Steve2/A2Mac/Apple2_mmio.h

698 lines
20 KiB
C

//
// main.c
// 6502
//
// Created by Tamas Rudnai on 7/14/19.
// Copyright © 2019 GameAlloy. All rights reserved.
//
#ifndef __APPLE2_MMIO_H__
#define __APPLE2_MMIO_H__
#include "common.h"
#include "6502.h"
typedef union {
struct {
uint8_t latch;
uint8_t shift;
};
struct {
uint16_t lower15 : 15;
uint16_t valid : 1;
};
uint16_t shift16;
} WOZread_t;
uint8_t Apple2_64K_RAM[ 64 * KB ] = {0};
uint8_t * RAM = Apple2_64K_RAM;
WOZread_t WOZread = {0};
enum slot {
SLOT0 = 0x00,
SLOT1 = 0x10,
SLOT2 = 0x20,
SLOT3 = 0x30,
SLOT4 = 0x40,
SLOT5 = 0x50,
SLOT6 = 0x60,
SLOT7 = 0x70,
};
enum mmio {
io_KBD = 0xC000,
io_KBDSTRB = 0xC010,
io_DISK_PHASE0_OFF = 0xC080,
io_DISK_PHASE0_ON = 0xC081,
io_DISK_PHASE1_OFF = 0xC082,
io_DISK_PHASE1_ON = 0xC083,
io_DISK_PHASE2_OFF = 0xC084,
io_DISK_PHASE2_ON = 0xC085,
io_DISK_PHASE3_OFF = 0xC086,
io_DISK_PHASE3_ON = 0xC087,
io_DISK_POWER_OFF = 0xC088,
io_DISK_POWER_ON = 0xC089,
io_DISK_SELECT_1 = 0xC08A,
io_DISK_SELECT_2 = 0xC08B,
io_DISK_READ = 0xC08C,
io_DISK_WRITE = 0xC08D,
io_DISK_CLEAR = 0xC08E,
io_DISK_SHIFT = 0xC08F,
};
#define PAGESIZE 256
#define PAGES 16
//uint8_t ram_0[PAGESIZE];
//uint8_t ram_1[PAGESIZE];
//uint8_t ram_2[PAGESIZE];
//uint8_t ram_3[PAGESIZE];
//uint8_t ram_4[PAGESIZE];
//uint8_t ram_5[PAGESIZE];
//uint8_t ram_6[PAGESIZE];
//uint8_t ram_7[PAGESIZE];
//uint8_t ram_8[PAGESIZE];
//uint8_t ram_9[PAGESIZE];
//uint8_t ram_A[PAGESIZE];
//uint8_t ram_B[PAGESIZE];
//uint8_t aui_C[PAGESIZE];
//uint8_t rom_D[PAGESIZE];
//uint8_t rom_E[PAGESIZE];
//uint8_t rom_F[PAGESIZE];
//
//uint8_t * ram[PAGES] = {
// ram_0,
// ram_1,
// ram_2,
// ram_3,
// ram_4,
// ram_5,
// ram_6,
// ram_7,
// ram_8,
// ram_9,
// ram_A,
// ram_B,
// aui_C,
// rom_D,
// rom_E,
// rom_F,
//};
//uint8_t ( * mmio_read [ 64 * KB ] )( uint16_t addr );
typedef union address16_u {
uint16_t addr;
struct {
uint8_t offs;
uint8_t page;
};
} address16_t;
#define CASE_DISKII(x) \
case io_DISK_PHASE0_OFF + SLOT##x: \
printf("io_DISK_PHASE0_OFF (S%u)\n", x); \
return 0; \
case io_DISK_PHASE0_ON + SLOT##x: \
printf("io_DISK_PHASE0_ON (S%u)\n", x); \
return 0; \
case io_DISK_PHASE1_OFF + SLOT##x: \
printf("io_DISK_PHASE1_OFF (S%u)\n", x); \
return 0; \
case io_DISK_PHASE1_ON + SLOT##x: \
printf("io_DISK_PHASE1_ON (S%u)\n", x); \
return 0; \
case io_DISK_PHASE2_OFF + SLOT##x: \
printf("io_DISK_PHASE2_OFF (S%u)\n", x); \
return 0; \
case io_DISK_PHASE2_ON + SLOT##x: \
printf("io_DISK_PHASE2_ON (S%u)\n", x); \
return 0; \
case io_DISK_PHASE3_OFF + SLOT##x: \
printf("io_DISK_PHASE3_OFF (S%u)\n", x); \
return 0; \
case io_DISK_PHASE3_ON + SLOT##x: \
printf("io_DISK_PHASE3_ON (S%u)\n", x); \
return 0; \
case io_DISK_POWER_OFF + SLOT##x: \
printf("io_DISK_POWER_OFF (S%u)\n", x); \
return 0; \
case io_DISK_POWER_ON + SLOT##x: \
printf("io_DISK_POWER_ON (S%u)\n", x); \
return 0; \
case io_DISK_SELECT_1 + SLOT##x: \
printf("io_DISK_SELECT_1 (S%u)\n", x); \
return 0; \
case io_DISK_SELECT_2 + SLOT##x: \
printf("io_DISK_SELECT_2 (S%u)\n", x); \
return 0; \
case io_DISK_READ + SLOT##x: \
printf("io_DISK_READ (S%u)\n", x); \
return 0; \
case io_DISK_WRITE + SLOT##x: \
printf("io_DISK_WRITE (S%u)\n", x); \
return 0; \
case io_DISK_CLEAR + SLOT##x: \
printf("io_DISK_CLEAR (S%u)\n", x); \
return 0; \
case io_DISK_SHIFT + SLOT##x: \
printf("io_DISK_SHIFT (S%u)\n", x); \
return 0;
static const int minDiskTrackNum = 0;
static const int maxDiskTrackNum = 39;
static const int minDiskPhaseStates = 8; // 4 quarters * 2 because of two neighbouring magnets can be activated at the same time which gets you a half quarter movement
static const int minDiskPhaseNum = 0;
static const int maxDiskPhaseNum = minDiskPhaseStates * maxDiskTrackNum;
struct phase_t {
uint8_t lastMagnet : 4;
uint8_t magnet : 4;
int count;
} phase = { 0, 0, 0 };
//static const int8_t phaseTransition[4][4] = {
// { 0, -1, 0, +1 },
// { +1, 0, -1, 0 },
// { 0, +1, 0, -1 },
// { -1, 0, +1, 0 },
//};
//static const int phaseTransition[16][16] = {
//// 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111
// { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, // 0000
// { 0, 0, -2, -1, 0, 0, 0, 0, +2, +1, 0, 0, 0, 0, 0, 0 }, // 0001
// { 0, +2, 0, +1, -2, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, // 0010
// { 0, +1, -1, 0, 0, 0, -2, 0, 0, +2, 0, 0, 0, 0, 0, 0 }, // 0011
// { 0, 0, +2, 0, 0, 0, +1, 0, -2, 0, 0, 0, -1, 0, 0, 0 }, // 0100
// { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, // 0101
// { 0, 0, +1, +2, -1, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0 }, // 0110
// { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, // 0111
// { 0, -2, 0, 0, +2, 0, 0, 0, 0, -1, 0, 0, +1, 0, 0, 0 }, // 1000
// { 0, -1, 0, -2, 0, 0, 0, 0, +1, 0, 0, 0, +2, 0, 0, 0 }, // 1001
// { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, // 1010
// { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, // 1011
// { 0, 0, 0, 0, +1, 0, +2, 0, -1, -2, 0, 0, 0, 0, 0, 0 }, // 1100
// { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, // 1101
// { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, // 1110
// { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, // 1111
//};
// Magnet States --> Stepper Motor Position
//
// N
// 0001
// NW | NE
// 1001 | 0011
// |
// W 1000 ------- o ------- 0010 E
// |
// 1100 | 0110
// SW | SE
// 0100
// S
// motor position from the magnet state
// -1 means invalid, not supported
static const int magnet_to_Poistion[16] = {
// 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111
-1, 0, 2, 1, 4, -1, 3, -1, 6, 7, -1, -1, 5, -1, -1, -1
};
static const int position_to_direction[8][8] = {
// N NE E SE S SW W NW
// 0 1 2 3 4 5 6 7
{ 0, 1, 2, 3, 0, -3, -2, -1 }, // 0 N
{ -1, 0, 1, 2, 3, 0, -3, -2 }, // 1 NE
{ -2, -1, 0, 1, 2, 3, 0, -3 }, // 2 E
{ -3, -2, -1, 0, 1, 2, 3, 0 }, // 3 SE
{ 0, -3, -2, -1, 0, 1, 2, 3 }, // 4 S
{ 3, 0, -3, -2, -1, 0, 1, 2 }, // 5 SW
{ 2, 3, 0, -3, -2, -1, 0, 1 }, // 6 W
{ 1, 2, 3, 0, -3, -2, -1, 0 }, // 7 NW
};
INLINE void diskII_phase() {
int position = magnet_to_Poistion[phase.magnet];
if ( position >= 0 ) {
int lastPosition = phase.count & 7;
int direction = position_to_direction[lastPosition][position];
phase.count += direction;
if ( phase.count < minDiskPhaseNum ) {
phase.count = minDiskPhaseNum;
}
else if ( phase.count > maxDiskPhaseNum ) {
phase.count = maxDiskPhaseNum;
}
printf(", p:%d d:%d l:%d: ph:%u trk:%u)", position, direction, lastPosition, phase.count, woz_tmap.phase[phase.count]);
}
printf("\n");
}
INLINE uint8_t ioRead( uint16_t addr ) {
dbgPrintf("mmio read:%04X\n", addr);
uint8_t currentMagnet = 0;
switch (addr) {
case io_KBD:
// if ( RAM[io_KBD] > 0x7F ) printf("io_KBD:%04X\n", addr);
return RAM[io_KBD];
case io_KBDSTRB:
// TODO: This is very slow!
// printf("io_KBDSTRB\n");
return RAM[io_KBD] &= 0x7F;
// CASE_DISKII(6)
// TODO: Make code "card insertable to slot" / aka slot independent and dynamically add/remove
case io_DISK_PHASE0_OFF + SLOT6:
case io_DISK_PHASE1_OFF + SLOT6:
case io_DISK_PHASE2_OFF + SLOT6:
case io_DISK_PHASE3_OFF + SLOT6:
currentMagnet = (addr - io_DISK_PHASE0_OFF - SLOT6) / 2;
phase.magnet &= ~(1 << currentMagnet);
printf("io_DISK_PHASE%u_OFF (S%u, ps:%X) ", currentMagnet, 6, phase.magnet);
diskII_phase();
return 0;
case io_DISK_PHASE0_ON + SLOT6:
case io_DISK_PHASE1_ON + SLOT6:
case io_DISK_PHASE2_ON + SLOT6:
case io_DISK_PHASE3_ON + SLOT6: {
currentMagnet = (addr - io_DISK_PHASE0_ON - SLOT6) / 2;
phase.magnet |= 1 << currentMagnet;
printf("io_DISK_PHASE%u_ON (S%u, ps:%X) ", currentMagnet, 6, phase.magnet);
diskII_phase();
return 0;
}
case io_DISK_POWER_OFF + SLOT6:
dbgPrintf2("io_DISK_POWER_OFF (S%u)\n", 6);
return 0;
case io_DISK_POWER_ON + SLOT6:
dbgPrintf2("io_DISK_POWER_ON (S%u)\n", 6);
return 0;
case io_DISK_SELECT_1 + SLOT6:
dbgPrintf2("io_DISK_SELECT_1 (S%u)\n", 6);
return 0;
case io_DISK_SELECT_2 + SLOT6:
dbgPrintf2("io_DISK_SELECT_2 (S%u)\n", 6);
return 0;
case io_DISK_READ + SLOT6:
dbgPrintf("io_DISK_READ (S%u)\n", 6);
int track = woz_tmap.phase[phase.count];
if (outdev) fprintf(outdev, "track: %d (%d) ", track, phase.count);
if ( track >= 40 ) {
printf("TRCK TOO HIGH!\n");
return rand();
}
// to avoid infinite loop and to search for bit 7 high
for ( int i = 0; i < WOZ_TRACK_BYTE_COUNT * 8; i++ ) {
if ( ++bitOffset >= 8 ) {
bitOffset = 0;
if ( ++trackOffset >= WOZ_TRACK_BYTE_COUNT ) {
trackOffset = 0;
}
// printf("offs:%u\n", trackOffset);
WOZread.latch = woz_trks[track].data[trackOffset];
}
WOZread.shift16 <<= 1;
if ( WOZread.valid ) {
uint8_t byte = WOZread.shift;
// printf("%02X ", byte);
WOZread.shift = 0;
if (outdev) fprintf(outdev, "byte: %02X\n", byte);
return byte;
}
}
if (outdev) fprintf(outdev, "TIME OUT!\n");
return rand();
case io_DISK_WRITE + SLOT6:
dbgPrintf2("io_DISK_WRITE (S%u)\n", 6);
return 0;
case io_DISK_CLEAR + SLOT6:
dbgPrintf2("io_DISK_CLEAR (S%u)\n", 6);
return 0;
case io_DISK_SHIFT + SLOT6:
dbgPrintf2("io_DISK_SHIFT (S%u)\n", 6);
return 0;
default:
return RAM[addr];
}
}
void kbdInput ( uint8_t code ) {
// printf("kbdInput: %02X ('%c')\n", code, isprint(code) ? code : ' ');
switch ( code ) {
// case '\n':
// code = 0x0D;
// break;
//
case 0x7F: // BackSlash
code = 0x08;
break;
default:
break;
}
code |= 0x80;
while ( RAM[io_KBD] > 0x7F ) {
usleep(10);
}
RAM[io_KBD] = code;
}
INLINE void ioWrite( uint16_t addr, uint8_t val ) {
// printf("mmio:%04X\n", addr);
switch (addr) {
case io_KBD:
return;
default:
break;
}
return;
}
/**
Naive implementation of RAM read from address
**/
INLINE uint8_t memread_zp( uint8_t addr ) {
return RAM[ addr ];
}
/**
Naive implementation of RAM read from address
**/
INLINE uint8_t memread8( uint16_t addr ) {
// if ( addr == 0xD2AD ) {
// dbgPrintf("OUT OF MEMORY!\n");
// }
return RAM[ addr ];
}
/**
Naive implementation of RAM read from address
**/
INLINE uint16_t memread16( uint16_t addr ) {
return * (uint16_t*) (& RAM[ addr ]);
}
INLINE uint8_t memread( uint16_t addr ) {
// switch ( ((address16_t)addr).page ) {
// case 0xC0:
// case 0xC1:
// case 0xC2:
// case 0xC3:
// case 0xC4:
// case 0xC5:
// case 0xC6:
// case 0xC7:
// case 0xC8:
// case 0xC9:
// case 0xCA:
// case 0xCB:
// case 0xCC:
// case 0xCD:
// case 0xCE:
// case 0xCF:
// return ioRead(addr);
//
// defaut:
// break;
// }
if ( (addr >= 0xC000) && (addr < 0xC0FF) ) {
return ioRead(addr);
}
return memread8(addr);
}
/**
Naive implementation of RAM read from address
**/
//INLINE uint16_t memioread16( uint16_t addr ) {
// return (uint16_t)mmio_read[ addr ](addr);
//}
/**
Naive implementation of RAM write to address
**/
static void memwrite_zp( uint8_t addr, uint8_t byte ) {
RAM[ addr ] = byte;
}
/**
Naive implementation of RAM write to address
**/
static void memwrite( uint16_t addr, uint8_t byte ) {
// if ( addr >= 0xD000 ) {
// // ROM
// return;
// }
// if ( addr >= 0xC000 ) {
// return mmioWrite(addr);
// }
//
RAM[ addr ] = byte;
}
/**
Fetching 1 byte from memory address pc (program counter)
increase pc by one
**/
INLINE uint8_t fetch() {
disHexB( disassembly.pOpcode, RAM[m6502.PC] );
return memread( m6502.PC++ );
}
/**
Fetching 2 bytes as a 16 bit number from memory address pc (program counter)
increase pc by one
**/
INLINE uint16_t fetch16() {
uint16_t word = memread16( m6502.PC );
// disPrintf(disassembly.comment, "fetch16:%04X", word);
m6502.PC += 2;
disHexW( disassembly.pOpcode, word );
return word;
}
/**
abs .... absolute OPC $LLHH,X
operand is address; effective address is address incremented by X with carry **
**/
INLINE uint16_t addr_abs() {
dbgPrintf("abs:%04X(%02X) ", *((uint16_t*)&RAM[m6502.PC]), RAM[*((uint16_t*)&RAM[m6502.PC])]);
disPrintf(disassembly.oper, "$%04X", memread16(m6502.PC))
return fetch16();
}
INLINE uint8_t src_abs() {
return memread( addr_abs() );
}
INLINE uint8_t * dest_abs() {
return & RAM[ addr_abs() ];
}
INLINE int8_t rel_addr() {
disPrintf(disassembly.oper, "$%04X", m6502.PC + 1 + (int8_t)memread8(m6502.PC))
return fetch();
}
INLINE uint16_t abs_addr() {
disPrintf(disassembly.oper, "$%04X", memread16(m6502.PC))
return fetch16();
}
INLINE uint16_t ind_addr() {
disPrintf(disassembly.oper, "($%04X)", memread16(m6502.PC))
disPrintf(disassembly.comment, "ind_addr:%04X", memread16(memread16(m6502.PC)))
return memread16( fetch16() );
}
/**
abs,X .... absolute, X-indexed OPC $LLHH,X
operand is address; effective address is address incremented by X with carry **
**/
INLINE uint16_t addr_abs_X() {
dbgPrintf("abs,X:%04X(%02X) ", *((uint16_t*)&RAM[m6502.PC]) + m6502.X, RAM[*((uint16_t*)&RAM[m6502.PC]) + m6502.X]);
disPrintf(disassembly.oper, "$%04X,X", memread16(m6502.PC));
return fetch16() + m6502.X;
}
INLINE uint8_t src_abs_X() {
return memread( addr_abs_X() );
}
INLINE uint8_t * dest_abs_X() {
return & RAM[ addr_abs_X() ];
}
/**
abs,Y .... absolute, Y-indexed OPC $LLHH,Y
operand is address; effective address is address incremented by Y with carry **
**/
INLINE uint16_t addr_abs_Y() {
dbgPrintf("abs,Y:%04X(%02X) ", *((uint16_t*)&RAM[m6502.PC]) + m6502.Y, RAM[*((uint16_t*)&RAM[m6502.PC]) + m6502.Y]);
disPrintf(disassembly.oper, "$%04X,Y", memread16(m6502.PC))
return fetch16() + m6502.Y;
}
INLINE uint8_t src_abs_Y() {
return memread(addr_abs_Y());
}
INLINE uint8_t * dest_abs_Y() {
return & RAM[ addr_abs_Y() ];
}
INLINE uint16_t imm() {
disPrintf(disassembly.oper, "#$%02X", memread8(m6502.PC))
return fetch();
}
/**
zpg .... zeropage OPC $LL
operand is zeropage address (hi-byte is zero, address = $00LL)
**/
INLINE uint8_t addr_zp() {
dbgPrintf("zp:%02X(%02X) ", RAM[m6502.PC], RAM[ RAM[m6502.PC]] );
disPrintf(disassembly.oper, "$%02X", memread8(m6502.PC))
return fetch();
}
INLINE uint8_t src_zp() {
return memread_zp(addr_zp());
}
INLINE uint8_t * dest_zp() {
return & RAM[ addr_zp() ];
}
/**
get a 16 bit address from the zp:zp+1
**/
INLINE uint16_t addr_zp_ind( uint8_t addr ) {
dbgPrintf("zpi:%02X:%04X(%02X) ", RAM[m6502.PC], *((uint16_t*)&RAM[m6502.PC]), RAM[*((uint16_t*)&RAM[m6502.PC])]);
disPrintf(disassembly.oper, "($%02X)", memread8(m6502.PC) );
disPrintf(disassembly.comment, "ind_addr:%04X", memread16( memread8(m6502.PC) ) );
return memread16(addr);
}
/**
X,ind .... X-indexed, indirect OPC ($LL,X)
operand is zeropage address;
effective address is word in (LL + X, LL + X + 1), inc. without carry: C.w($00LL + X)
**/
INLINE uint16_t addr_X_ind() {
dbgPrintf("zpXi:%02X:%04X(%02X) ", RAM[m6502.PC], *((uint16_t*)&RAM[m6502.PC]) + m6502.X, RAM[*((uint16_t*)&RAM[m6502.PC]) + m6502.X]);
disPrintf(disassembly.oper, "($%02X,X)", memread8(m6502.PC) )
disPrintf(disassembly.comment, "ind_addr:%04X", memread16( memread8(m6502.PC) + m6502.X) );
return memread16( fetch() + m6502.X );
}
INLINE uint8_t src_X_ind() {
return memread( addr_X_ind() );
}
INLINE uint8_t * dest_X_ind() {
return & RAM[ addr_X_ind() ];
}
/**
ind,Y .... indirect, Y-indexed OPC ($LL),Y
operand is zeropage address;
effective address is word in (LL, LL + 1) incremented by Y with carry: C.w($00LL) + Y
**/
INLINE uint16_t addr_ind_Y() {
// uint8_t a = fetch();
// dbgPrintf("addr_ind_Y: %04X + %02X = %04X ", addr_zpg_ind( a ), m6502.Y, addr_zpg_ind( a ) + m6502.Y);
disPrintf(disassembly.oper, "($%02X),Y", memread8(m6502.PC) )
disPrintf(disassembly.comment, "ind_addr:%04X", memread16( memread8(m6502.PC) ) + m6502.Y );
return memread16( fetch() ) + m6502.Y;
}
INLINE uint8_t src_ind_Y() {
return memread( addr_ind_Y() );
}
INLINE uint8_t * dest_ind_Y() {
uint16_t addr = addr_ind_Y();
// if ( (addr >= 0xC000) && (addr <= 0xC0FF) ) {
// addr = 0xC111;
// }
// return & RAM[ addr_abs_Y() ];
return & RAM[ addr ];
// return & RAM[ addr_ind_Y() ];
}
/**
zpg,X .... zeropage, X-indexed OPC $LL,X
operand is zeropage address;
effective address is address incremented by X without carry **
**/
INLINE uint8_t addr_zp_X() {
disPrintf(disassembly.oper, "$%02X,X", memread8(m6502.PC))
return fetch() + m6502.X;
}
INLINE uint8_t src_zp_X() {
return memread_zp(addr_zp_X());
}
INLINE uint8_t * dest_zp_X() {
return & RAM[ addr_zp_X() ];
}
/**
zpg,Y .... zeropage, Y-indexed OPC $LL,Y
operand is zeropage address;
effective address is address incremented by Y without carry **
**/
INLINE uint8_t addr_zp_Y() {
disPrintf(disassembly.oper, "$%02X,Y", memread8(m6502.PC))
return fetch() + m6502.Y;
}
INLINE uint8_t src_zp_Y() {
return memread_zp(addr_zp_Y());
}
INLINE uint8_t * dest_zp_Y() {
return & RAM[ addr_zp_Y() ];
}
#endif // __APPLE2_MMIO_H__