Steve2/A2Mac/instructions/6502_instr_BACKUP.h

1547 lines
46 KiB
C
Raw Normal View History

//
// main.c
// 6502
//
// Created by Tamas Rudnai on 7/14/19.
// Copyright © 2019 GameAlloy. All rights reserved.
//
#include <stdio.h>
#include <unistd.h>
#include <time.h>
#define K 1000ULL
#define M (K * K)
#define G (M * K)
#define T (G * K)
unsigned long long int clktime = 0;
enum mmio {
ioSomething = 0xC000,
};
typedef struct m6502_s {
uint8_t A; // Accumulator
uint8_t X; // X index register
uint8_t Y; // Y index register
union {
uint8_t instr; // Instruction
struct {
uint8_t aaa:3;
uint8_t bbb:3;
uint8_t cc:2;
};
};
union {
uint8_t sr; // Status Register as 1 byte
struct {
uint8_t N:1; // Negative Flag
uint8_t V:1; // Overflow Flag ???
uint8_t B:2; // B Flag
uint8_t D:1; // Decimal Flag
uint8_t I:1; // Interrupt Flag
uint8_t Z:1; // Zero Flag
uint8_t C:1; // Carry Flag
} flags; // Status Register
};
uint16_t pc; // Program Counter
uint16_t sp; // Stack Pointer
unsigned clk; // Clock Counter
} m6502_s;
m6502_s m6502 = {0};
uint8_t mem[64*1024] = {0};
uint8_t ( * mmio_read [64*1024] )( uint16_t addr );
typedef
union {
uint8_t bits;
struct {
uint8_t b7:1;
uint8_t b6:1;
uint8_t b5:1;
uint8_t b4:1;
uint8_t b3:1;
uint8_t b2:1;
uint8_t b1:1;
uint8_t b0:1;
};
} bits_t;
#define BITTEST(n,x) ((bits_t)(n)).b##x;
static inline void set_flags_NZ( uint8_t imm ) {
m6502.flags.N = BITTEST(imm, 7);
m6502.flags.Z = imm == 0;
}
static inline void set_flags_NVZ( uint8_t imm ) {
set_flags_NZ(imm);
m6502.flags.V = BITTEST(imm, 6);
}
static inline void set_flags_NZC( int test ) {
m6502.flags.N = test < 0;
m6502.flags.Z = test == 0;
m6502.flags.C = test > 0xFF;
}
static inline uint8_t mmioRead( uint16_t addr ) {
switch (addr) {
case ioSomething:
return 123;
default:
break;
}
return 0;
}
/**
Naive implementation of RAM read from address
**/
static inline uint8_t memread( uint16_t addr ) {
if ( ( addr >= 0xC000 ) && ( addr < 0xD000 ) ) {
return mmioRead(addr);
}
// if ( addr < 0xC000 )
// return mem[ addr ];
// if ( addr < 0xD000 )
// return mmioRead(addr);
// return ROMRead(addr);
return mem[ addr ];
}
//#define memread(a) mem[a]
/**
Naive implementation of RAM read from address
**/
static inline uint16_t memread16( uint16_t addr ) {
if ( addr < 0xC000 )
return * (uint16_t*) (& mem[ addr ]);
if ( addr < 0xD000 )
return * (uint16_t*) (& mem[ addr ]);
return * (uint16_t*) (& mem[ addr ]);
}
//#define memread16(a) * (uint16_t*) (& mem[a])
/**
Naive implementation of RAM read from address
**/
//static inline uint16_t memioread16( uint16_t addr ) {
// return (uint16_t)mmio_read[ addr ](addr);
//}
/**
Naive implementation of RAM write to address
**/
static void memwrite( uint16_t addr, uint8_t byte ) {
mem[ addr ] = byte;
}
/**
Fetching 1 byte from memory address pc (program counter)
increase pc by one
**/
static inline uint8_t fetch() {
// printf("fetching 0x%04X\n", m6502.pc);
return memread( m6502.pc++ );
}
//#define fetch(a) memread(a)
/**
Fetching 2 bytes as a 16 bit number from memory address pc (program counter)
increase pc by one
**/
static inline uint16_t fetch16() {
// return ( (uint16_t)fetch() << 8 ) + fetch();
uint16_t word = memread16( m6502.pc );
m6502.pc += 2;
return word;
}
//#define fetch16(a) memread16(a)
/**
get a 16 bit address from the zp:zp+1
**/
static inline uint16_t addr_zpg_ind( uint8_t zpg ) {
return memread16(zpg);
}
/**
X,ind .... X-indexed, indirect OPC ($LL,X)
operand is zeropage address;
effective address is word in (LL + X, LL + X + 1), inc. without carry: C.w($00LL + X)
**/
static inline uint16_t addr_X_ind() {
return addr_zpg_ind( fetch() + m6502.X );
}
/**
ind,Y .... indirect, Y-indexed OPC ($LL),Y
operand is zeropage address;
effective address is word in (LL, LL + 1) incremented by Y with carry: C.w($00LL) + Y
**/
static inline uint16_t addr_ind_Y() {
return addr_zpg_ind( fetch() ) + m6502.Y;
}
/**
abs,X .... absolute, X-indexed OPC $LLHH,X
operand is address; effective address is address incremented by X with carry **
**/
static inline uint16_t addr_abs_X() {
return fetch16() + m6502.X;
}
/**
abs,Y .... absolute, Y-indexed OPC $LLHH,Y
operand is address; effective address is address incremented by Y with carry **
**/
static inline uint16_t addr_abs_Y() {
return fetch16() + m6502.Y;
}
/**
zpg .... zeropage OPC $LL
operand is zeropage address (hi-byte is zero, address = $00LL)
**/
static inline uint16_t addr_zpg() {
return fetch();
}
/**
zpg,X .... zeropage, X-indexed OPC $LL,X
operand is zeropage address;
effective address is address incremented by X without carry **
**/
static inline uint16_t addr_zpg_X() {
return addr_zpg() + m6502.X;
}
/**
zpg,Y .... zeropage, Y-indexed OPC $LL,Y
operand is zeropage address;
effective address is address incremented by Y without carry **
**/
static inline uint16_t addr_zpg_Y() {
return addr_zpg() + m6502.Y;
}
static inline void PUSH( uint8_t n ) {
memwrite( m6502.sp--, n );
}
static inline uint8_t POP() {
return memread( ++m6502.sp );
}
static inline void PUSH_addr( uint16_t addr ) {
PUSH( (uint8_t)addr );
PUSH( (uint8_t)(addr >> 8) );
}
static inline uint16_t POP_addr() {
return ( POP() << 8 ) + POP();
}
/**
BRK Force Break
interrupt, N Z C I D V
push PC+2, push SR - - - 1 - -
addressing assembler opc bytes cyles
--------------------------------------------
implied BRK 00 1 7
**/
static inline void BRK() {
// printf("BRK\n");
}
/**
NOP No Operation
--- N Z C I D V
- - - - - -
addressing assembler opc bytes cyles
--------------------------------------------
implied NOP EA 1 2
**/
static inline void NOP() {
// printf("BRK\n");
}
static inline void STR( uint8_t * dst, uint8_t imm ) {
*dst = imm;
}
/**
INC Increment Memory by One
M + 1 -> M N Z C I D V
+ + - - - -
addressing assembler opc bytes cyles
--------------------------------------------
zeropage INC oper E6 2 5
zeropage,X INC oper,X F6 2 6
absolute INC oper EE 3 6
absolute,X INC oper,X FE 3 7
**/
static inline void INC( uint8_t * dst ) {
(*dst)++;
set_flags_NZ(*dst);
}
/**
INX Increment Index X by One
X + 1 -> X N Z C I D V
+ + - - - -
addressing assembler opc bytes cyles
--------------------------------------------
implied INX E8 1 2
**/
static inline void INX() {
m6502.X++;
set_flags_NZ(m6502.X);
}
/**
INY Increment Index Y by One
Y + 1 -> Y N Z C I D V
+ + - - - -
addressing assembler opc bytes cyles
--------------------------------------------
implied INY C8 1 2
**/
static inline void INY() {
m6502.Y++;
set_flags_NZ(m6502.Y);
}
/**
LDA Load Accumulator with Memory
M -> A N Z C I D V
+ + - - - -
addressing assembler opc bytes cyles
--------------------------------------------
immidiate LDA #oper A9 2 2
zeropage LDA oper A5 2 3
zeropage,X LDA oper,X B5 2 4
absolute LDA oper AD 3 4
absolute,X LDA oper,X BD 3 4*
absolute,Y LDA oper,Y B9 3 4*
(indirect,X) LDA (oper,X) A1 2 6
(indirect),Y LDA (oper),Y B1 2 5*
**/
static inline void LDA( uint8_t imm ) {
m6502.A = imm;
}
/**
LDX Load Index X with Memory
M -> X N Z C I D V
+ + - - - -
addressing assembler opc bytes cyles
--------------------------------------------
immidiate LDX #oper A2 2 2
zeropage LDX oper A6 2 3
zeropage,Y LDX oper,Y B6 2 4
absolute LDX oper AE 3 4
absolute,Y LDX oper,Y BE 3 4*
**/
static inline void LDX( uint8_t imm ) {
m6502.X = imm;
}
/**
LDY Load Index Y with Memory
M -> Y N Z C I D V
+ + - - - -
addressing assembler opc bytes cyles
--------------------------------------------
immidiate LDY #oper A0 2 2
zeropage LDY oper A4 2 3
zeropage,X LDY oper,X B4 2 4
absolute LDY oper AC 3 4
absolute,X LDY oper,X BC 3 4*
**/
static inline void LDY( uint8_t imm ) {
m6502.Y = imm;
}
/**
STA Store Accumulator in Memory
A -> M N Z C I D V
- - - - - -
addressing assembler opc bytes cyles
--------------------------------------------
zeropage STA oper 85 2 3
zeropage,X STA oper,X 95 2 4
absolute STA oper 8D 3 4
absolute,X STA oper,X 9D 3 5
absolute,Y STA oper,Y 99 3 5
(indirect,X) STA (oper,X) 81 2 6
(indirect),Y STA (oper),Y 91 2 6
**/
static inline void STA( uint8_t * dst ) {
STR(dst, m6502.A);
}
/**
STX Store Index X in Memory
X -> M N Z C I D V
- - - - - -
addressing assembler opc bytes cyles
--------------------------------------------
zeropage STX oper 86 2 3
zeropage,Y STX oper,Y 96 2 4
absolute STX oper 8E 3 4
**/
static inline void STX( uint8_t * dst ) {
STR(dst, m6502.X);
}
/**
STY Sore Index Y in Memory
Y -> M N Z C I D V
- - - - - -
addressing assembler opc bytes cyles
--------------------------------------------
zeropage STY oper 84 2 3
zeropage,X STY oper,X 94 2 4
absolute STY oper 8C 3 4
**/
static inline void STY( uint8_t * dst ) {
STR(dst, m6502.Y);
}
/**
ORA OR Memory with Accumulator
A OR M -> A N Z C I D V
+ + - - - -
addressing assembler opc bytes cyles
--------------------------------------------
immidiate ORA #oper 09 2 2
zeropage ORA oper 05 2 3
zeropage,X ORA oper,X 15 2 4
absolute ORA oper 0D 3 4
absolute,X ORA oper,X 1D 3 4*
absolute,Y ORA oper,Y 19 3 4*
(indirect,X) ORA (oper,X) 01 2 6
(indirect),Y ORA (oper),Y 11 2 5*
**/
static inline void ORA( uint8_t imm ) {
m6502.A |= imm;
set_flags_NZ( m6502.A );
}
/**
ADC Add Memory to Accumulator with Carry
A + M + C -> A, C N Z C I D V
+ + + - - +
addressing assembler opc bytes cyles
--------------------------------------------
immidiate ADC #oper 69 2 2
zeropage ADC oper 65 2 3
zeropage,X ADC oper,X 75 2 4
absolute ADC oper 6D 3 4
absolute,X ADC oper,X 7D 3 4*
absolute,Y ADC oper,Y 79 3 4*
(indirect,X) ADC (oper,X) 61 2 6
(indirect),Y ADC (oper),Y 71 2 5*
**/
static inline void ADC( uint8_t imm ) {
m6502.A += imm + m6502.flags.C;
set_flags_NVZ( m6502.A );
}
/**
SBC Subtract Memory from Accumulator with Borrow
A - M - C -> A N Z C I D V
+ + + - - +
addressing assembler opc bytes cyles
--------------------------------------------
immidiate SBC #oper E9 2 2
zeropage SBC oper E5 2 3
zeropage,X SBC oper,X F5 2 4
absolute SBC oper ED 3 4
absolute,X SBC oper,X FD 3 4*
absolute,Y SBC oper,Y F9 3 4*
(indirect,X) SBC (oper,X) E1 2 6
(indirect),Y SBC (oper),Y F1 2 5*
**/
static inline void SBC( uint8_t imm ) {
int tmp = (int)m6502.A - imm - m6502.flags.C;
m6502.A = (uint8_t)tmp;
set_flags_NVZ( tmp );
}
/**
AND AND Memory with Accumulator
A AND M -> A N Z C I D V
+ + - - - -
addressing assembler opc bytes cyles
--------------------------------------------
immidiate AND #oper 29 2 2
zeropage AND oper 25 2 3
zeropage,X AND oper,X 35 2 4
absolute AND oper 2D 3 4
absolute,X AND oper,X 3D 3 4*
absolute,Y AND oper,Y 39 3 4*
(indirect,X) AND (oper,X) 21 2 6
(indirect),Y AND (oper),Y 31 2 5*
**/
static inline void AND( uint8_t imm ) {
m6502.A &= imm;
set_flags_NZ( m6502.A );
}
/**
EOR Exclusive-OR Memory with Accumulator
A EOR M -> A N Z C I D V
+ + - - - -
addressing assembler opc bytes cyles
--------------------------------------------
immidiate EOR #oper 49 2 2
zeropage EOR oper 45 2 3
zeropage,X EOR oper,X 55 2 4
absolute EOR oper 4D 3 4
absolute,X EOR oper,X 5D 3 4*
absolute,Y EOR oper,Y 59 3 4*
(indirect,X) EOR (oper,X) 41 2 6
(indirect),Y EOR (oper),Y 51 2 5*
**/
static inline void EOR( uint8_t imm ) {
m6502.A ^= imm;
set_flags_NZ( m6502.A );
}
/**
ASL Shift Left One Bit (Memory or Accumulator)
C <- [76543210] <- 0 N Z C I D V
+ + + - - -
addressing assembler opc bytes cyles
--------------------------------------------
accumulator ASL A 0A 1 2
zeropage ASL oper 06 2 5
zeropage,X ASL oper,X 16 2 6
absolute ASL oper 0E 3 6
absolute,X ASL oper,X 1E 3 7
**/
static inline void ASL( uint8_t * dst ) {
m6502.flags.C = (*dst & (1<<7)) >> 7;
*dst <<= 1;
set_flags_NZ( *dst );
}
/**
LSR Shift One Bit Right (Memory or Accumulator)
0 -> [76543210] -> C N Z C I D V
0 + + - - -
addressing assembler opc bytes cyles
--------------------------------------------
accumulator LSR A 4A 1 2
zeropage LSR oper 46 2 5
zeropage,X LSR oper,X 56 2 6
absolute LSR oper 4E 3 6
absolute,X LSR oper,X 5E 3 7
**/
static inline void LSR( uint8_t * dst ) {
m6502.flags.C = *dst & 1;
*dst >>= 1;
set_flags_NZ( *dst );
}
/**
PHA Push Accumulator on Stack
push A N Z C I D V
- - - - - -
addressing assembler opc bytes cyles
--------------------------------------------
implied PHA 48 1 3
**/
static inline void PHA() {
PUSH( m6502.A );
}
/**
PLA Pull Accumulator from Stack
pull A N Z C I D V
+ + - - - -
addressing assembler opc bytes cyles
--------------------------------------------
implied PLA 68 1 4
**/
static inline void PLA() {
m6502.A = POP();
}
/**
PHP Push Processor Status on Stack
push SR N Z C I D V
- - - - - -
addressing assembler opc bytes cyles
--------------------------------------------
implied PHP 08 1 3
**/
static inline void PHP() {
PUSH( m6502.sr );
}
/**
PLP Pull Processor Status from Stack
pull SR N Z C I D V
from stack
addressing assembler opc bytes cyles
--------------------------------------------
implied PLP 28 1 4
**/
static inline void PLP() {
m6502.sr = POP();
}
static inline void BR( int8_t reladdr ) {
m6502.pc += reladdr;
}
/**
BNE Branch on Result not Zero
branch on Z = 0 N Z C I D V
- - - - - -
addressing assembler opc bytes cyles
--------------------------------------------
relative BNE oper D0 2 2**
**/
static inline void BNE( int8_t reladdr ) {
if ( m6502.flags.Z == 0 )
BR( reladdr );
}
/**
BEQ Branch on Result Zero
branch on Z = 1 N Z C I D V
- - - - - -
addressing assembler opc bytes cyles
--------------------------------------------
relative BEQ oper F0 2 2**
**/
static inline void BEQ( int8_t reladdr ) {
if ( m6502.flags.Z == 1 )
BR( reladdr );
}
/**
BPL Branch on Result Plus
branch on N = 0 N Z C I D V
- - - - - -
addressing assembler opc bytes cyles
--------------------------------------------
relative BPL oper 10 2 2**
**/
static inline void BPL( int8_t reladdr ) {
if ( m6502.flags.N == 0 )
BR( reladdr );
}
/**
BMI Branch on Result Minus
branch on N = 1 N Z C I D V
- - - - - -
addressing assembler opc bytes cyles
--------------------------------------------
relative BMI oper 30 2 2**
**/
static inline void BMI( int8_t reladdr ) {
if ( m6502.flags.N == 1 )
BR( reladdr );
}
/**
BVC Branch on Overflow Clear
branch on V = 0 N Z C I D V
- - - - - -
addressing assembler opc bytes cyles
--------------------------------------------
relative BVC oper 50 2 2**
**/
static inline void BVC( int8_t reladdr ) {
if ( m6502.flags.V == 0 )
BR( reladdr );
}
/**
BVS Branch on Overflow Set
branch on V = 1 N Z C I D V
- - - - - -
addressing assembler opc bytes cyles
--------------------------------------------
relative BVC oper 70 2 2**
**/
static inline void BVS( int8_t reladdr ) {
if ( m6502.flags.V == 1 )
BR( reladdr );
}
/**
BCC Branch on Carry Clear
branch on C = 0 N Z C I D V
- - - - - -
addressing assembler opc bytes cyles
--------------------------------------------
relative BCC oper 90 2 2**
**/
static inline void BCC( int8_t reladdr ) {
if ( m6502.flags.C == 0 )
BR( reladdr );
}
/**
BCS Branch on Carry Set
branch on C = 1 N Z C I D V
- - - - - -
addressing assembler opc bytes cyles
--------------------------------------------
relative BCS oper B0 2 2**
**/
static inline void BCS( int8_t reladdr ) {
if ( m6502.flags.C == 1 )
BR( reladdr );
}
/**
CLC Clear Carry Flag
0 -> C N Z C I D V
- - 0 - - -
addressing assembler opc bytes cyles
--------------------------------------------
implied CLC 18 1 2
**/
static inline void CLC() {
m6502.flags.C = 0;
}
/**
SEC Set Carry Flag
1 -> C N Z C I D V
- - 1 - - -
addressing assembler opc bytes cyles
--------------------------------------------
implied SEC 38 1 2
**/
static inline void SEC() {
m6502.flags.C = 1;
}
/**
CLD Clear Decimal Mode
0 -> D N Z C I D V
- - - - 0 -
addressing assembler opc bytes cyles
--------------------------------------------
implied CLD D8 1 2
**/
static inline void CLD() {
m6502.flags.D = 0;
}
/**
SED Set Decimal Flag
1 -> D N Z C I D V
- - - - 1 -
addressing assembler opc bytes cyles
--------------------------------------------
implied SED F8 1 2
**/
static inline void SED() {
m6502.flags.D = 1;
}
/**
CLI Clear Interrupt Disable Bit
0 -> I N Z C I D V
- - - 0 - -
addressing assembler opc bytes cyles
--------------------------------------------
implied CLI 58 1 2
**/
static inline void CLI() {
m6502.flags.I = 0;
}
/**
SEI Set Interrupt Disable Status
1 -> I N Z C I D V
- - - 1 - -
addressing assembler opc bytes cyles
--------------------------------------------
implied SEI 78 1 2
**/
static inline void SEI() {
m6502.flags.I = 1;
}
/**
CLV Clear Overflow Flag
0 -> V N Z C I D V
- - - - - 0
addressing assembler opc bytes cyles
--------------------------------------------
implied CLV B8 1 2
**/
static inline void CLV() {
m6502.flags.V = 0;
}
/**
CMP Compare Memory with Accumulator
A - M N Z C I D V
+ + + - - -
addressing assembler opc bytes cyles
--------------------------------------------
immidiate CMP #oper C9 2 2
zeropage CMP oper C5 2 3
zeropage,X CMP oper,X D5 2 4
absolute CMP oper CD 3 4
absolute,X CMP oper,X DD 3 4*
absolute,Y CMP oper,Y D9 3 4*
(indirect,X) CMP (oper,X) C1 2 6
(indirect),Y CMP (oper),Y D1 2 5*
**/
static inline void CMP( uint8_t imm ) {
set_flags_NZC( (int)m6502.A - imm );
}
/**
CPX Compare Memory and Index X
X - M N Z C I D V
+ + + - - -
addressing assembler opc bytes cyles
--------------------------------------------
immidiate CPX #oper E0 2 2
zeropage CPX oper E4 2 3
absolute CPX oper EC 3 4
**/
static inline void CPX( uint8_t imm ) {
set_flags_NZC( (int)m6502.X - imm );
}
/**
CPY Compare Memory and Index Y
Y - M N Z C I D V
+ + + - - -
addressing assembler opc bytes cyles
--------------------------------------------
immidiate CPY #oper C0 2 2
zeropage CPY oper C4 2 3
absolute CPY oper CC 3 4
**/
static inline void CPY( uint8_t imm ) {
set_flags_NZC( (int)m6502.Y - imm );
}
/**
JSR Jump to New Location Saving Return Address
push (PC+2), N Z C I D V
(PC+1) -> PCL - - - - - -
(PC+2) -> PCH
addressing assembler opc bytes cyles
--------------------------------------------
absolute JSR oper 20 3 6
**/
static inline void JSR( uint16_t addr ) {
PUSH_addr(m6502.pc + 2);
m6502.pc = addr;
}
/**
JMP Jump to New Location
(PC+1) -> PCL N Z C I D V
(PC+2) -> PCH - - - - - -
addressing assembler opc bytes cyles
--------------------------------------------
absolute JMP oper 4C 3 3
indirect JMP (oper) 6C 3 5
**/
static inline void JMP( uint16_t addr ) {
m6502.pc = addr;
}
/**
RTS Return from Subroutine
pull PC, PC+1 -> PC N Z C I D V
- - - - - -
addressing assembler opc bytes cyles
--------------------------------------------
implied RTS 60 1 6
**/
static inline void RTS() {
m6502.pc = POP_addr();
}
/**
RTI Return from Interrupt
pull SR, pull PC N Z C I D V
from stack
addressing assembler opc bytes cyles
--------------------------------------------
implied RTI 40 1 6
**/
static inline void RTI() {
m6502.sr = POP();
RTS();
}
/**
BIT Test Bits in Memory with Accumulator
bits 7 and 6 of operand are transfered to bit 7 and 6 of SR (N,V);
the zeroflag is set to the result of operand AND accumulator.
A AND M, M7 -> N, M6 -> V N Z C I D V
M7 + - - - M6
addressing assembler opc bytes cyles
--------------------------------------------
zeropage BIT oper 24 2 3
absolute BIT oper 2C 3 4
**/
static inline void BIT( uint8_t imm ) {
m6502.flags.N = BITTEST(imm, 7);
m6502.flags.V = BITTEST(imm, 6);
m6502.flags.Z = ( m6502.A & imm ) == 0;
}
/**
ROL Rotate One Bit Left (Memory or Accumulator)
C <- [76543210] <- C N Z C I D V
+ + + - - -
addressing assembler opc bytes cyles
--------------------------------------------
accumulator ROL A 2A 1 2
zeropage ROL oper 26 2 5
zeropage,X ROL oper,X 36 2 6
absolute ROL oper 2E 3 6
absolute,X ROL oper,X 3E 3 7
**/
static inline void ROL( uint8_t * dst ) {
uint8_t C = m6502.flags.C;
m6502.flags.C = (*dst & (1<<7)) >> 7;
*dst <<= 1;
*dst |= C;
set_flags_NZ( *dst );
}
/**
ROR Rotate One Bit Right (Memory or Accumulator)
C -> [76543210] -> C N Z C I D V
+ + + - - -
addressing assembler opc bytes cyles
--------------------------------------------
accumulator ROR A 6A 1 2
zeropage ROR oper 66 2 5
zeropage,X ROR oper,X 76 2 6
absolute ROR oper 6E 3 6
absolute,X ROR oper,X 7E 3 7
**/
static inline void ROR( uint8_t * dst ) {
uint8_t C = m6502.flags.C << 7;
m6502.flags.C = *dst;
*dst >>= 1;
*dst |= C;
set_flags_NZ( *dst );
}
/**
DEC Decrement Memory by One
M - 1 -> M N Z C I D V
+ + - - - -
addressing assembler opc bytes cyles
--------------------------------------------
zeropage DEC oper C6 2 5
zeropage,X DEC oper,X D6 2 6
absolute DEC oper CE 3 3
absolute,X DEC oper,X DE 3 7
**/
static inline void DEC( uint8_t * dst ) {
(*dst)--;
set_flags_NZ(*dst);
}
/**
DEX Decrement Index X by One
X - 1 -> X N Z C I D V
+ + - - - -
addressing assembler opc bytes cyles
--------------------------------------------
implied DEC CA 1 2
**/
static inline void DEX() {
m6502.X--;
set_flags_NZ(m6502.X);
}
/**
DEY Decrement Index Y by One
Y - 1 -> Y N Z C I D V
+ + - - - -
addressing assembler opc bytes cyles
--------------------------------------------
implied DEC 88 1 2
**/
static inline void DEY() {
m6502.Y--;
set_flags_NZ(m6502.Y);
}
/**
TAX Transfer Accumulator to Index X
A -> X N Z C I D V
+ + - - - -
addressing assembler opc bytes cyles
--------------------------------------------
implied TAX AA 1 2
**/
static inline void TAX() {
m6502.X = m6502.A;
set_flags_NZ(m6502.X);
}
/**
TAY Transfer Accumulator to Index Y
A -> Y N Z C I D V
+ + - - - -
addressing assembler opc bytes cyles
--------------------------------------------
implied TAY A8 1 2
**/
static inline void TAY() {
m6502.Y = m6502.A;
set_flags_NZ(m6502.Y);
}
/**
TSX Transfer Stack Pointer to Index X
SP -> X N Z C I D V
+ + - - - -
addressing assembler opc bytes cyles
--------------------------------------------
implied TSX BA 1 2
**/
static inline void TSX() {
m6502.X = m6502.sp;
set_flags_NZ(m6502.X);
}
/**
TXA Transfer Index X to Accumulator
X -> A N Z C I D V
+ + - - - -
addressing assembler opc bytes cyles
--------------------------------------------
implied TXA 8A 1 2
**/
static inline void TXA() {
m6502.A = m6502.X;
set_flags_NZ(m6502.A);
}
/**
TXS Transfer Index X to Stack Register
X -> SP N Z C I D V
- - - - - -
addressing assembler opc bytes cyles
--------------------------------------------
implied TXS 9A 1 2
**/
static inline void TXS() {
m6502.sp = m6502.X;
}
/**
TYA Transfer Index Y to Accumulator
Y -> A N Z C I D V
+ + - - - -
addressing assembler opc bytes cyles
--------------------------------------------
implied TYA 98 1 2
**/
static inline void TYA() {
m6502.A = m6502.Y;
set_flags_NZ(m6502.A);
}
/////
static inline int m6502_step() {
// m6502.instr = fetch();
// switch ( m6502.instr ) {
switch ( fetch() ) {
// case 0x00: { uint16_t addr = fetch16(); BIT( (* mmio_read[addr])(addr) ); return 4; } // BIT abs BRK(); return 2; // BRK
case 0x00: BRK(); return 2; // BRK
case 0x01: ORA( memread( addr_X_ind() ) ); return 6; // ORA X,ind
// case 0x02: // t jams
// case 0x03: // SLO* (undocumented)
// case 0x04: // NOP* (undocumented)
case 0x05: ORA( memread( fetch() ) ); return 3; // ORA zpg
case 0x06: ASL( & mem[ fetch() ] ); return 5; // ASL zpg
// case 0x07: // SLO* (undocumented)
case 0x08: PHP(); return 3; // PHP
case 0x09: ORA( fetch() ); return 2; // ORA imm
case 0x0A: ASL( & m6502.A ); return 2; // ASL A
// case 0x0B: // ANC** (undocumented)
// case 0x0C: // NOP* (undocumented)
case 0x0D: ORA( memread( fetch16() ) ); return 4; // ORA abs
case 0x0E: ASL( & mem[ fetch16() ] ); return 6; // ASL abs
// case 0x0F: // SLO* (undocumented)
case 0x10: BPL( (int8_t)fetch() ); return 2; // BPL rel
case 0x11: ORA( memread( addr_ind_Y() ) ); return 5; // ORA ind,Y
// case 0x12: // t jams
// case 0x13: // SLO* (undocumented)
// case 0x14: // NOP* (undocumented)
case 0x15: ORA( memread( fetch() + m6502.X ) ); return 4; // ORA zpg,X
case 0x16: ASL( & mem[ fetch() + m6502.X ] ); return 6; // ASL zpg,X
// case 0x17: // SLO* (undocumented)
case 0x18: CLC(); return 2; // CLC
case 0x19: ORA( memread( fetch16() + m6502.Y ) ); return 4; // ORA abs,Y
// case 0x1A: // NOP* (undocumented)
// case 0x1B: // SLO* (undocumented)
// case 0x1C: // NOP* (undocumented)
case 0x1D: ORA( memread( fetch16() + m6502.X ) ); return 4; // ORA abs,X
case 0x1E: ASL( & mem[ fetch16() + m6502.X ] ); return 7; // ASL abs,X
// case 0x1F: // SLO* (undocumented)
case 0x20: JSR( fetch16() ); return 6; // JSR abs
case 0x21: AND( memread( addr_X_ind() ) ); return 6; // AND X,ind
// case 0x22:
// case 0x23:
case 0x24: BIT( memread( fetch() ) ); return 3; // BIT zpg
case 0x25: AND( memread( fetch() ) ); return 3; // AND zpg
case 0x26: ROL( & mem[ fetch() ] ); return 5; // ROL zpg
// case 0x27:
case 0x28: PLP(); return 4; // PLP
case 0x29: AND( fetch() ); return 2; // AND imm
case 0x2A: ROL( & m6502.A ); return 2; // ROL A
// case 0x2B:
case 0x2C: BIT( memread( fetch16() ) ); return 4; // BIT abs
case 0x2D: AND( fetch16() ); return 4; // AND abs
case 0x2E: ROL( & mem[ fetch16() ] ); return 6; // ROL abs
// case 0x2F:
case 0x30: BMI( (int8_t)fetch() ); return 2; // BMI rel
case 0x31: AND( memread( addr_ind_Y() ) ); return 5; // AND ind,Y
// case 0x32:
// case 0x33:
// case 0x34:
case 0x35: AND( memread( addr_zpg_X() ) ); return 4; // AND zpg,X
case 0x36: ROL( & mem[ addr_zpg_X() ] ); return 6; // ROL zpg,X
// case 0x37:
case 0x38: SEC(); return 2; // SEC
case 0x39: AND( memread( addr_abs_Y() ) ); return 4; // AND abs,Y
// case 0x3A:
// case 0x3B:
// case 0x3C:
case 0x3D: AND( memread( addr_abs_X() ) ); return 4; // AND abs,X
case 0x3E: ROL( & mem[ addr_abs_X() ] ); return 7; // ROL abs,X
// case 0x3F:
case 0x40: RTI(); return 6; // RTI
case 0x41: EOR( memread( addr_X_ind() ) ); return 6; // EOR X,ind
// case 0x42:
// case 0x43:
// case 0x44:
case 0x45: EOR( memread( fetch() ) ); return 3; // EOR zpg
case 0x46: LSR( & mem[ fetch() ] ); return 5; // LSR zpg
// case 0x47:
case 0x48: PHA(); return 3; // PHA
case 0x49: EOR( fetch() ); return 2; // EOR imm
case 0x4A: LSR( & m6502.A ); return 2; // LSR A
// case 0x4B:
case 0x4C: JMP( fetch16() ); return 3; // JMP abs
case 0x4D: EOR( fetch16() ); return 4; // EOR abs
case 0x4E: LSR( & mem[ fetch16() ] ); return 6; // LSR abs
// case 0x4F:
case 0x50: BVC( (int8_t)fetch() ); return 2; // BVC rel
case 0x51: EOR( memread( addr_ind_Y() ) ); return 5; // EOR ind,Y
// case 0x52:
// case 0x53:
// case 0x54:
case 0x55: EOR( memread( addr_zpg_X() ) ); return 4; // AND zpg,X
case 0x56: LSR( & mem[ addr_zpg_X() ] ); return 6; // LSR zpg,X
// case 0x57:
case 0x58: CLI(); return 2; // CLI
case 0x59: EOR( memread( addr_abs_Y() ) ); return 4; // EOR abs,Y
// case 0x5A:
// case 0x5B:
// case 0x5C:
case 0x5D: EOR( memread( addr_abs_X() ) ); return 4; // EOR abs,X
case 0x5E: LSR( & mem[ addr_abs_X() ] ); return 7; // LSR abs,X
// case 0x5F:
case 0x60: RTS(); return 6; // RTS
case 0x61: ADC( memread( addr_X_ind() ) ); return 6; // ADC X,ind
// case 0x62:
// case 0x63:
// case 0x64:
case 0x65: ADC( memread( fetch() ) ); return 3; // ADC zpg
case 0x66: ROR( & mem[ fetch() ] ); return 5; // ROR zpg
// case 0x67:
case 0x68: PLA(); break; // PLA
case 0x69: ADC( fetch() ); return 2; // ADC imm
case 0x6A: ROR( & m6502.A ); return 2; // ROR A
// case 0x6B:
case 0x6C: JMP( memread( fetch16() ) ); return 5; // JMP ind
case 0x6D: ADC( memread( fetch16() ) ); return 4; // ADC abs
case 0x6E: ROR( & mem[ fetch16() ] ); return 6; // ROR abs
// case 0x6F:
case 0x70: BVS( (int8_t)fetch() ); break; // BVS rel
case 0x71: ADC( memread( addr_ind_Y() ) ); return 5; // ADC ind,Y
// case 0x72:
// case 0x73:
// case 0x74:
case 0x75: ADC( memread( addr_zpg_X() ) ); return 4; // ADC zpg,X
case 0x76: ROR( & mem[ addr_zpg_X() ] ); return 6; // ROR zpg,X
// case 0x77:
case 0x78: SEI(); break; // SEI
case 0x79: ADC( memread( addr_abs_Y() ) ); return 4; // ADC abs,Y
// case 0x7A:
// case 0x7B:
// case 0x7C:
case 0x7D: ADC( memread( addr_abs_X() ) ); return 4; // ADC abs,X
case 0x7E: ROR( & mem[ addr_abs_X() ] ); return 7; // ROR abs,X
// case 0x7F:
// case 0x80:
case 0x81: STA( & mem[ addr_X_ind() ] ) ; break; // STA X,ind
// case 0x82:
// case 0x83:
case 0x84: STY( & mem[ fetch() ] ); break; // STY zpg
case 0x85: STA( & mem[ fetch() ] ); break; // STA zpg
case 0x86: STX( & mem[ fetch() ] ); break; // STX zpg
// case 0x87:
case 0x88: DEY(); break; // DEY
// case 0x89:
case 0x8A: TXA(); break; // TXA
// case 0x8B:
case 0x8C: STY( & mem[ fetch16() ] ); break; // STY abs
case 0x8D: STA( & mem[ fetch16() ] ); break; // STA abs
case 0x8E: STX( & mem[ fetch16() ] ); break; // STX abs
// case 0x8F:
case 0x90: BCC( (int8_t)fetch() ); break; // BCC rel
case 0x91: STA( & mem[ addr_ind_Y() ] ); break; // STA ind,Y
// case 0x92:
// case 0x93:
case 0x94: STY( & mem[ addr_zpg_X() ] ); break; // STY zpg,X
case 0x95: STA( & mem[ addr_zpg_X() ] ); break; // STA zpg,X
case 0x96: STX( & mem[ addr_zpg_Y() ] ); break; // STX zpg,Y
// case 0x97:
case 0x98: TYA(); break; // TYA
case 0x99: STA( & mem[ addr_abs_Y() ] ); break; // STA abs,Y
case 0x9A: TXS(); break; // TXS
// case 0x9B:
// case 0x9C:
case 0x9D: STA( & mem[ addr_abs_X() ] ); break; // STA abs,X
// case 0x9E:
// case 0x9F:
case 0xA0: LDY( fetch() ); break; // LDY imm
case 0xA1: LDA( memread( addr_X_ind() ) ) ; break; // LDA X,ind
case 0xA2: LDX( fetch() ); break; // LDX imm
// case 0xA3:
case 0xA4: LDY( memread( fetch() ) ); break; // LDY zpg
case 0xA5: LDA( memread( fetch() ) ); break; // LDA zpg
case 0xA6: LDX( memread( fetch() ) ); break; // LDX zpg
// case 0xA7:
case 0xA8: TAY(); break; // TAY
case 0xA9: LDA( fetch() ); break; // LDA imm
case 0xAA: TAX(); break; // TAX
// case 0xAB:
case 0xAC: LDY( memread( fetch16() ) ); break; // LDY abs
case 0xAD: LDA( memread( fetch16() ) ); break; // LDA abs
case 0xAE: LDX( memread( fetch16() ) ); break; // LDX abs
// case 0xAF:
case 0xB0: BCS( (int8_t)fetch() ); break; // BCS rel
case 0xB1: LDA( memread( addr_ind_Y() ) ); break; // LDA ind,Y
// case 0xB2:
// case 0xB3:
case 0xB4: LDY( memread( addr_zpg_X() ) ); break; // LDY zpg,X
case 0xB5: LDA( memread( addr_zpg_X() ) ); break; // LDA zpg,X
case 0xB6: LDX( memread( addr_zpg_Y() ) ); break; // LDX zpg,Y
// case 0xB7:
case 0xB8: CLV(); break; // CLV
case 0xB9: LDA( memread( addr_abs_Y() ) ); break; // LDA abs,Y
case 0xBA: TSX(); break; // TSX
// case 0xBB:
case 0xBC: LDY( memread( addr_abs_X() ) ); break; // LDY abs,X
case 0xBD: LDA( memread( addr_abs_X() ) ); break; // LDA abs,X
case 0xBE: LDX( memread( addr_abs_X() ) ); break; // LDX abs,X
// case 0xBF:
case 0xC0: CPY( fetch() ); break; // CPY imm
case 0xC1: CMP( memread( addr_X_ind() ) ) ; break; // LDA X,ind
// case 0xC2:
// case 0xC3:
case 0xC4: CPY( memread( fetch() ) ); break; // CPY zpg
case 0xC5: CMP( memread( fetch() ) ); break; // CMP zpg
case 0xC6: DEC( & mem[ fetch() ] ); break; // DEC zpg
// case 0xC7:
case 0xC8: INY(); break; // INY
case 0xC9: CMP( fetch() ); break; // CMP imm
case 0xCA: DEX(); break; // DEX
// case 0xCB:
case 0xCC: CPY( memread( fetch16() ) ); break; // CPY abs
case 0xCD: CMP( fetch16() ); break; // CMP abs
case 0xCE: DEC( & mem[ fetch16() ] ); break; // DEC abs
// case 0xCF:
case 0xD0: BNE( (int8_t)fetch() ); break; // BNE rel
case 0xD1: CMP( memread( addr_ind_Y() ) ); break; // CMP ind,Y
// case 0xD2:
// case 0xD3:
// case 0xD4:
case 0xD5: CMP( memread( addr_zpg_X() ) ); break; // CMP zpg,X
case 0xD6: DEC( & mem[ addr_zpg_X() ] ); break; // DEC zpg,X
// case 0xD7:
case 0xD8: CLD(); break; // CLD
case 0xD9: CMP( memread( addr_abs_Y() ) ); break; // CMP abs,Y
// case 0xDA:
// case 0xDB:
// case 0xDC:
case 0xDD: CMP( memread( addr_abs_X() ) ); break; // CMP abs,X
case 0xDE: DEC( & mem[ addr_abs_X() ] ); break; // DEC abs,X
// case 0xDF:
case 0xE0: CPX( fetch() ); break; // CPX imm
case 0xE1: SBC( memread( addr_X_ind() ) ) ; break; // SBC X,ind
// case 0xE2:
// case 0xE3:
case 0xE4: CPX( memread( fetch() ) ); break; // CPX zpg
case 0xE5: SBC( memread( fetch() ) ); break; // SBC zpg
case 0xE6: INC( & mem[ fetch() ] ); break; // INC zpg
// case 0xE7:
case 0xE8: INX(); break; // INX
case 0xE9: SBC( fetch() ); break; // SBC imm
case 0xEA: NOP(); break; // NOP
// case 0xEB:
case 0xEC: CPX( memread( fetch16() ) ); break; // CPX abs
case 0xED: SBC( fetch16() ); break; // SBC abs
case 0xEE: INC( & mem[ fetch16() ] ); break; // INC abs
// case 0xEF:
case 0xF0: BEQ( (int8_t)fetch() ); break; // BEQ rel
case 0xF1: SBC( memread( addr_ind_Y() ) ); break; // SBC ind,Y
// case 0xF2:
// case 0xF3:
// case 0xF4:
case 0xF5: SBC( memread( addr_zpg_X() ) ); break; // SBC zpg,X
case 0xF6: INC( & mem[ addr_zpg_X() ] ); break; // INC zpg,X
// case 0xF7:
case 0xF8: SED(); break; // SED
case 0xF9: SBC( memread( addr_abs_Y() ) ); break; // SBC abs,Y
// case 0xFA:
// case 0xFB:
// case 0xFC:
case 0xFD: SBC( memread( addr_abs_X() ) ); break; // SBC abs,X
case 0xFE: INC( & mem[ addr_abs_X() ] ); break; // INC abs,X
// case 0xFF:
default:
printf("Unimplemented Instruction 0x%02X\n", m6502.instr);
break;
}
return 2;
}
const unsigned long long int iterations = M;
unsigned long long TICK_PER_SEC = G;
unsigned long long TICK_6502_PER_SEC = 0;
unsigned long long MHz_6502 = 1.024 * M;
static __inline__ unsigned long long rdtsc(void)
{
unsigned hi, lo;
__asm__ __volatile__ ("rdtsc" : "=a"(lo), "=d"(hi) );
return ( (unsigned long long)lo) | ( ((unsigned long long)hi) << 32 );
}
static inline void m6502_run() {
uint8_t clk = 0;
// init time
unsigned long long s = rdtsc();
unsigned long long e = (unsigned long long)-1LL;
for ( unsigned long long int i = 0; i < iterations ; i++ ) {
clk = m6502_step();
clktime += clk;
e = TICK_6502_PER_SEC * clktime;
// query time + wait
// usleep(1);
// tight loop gives us the most precise wait time
while ( rdtsc() - s < e ) {}
}
}
void init() {
// for ( int i = 0; i < 64*1024; i++ ) {
// mmio_read[i] = memread;
// }
unsigned long long s = rdtsc();
sleep(1);
unsigned long long e = rdtsc();
TICK_PER_SEC = e - s;
TICK_6502_PER_SEC = TICK_PER_SEC / MHz_6502;
}
int main(int argc, const char * argv[]) {
// insert code here...
printf("6502\n");
init();
// clock_t start = clock();
unsigned long long s = rdtsc();
m6502_run();
// clock_t end = clock();
// double execution_time = ((double) (end - start)) / CLOCKS_PER_SEC;
unsigned long long e = rdtsc();
unsigned long long t = e - s;
double execution_time = (double)t / TICK_PER_SEC;
double mips = iterations / (execution_time * M);
double mhz = clktime / (execution_time * M);
printf("Elpased time: (%llu / %llu / %llu), %.3lfs (%.3lf MIPS, %.3lf MHz)\n", TICK_PER_SEC, MHz_6502, TICK_6502_PER_SEC, execution_time, mips, mhz);
return 0;
}