock)
{
AY8913::SetCLK((double)nClock);
for (UINT subunit = 0; subunit < NUM_SUBUNITS_PER_MB; subunit++)
{
for (UINT ay = 0; ay < NUM_AY8913_PER_SUBUNIT; ay++)
{
m_MBSubUnit[subunit].ay8913[ay].sound_init(NULL); // Inits mainly static members (except ay_tick_incr)
}
}
}
BYTE* MockingboardCard::AY8910_GetRegsPtr(BYTE subunit, BYTE ay)
{
_ASSERT(subunit < NUM_SUBUNITS_PER_MB && ay < NUM_AY8913_PER_SUBUNIT);
return m_MBSubUnit[subunit].ay8913[ay].GetAYRegsPtr();
}
UINT MockingboardCard::AY8910_SaveSnapshot(YamlSaveHelper& yamlSaveHelper, BYTE subunit, BYTE ay, const std::string& suffix)
{
_ASSERT(subunit < NUM_SUBUNITS_PER_MB && ay < NUM_AY8913_PER_SUBUNIT);
m_MBSubUnit[subunit].ay8913[ay].SaveSnapshot(yamlSaveHelper, suffix);
return 1;
}
UINT MockingboardCard::AY8910_LoadSnapshot(YamlLoadHelper& yamlLoadHelper, BYTE subunit, BYTE ay, const std::string& suffix)
{
_ASSERT(subunit < NUM_SUBUNITS_PER_MB && ay < NUM_AY8913_PER_SUBUNIT);
return m_MBSubUnit[subunit].ay8913[ay].LoadSnapshot(yamlLoadHelper, suffix) ? 1 : 0;
}
//=============================================================================
// Unit version history:
// 2: Added: Timer1 & Timer2 active
// 3: Added: Unit state - GH#320
// 4: Added: 6522 timerIrqDelay - GH#652
// 5: Added: Unit state-B (Phasor only) - GH#659
// 6: Changed SS_YAML_KEY_PHASOR_MODE from (0,1) to (0,5,7)
// Added SS_YAML_KEY_VOTRAX_PHONEME
// Removed: redundant SS_YAML_KEY_PHASOR_CLOCK_SCALE_FACTOR
// 7: Added SS_YAML_KEY_SSI263_REG_ACTIVE_PHONEME to SSI263 sub-unit
// 8: Moved Timer1 & Timer2 active to 6522 sub-unit
// Removed Timer1/Timer2/Speech IRQ Pending
// Changed at AppleWin 1.30.8
// 9: Phasor AY's are swapped (means that AppleWin 1.30.10 and 1.30.11 are wrong)
// Changed at AppleWin 1.30.12
//10: Phasor AY's are ordered correctly
// "AY Current Register B"
// "Chip Select A" + "Chip Select B"
// "Reg Address Latch Valid A" + "Reg Address Latch Valid B"
// Changed at AppleWin 1.30.14
const UINT kUNIT_VERSION = 10;
#define SS_YAML_KEY_MB_UNIT "Unit"
#define SS_YAML_KEY_AY_CURR_REG "AY Current Register"
#define SS_YAML_KEY_AY_CURR_REG_B "AY Current Register B" // Phasor only
#define SS_YAML_KEY_CS_A "Chip Select A"
#define SS_YAML_KEY_CS_B "Chip Select B" // Phasor only
#define SS_YAML_KEY_LATCH_ADDR_VALID_A "Reg Address Latch Valid A"
#define SS_YAML_KEY_LATCH_ADDR_VALID_B "Reg Address Latch Valid B" // Phasor only
#define SS_YAML_KEY_MB_UNIT_STATE "Unit State"
#define SS_YAML_KEY_MB_UNIT_STATE_B "Unit State-B" // Phasor only
#define SS_YAML_KEY_TIMER1_IRQ "Timer1 IRQ Pending" // v8: deprecated
#define SS_YAML_KEY_TIMER2_IRQ "Timer2 IRQ Pending" // v8: deprecated
#define SS_YAML_KEY_SPEECH_IRQ "Speech IRQ Pending" // v8: deprecated
#define SS_YAML_KEY_TIMER1_ACTIVE "Timer1 Active" // v8: move to 6522 sub-unit
#define SS_YAML_KEY_TIMER2_ACTIVE "Timer2 Active" // v8: move to 6522 sub-unit
#define SS_YAML_KEY_PHASOR_UNIT "Unit"
#define SS_YAML_KEY_PHASOR_CLOCK_SCALE_FACTOR "Clock Scale Factor" // v6: deprecated
#define SS_YAML_KEY_PHASOR_MODE "Mode"
#define SS_YAML_KEY_VOTRAX_PHONEME "Votrax Phoneme"
std::string MockingboardCard::GetSnapshotCardName(void)
{
static const std::string name("Mockingboard C");
return name;
}
std::string MockingboardCard::GetSnapshotCardNamePhasor(void)
{
static const std::string name("Phasor");
return name;
}
std::string MockingboardCard::GetSnapshotCardNameMegaAudio(void)
{
static const std::string name("MEGA Audio");
return name;
}
std::string MockingboardCard::GetSnapshotCardNameSDMusic(void)
{
static const std::string name("SD Music");
return name;
}
void MockingboardCard::SaveSnapshot(YamlSaveHelper& yamlSaveHelper)
{
if (QueryType() == CT_Phasor)
return Phasor_SaveSnapshot(yamlSaveHelper);
//
std::string cardName = GetSnapshotCardName();
if (QueryType() == CT_MegaAudio)
cardName = GetSnapshotCardNameMegaAudio();
else if (QueryType() == CT_SDMusic)
cardName = GetSnapshotCardNameSDMusic();
YamlSaveHelper::Slot slot(yamlSaveHelper, cardName, m_slot, kUNIT_VERSION);
YamlSaveHelper::Label state(yamlSaveHelper, "%s:\n", SS_YAML_KEY_STATE);
yamlSaveHelper.SaveBool(SS_YAML_KEY_VOTRAX_PHONEME, m_MBSubUnit[0].ssi263.GetVotraxPhoneme()); // SC01 only in subunit 0
for (UINT subunit = 0; subunit < NUM_SUBUNITS_PER_MB; subunit++)
{
MB_SUBUNIT* pMB = &m_MBSubUnit[subunit];
YamlSaveHelper::Label unit(yamlSaveHelper, "%s%d:\n", SS_YAML_KEY_MB_UNIT, subunit);
pMB->sy6522.SaveSnapshot(yamlSaveHelper);
AY8910_SaveSnapshot(yamlSaveHelper, subunit, AY8913_DEVICE_A, std::string(""));
pMB->ssi263.SaveSnapshot(yamlSaveHelper);
yamlSaveHelper.SaveHexUint4(SS_YAML_KEY_MB_UNIT_STATE, pMB->state[0]);
yamlSaveHelper.SaveHexUint8(SS_YAML_KEY_AY_CURR_REG, pMB->nAYCurrentRegister[0]); // save all 8 bits (even though top 4 bits should be 0)
yamlSaveHelper.SaveBool(SS_YAML_KEY_CS_A, pMB->isChipSelected[0]);
yamlSaveHelper.SaveBool(SS_YAML_KEY_LATCH_ADDR_VALID_A, pMB->isAYLatchedAddressValid[0]);
}
}
bool MockingboardCard::LoadSnapshot(YamlLoadHelper& yamlLoadHelper, UINT version)
{
if (m_slot == 0 || m_slot == 3)
throw std::runtime_error("Card: wrong slot");
if (version < 1 || version > kUNIT_VERSION)
throw std::runtime_error("Card: wrong version");
if (QueryType() == CT_Phasor)
return Phasor_LoadSnapshot(yamlLoadHelper, version);
//
AY8910UpdateSetCycles();
bool isVotrax = (version >= 6) ? yamlLoadHelper.LoadBool(SS_YAML_KEY_VOTRAX_PHONEME) : false;
m_MBSubUnit[0].ssi263.SetVotraxPhoneme(isVotrax); // SC01 only in subunit 0
for (UINT subunit = 0; subunit < NUM_SUBUNITS_PER_MB; subunit++)
{
MB_SUBUNIT* pMB = &m_MBSubUnit[subunit];
char szNum[2] = {char('0' + subunit), 0};
std::string unit = std::string(SS_YAML_KEY_MB_UNIT) + std::string(szNum);
if (!yamlLoadHelper.GetSubMap(unit))
throw std::runtime_error("Card: Expected key: " + unit);
pMB->sy6522.LoadSnapshot(yamlLoadHelper, version);
UpdateIFRandIRQ(pMB, 0, pMB->sy6522.GetReg(SY6522::rIFR)); // Assert any pending IRQs (GH#677)
AY8910_LoadSnapshot(yamlLoadHelper, subunit, AY8913_DEVICE_A, std::string(""));
pMB->ssi263.LoadSnapshot(yamlLoadHelper, PH_Mockingboard, version); // Pre: SetVotraxPhoneme()
pMB->nAYCurrentRegister[0] = yamlLoadHelper.LoadUint(SS_YAML_KEY_AY_CURR_REG);
if (version == 1)
{
pMB->sy6522.SetTimersActiveFromSnapshot(false, false, version);
}
else if (version >= 2 && version <= 7)
{
bool timer1Active = yamlLoadHelper.LoadBool(SS_YAML_KEY_TIMER1_ACTIVE);
bool timer2Active = yamlLoadHelper.LoadBool(SS_YAML_KEY_TIMER2_ACTIVE);
pMB->sy6522.SetTimersActiveFromSnapshot(timer1Active, timer2Active, version);
}
if (version <= 7)
{
yamlLoadHelper.LoadBool(SS_YAML_KEY_TIMER1_IRQ); // Consume redundant data
yamlLoadHelper.LoadBool(SS_YAML_KEY_TIMER2_IRQ); // Consume redundant data
yamlLoadHelper.LoadBool(SS_YAML_KEY_SPEECH_IRQ); // Consume redundant data
}
pMB->state[0] = AY_INACTIVE;
pMB->state[1] = AY_INACTIVE;
if (version >= 3)
pMB->state[0] = (MockingboardUnitState_e) (yamlLoadHelper.LoadUint(SS_YAML_KEY_MB_UNIT_STATE) & 7);
if (version >= 10)
{
pMB->isChipSelected[0] = yamlLoadHelper.LoadBool(SS_YAML_KEY_CS_A);
pMB->isAYLatchedAddressValid[0] = yamlLoadHelper.LoadBool(SS_YAML_KEY_LATCH_ADDR_VALID_A);
}
yamlLoadHelper.PopMap();
}
AY8910_InitClock((int)Get6502BaseClock());
// NB. m_phasorEnable setup in ctor
return true;
}
void MockingboardCard::Phasor_SaveSnapshot(YamlSaveHelper& yamlSaveHelper)
{
YamlSaveHelper::Slot slot(yamlSaveHelper, GetSnapshotCardNamePhasor(), m_slot, kUNIT_VERSION);
YamlSaveHelper::Label state(yamlSaveHelper, "%s:\n", SS_YAML_KEY_STATE);
yamlSaveHelper.SaveUint(SS_YAML_KEY_PHASOR_MODE, m_phasorMode);
yamlSaveHelper.SaveBool(SS_YAML_KEY_VOTRAX_PHONEME, m_MBSubUnit[0].ssi263.GetVotraxPhoneme()); // SC01 only in subunit 0
for (UINT subunit = 0; subunit < NUM_SUBUNITS_PER_MB; subunit++)
{
MB_SUBUNIT* pMB = &m_MBSubUnit[subunit];
YamlSaveHelper::Label unit(yamlSaveHelper, "%s%d:\n", SS_YAML_KEY_PHASOR_UNIT, subunit);
pMB->sy6522.SaveSnapshot(yamlSaveHelper);
AY8910_SaveSnapshot(yamlSaveHelper, subunit, AY8913_DEVICE_A, std::string("-A"));
AY8910_SaveSnapshot(yamlSaveHelper, subunit, AY8913_DEVICE_B, std::string("-B"));
pMB->ssi263.SaveSnapshot(yamlSaveHelper);
yamlSaveHelper.SaveHexUint4(SS_YAML_KEY_MB_UNIT_STATE, pMB->state[0]);
yamlSaveHelper.SaveHexUint4(SS_YAML_KEY_MB_UNIT_STATE_B, pMB->state[1]);
yamlSaveHelper.SaveHexUint8(SS_YAML_KEY_AY_CURR_REG, pMB->nAYCurrentRegister[0]); // save all 8 bits (even though top 4 bits should be 0)
yamlSaveHelper.SaveHexUint8(SS_YAML_KEY_AY_CURR_REG_B, pMB->nAYCurrentRegister[1]); // save all 8 bits (even though top 4 bits should be 0)
yamlSaveHelper.SaveBool(SS_YAML_KEY_CS_A, pMB->isChipSelected[0]);
yamlSaveHelper.SaveBool(SS_YAML_KEY_CS_B, pMB->isChipSelected[1]);
yamlSaveHelper.SaveBool(SS_YAML_KEY_LATCH_ADDR_VALID_A, pMB->isAYLatchedAddressValid[0]);
yamlSaveHelper.SaveBool(SS_YAML_KEY_LATCH_ADDR_VALID_B, pMB->isAYLatchedAddressValid[1]);
}
}
bool MockingboardCard::Phasor_LoadSnapshot(YamlLoadHelper& yamlLoadHelper, UINT version)
{
if (version < 6)
yamlLoadHelper.LoadUint(SS_YAML_KEY_PHASOR_CLOCK_SCALE_FACTOR); // Consume redundant data
UINT phasorMode = yamlLoadHelper.LoadUint(SS_YAML_KEY_PHASOR_MODE);
if (version < 6)
{
if (phasorMode == 0)
phasorMode = PH_Mockingboard;
else
phasorMode = PH_Phasor;
}
m_phasorMode = (PHASOR_MODE) phasorMode;
m_phasorClockScaleFactor = (m_phasorMode == PH_Phasor) ? 2 : 1;
AY8910UpdateSetCycles();
UINT nDeviceNum = 0;
MB_SUBUNIT* pMB = &m_MBSubUnit[0];
bool isVotrax = (version >= 6) ? yamlLoadHelper.LoadBool(SS_YAML_KEY_VOTRAX_PHONEME) : false;
m_MBSubUnit[0].ssi263.SetVotraxPhoneme(isVotrax); // SC01 only in subunit 0
for (UINT subunit = 0; subunit < NUM_SUBUNITS_PER_MB; subunit++)
{
MB_SUBUNIT* pMB = &m_MBSubUnit[subunit];
char szNum[2] = {char('0' + subunit), 0};
std::string unit = std::string(SS_YAML_KEY_MB_UNIT) + std::string(szNum);
if (!yamlLoadHelper.GetSubMap(unit))
throw std::runtime_error("Card: Expected key: " + unit);
pMB->sy6522.LoadSnapshot(yamlLoadHelper, version);
UpdateIFRandIRQ(pMB, 0, pMB->sy6522.GetReg(SY6522::rIFR)); // Assert any pending IRQs (GH#677)
if (version >= 5 && version <= 8)
{
const BYTE phasorDevice = subunit == 0 ? AY8913_DEVICE_B : AY8913_DEVICE_A;
AY8910_LoadSnapshot(yamlLoadHelper, 0, phasorDevice, std::string("-A"));
AY8910_LoadSnapshot(yamlLoadHelper, 1, phasorDevice, std::string("-B"));
}
else if (version <= 4 || version == 9)
{
const BYTE phasorDevice = subunit == 0 ? AY8913_DEVICE_A : AY8913_DEVICE_B;
AY8910_LoadSnapshot(yamlLoadHelper, 0, phasorDevice, std::string("-A"));
AY8910_LoadSnapshot(yamlLoadHelper, 1, phasorDevice, std::string("-B"));
}
else
{
AY8910_LoadSnapshot(yamlLoadHelper, subunit, AY8913_DEVICE_A, std::string("-A"));
AY8910_LoadSnapshot(yamlLoadHelper, subunit, AY8913_DEVICE_B, std::string("-B"));
}
pMB->ssi263.LoadSnapshot(yamlLoadHelper, m_phasorMode, version); // Pre: SetVotraxPhoneme()
pMB->nAYCurrentRegister[0] = yamlLoadHelper.LoadUint(SS_YAML_KEY_AY_CURR_REG);
if (version >= 10)
pMB->nAYCurrentRegister[1] = yamlLoadHelper.LoadUint(SS_YAML_KEY_AY_CURR_REG_B);
if (version == 1)
{
pMB->sy6522.SetTimersActiveFromSnapshot(false, false, version);
}
else if (version >= 2 && version <= 7)
{
bool timer1Active = yamlLoadHelper.LoadBool(SS_YAML_KEY_TIMER1_ACTIVE);
bool timer2Active = yamlLoadHelper.LoadBool(SS_YAML_KEY_TIMER2_ACTIVE);
pMB->sy6522.SetTimersActiveFromSnapshot(timer1Active, timer2Active, version);
}
if (version <= 7)
{
yamlLoadHelper.LoadBool(SS_YAML_KEY_TIMER1_IRQ); // Consume redundant data
yamlLoadHelper.LoadBool(SS_YAML_KEY_TIMER2_IRQ); // Consume redundant data
yamlLoadHelper.LoadBool(SS_YAML_KEY_SPEECH_IRQ); // Consume redundant data
}
pMB->state[0] = AY_INACTIVE;
pMB->state[1] = AY_INACTIVE;
if (version >= 3)
pMB->state[0] = (MockingboardUnitState_e) (yamlLoadHelper.LoadUint(SS_YAML_KEY_MB_UNIT_STATE) & 7);
if (version >= 5)
pMB->state[1] = (MockingboardUnitState_e) (yamlLoadHelper.LoadUint(SS_YAML_KEY_MB_UNIT_STATE_B) & 7);
if (version >= 10)
{
pMB->isChipSelected[0] = yamlLoadHelper.LoadBool(SS_YAML_KEY_CS_A);
pMB->isChipSelected[1] = yamlLoadHelper.LoadBool(SS_YAML_KEY_CS_B);
pMB->isAYLatchedAddressValid[0] = yamlLoadHelper.LoadBool(SS_YAML_KEY_LATCH_ADDR_VALID_A);
pMB->isAYLatchedAddressValid[1] = yamlLoadHelper.LoadBool(SS_YAML_KEY_LATCH_ADDR_VALID_B);
}
yamlLoadHelper.PopMap();
}
AY8910_InitClock((int)(Get6502BaseClock() * m_phasorClockScaleFactor));
// NB. m_phasorEnable setup in ctor
return true;
}