activegs-ios/kegs/Src/clock.cpp

384 lines
8.9 KiB
C++
Raw Normal View History

2016-03-26 16:16:01 +00:00
/*
ActiveGS, Copyright 2004-2016 Olivier Goguel, https://github.com/ogoguel/ActiveGS
Based on Kegs, Copyright 2004 Kent Dickey, https://kegs.sourceforge.net
This code is covered by the GNU GPL licence
*/
#include "defc.h"
#include <time.h>
#ifdef _WIN32
# include <windows.h>
# include <mmsystem.h>
#else
# include <sys/time.h>
#endif
#include "clock.h"
#include "moremem.h"
#include "sim65816.h"
s_clock g_clock;
extern int Verbose;
//extern word32 g_vbl_count; // OG change int to word32
//extern int g_rom_version;
extern int g_config_kegs_update_needed;
double
get_dtime()
{
#ifndef _WIN32
struct timeval tp1;
double dsec;
double dusec;
#endif
/* Routine used to return actual system time as a double */
/* No routine cares about the absolute value, only deltas--maybe */
/* take advantage of that in future to increase usec accuracy */
double dtime;
#ifdef _WIN32
LARGE_INTEGER counter;
LARGE_INTEGER frequency;
QueryPerformanceCounter(&counter);
QueryPerformanceFrequency(&frequency);
dtime = (double)counter.QuadPart/(double)frequency.QuadPart;
// dtime = timeGetTime() / 1000.0;
#else
# ifdef SOLARIS
gettimeofday(&tp1, (void *)0);
# else
gettimeofday(&tp1, (struct timezone *)0);
# endif
dsec = (double)tp1.tv_sec;
dusec = (double)tp1.tv_usec;
dtime = dsec + (dusec / (1000.0 * 1000.0));
#endif
return dtime;
}
int
micro_sleep(double dtime)
{
#ifndef _WIN32
struct timeval Timer;
int ret;
#endif
if(dtime <= 0.0) {
return 0;
}
if(dtime >= 1.0) {
halt_printf("micro_sleep called with %f!!\n", dtime);
return -1;
}
#if 0
printf("usleep: %f\n", dtime);
#endif
#ifdef _WIN32
Sleep((DWORD)(dtime * 1000));
#else
Timer.tv_sec = 0;
Timer.tv_usec = (dtime * 1000000.0);
if( (ret = select(0, 0, 0, 0, &Timer)) < 0) {
fprintf(stderr, "micro_sleep (select) ret: %d, errno: %d\n",
ret, errno);
return -1;
}
#endif
return 0;
}
void
clk_bram_zero()
{
int i, j;
/* zero out all bram */
for(i = 0; i < 2; i++) {
for(j = 0; j < 256; j++) {
g_clock.g_bram[i][j] = 0;
}
}
g_clock.g_bram_ptr = &(g_clock.g_bram[0][0]);
}
void
clk_bram_set(int bram_num, int offset, int val)
{
g_clock.g_bram[bram_num][offset] = val;
}
extern void x_clk_setup_bram_version();
void
clk_setup_bram_version()
{
x_clk_setup_bram_version();
}
void
clk_write_bram(FILE *fconf)
{
int i, j, k;
for(i = 0; i < 2; i++) {
fprintf(fconf, "\n");
for(j = 0; j < 256; j += 16) {
fprintf(fconf, "bram%d[%02x] =", 2*i + 1, j);
for(k = 0; k < 16; k++) {
fprintf(fconf, " %02x", g_clock.g_bram[i][j+k]);
}
fprintf(fconf, "\n");
}
}
}
void
update_cur_time()
{
time_t cur_time;
unsigned int secs, secs2;
#ifdef UNDER_CE // OG Not supported on WIndows CE
/*
SYSTEMTIME stime;
FILETIME ftime;
GetLocalTime(&stime);
SystemTimeToFileTime(&stime,&ftime);
cur_time = ftime.dwLowDateTime;
*/
cur_time = time(0);
secs=0;
secs2=0;
#else
struct tm *tm_ptr;
cur_time = time(0);
/* Figure out the timezone (effectively) by diffing two times. */
/* this is probably not right for a few hours around daylight savings*/
/* time transition */
secs2 = (unsigned int)mktime(gmtime(&cur_time));
tm_ptr = localtime(&cur_time);
secs = (unsigned int)mktime(tm_ptr);
#ifdef DRIVER_OSX
/* Mac OS X's mktime function modifies the tm_ptr passed in for */
/* the CDT timezone and breaks this algorithm. So on a Mac, we */
/* will use the tm_ptr->gmtoff member to correct the time */
secs = secs + tm_ptr->tm_gmtoff;
#else
secs = (unsigned int)cur_time - (secs2 - secs);
if(tm_ptr->tm_isdst) {
/* adjust for daylight savings time */
secs += 3600;
}
#endif
#endif
/* add in secs to make date based on Apple Jan 1, 1904 instead of */
/* Unix's Jan 1, 1970 */
/* So add in 66 years and 17 leap year days (1904 is a leap year) */
secs += ((66*365) + 17) * (24*3600);
g_clock.g_clk_cur_time = secs;
clk_printf("Update g_clock.g_clk_cur_time to %08x\n", g_clock.g_clk_cur_time);
g_clock.g_clk_next_vbl_update = g_sim65816.g_vbl_count + 5;
}
/* clock_update called by sim65816 every VBL */
void
clock_update()
{
/* Nothing to do */
}
void
clock_update_if_needed()
{
int diff;
diff = g_clock.g_clk_next_vbl_update - g_sim65816.g_vbl_count;
if(diff < 0 || diff > 60) {
/* Been a while, re-read the clock */
update_cur_time();
}
}
void
clock_write_c034(word32 val)
{
g_moremem.g_c034_val = val & 0x7f;
if((val & 0x80) != 0) {
if((val & 0x20) == 0) {
printf("c034 write not last = 1\n");
/* set_halt(1); */
}
do_clock_data();
}
}
void
do_clock_data()
{
word32 mask;
int read;
int op;
clk_printf("In do_clock_data, g_clock.g_clk_mode: %02x\n", g_clock.g_clk_mode);
read = g_moremem.g_c034_val & 0x40;
switch(g_clock.g_clk_mode) {
case CLK_IDLE:
g_clock.g_clk_read = (g_moremem.g_c033_data >> 7) & 1;
g_clock.g_clk_reg1 = (g_moremem.g_c033_data >> 2) & 3;
op = (g_moremem.g_c033_data >> 4) & 7;
if(!read) {
/* write */
switch(op) {
case 0x0: /* Read/write seconds register */
g_clock.g_clk_mode = CLK_TIME;
clock_update_if_needed();
break;
case 0x3: /* internal registers */
g_clock.g_clk_mode = CLK_INTERNAL;
if(g_clock.g_clk_reg1 & 0x2) {
/* extend BRAM read */
g_clock.g_clk_mode = CLK_BRAM2;
g_clock.g_clk_reg1 = (g_moremem.g_c033_data & 7) << 5;
}
break;
case 0x2: /* read/write ram 0x10-0x13 */
g_clock.g_clk_mode = CLK_BRAM1;
g_clock.g_clk_reg1 += 0x10;
break;
case 0x4: /* read/write ram 0x00-0x0f */
case 0x5: case 0x6: case 0x7:
g_clock.g_clk_mode = CLK_BRAM1;
g_clock.g_clk_reg1 = (g_moremem.g_c033_data >> 2) & 0xf;
break;
default:
halt_printf("Bad c033_data in CLK_IDLE: %02x\n",
g_moremem.g_c033_data);
}
} else {
printf("clk read from IDLE mode!\n");
/* set_halt(1); */
g_clock.g_clk_mode = CLK_IDLE;
}
break;
case CLK_BRAM2:
if(!read) {
/* get more bits of bram addr */
if((g_moremem.g_c033_data & 0x83) == 0x00) {
/* more address bits */
g_clock.g_clk_reg1 |= ((g_moremem.g_c033_data >> 2) & 0x1f);
g_clock.g_clk_mode = CLK_BRAM1;
} else {
halt_printf("CLK_BRAM2: c033_data: %02x!\n",
g_moremem.g_c033_data);
g_clock.g_clk_mode = CLK_IDLE;
}
} else {
halt_printf("CLK_BRAM2: clock read!\n");
g_clock.g_clk_mode = CLK_IDLE;
}
break;
case CLK_BRAM1:
/* access battery ram addr g_clock.g_clk_reg1 */
if(read) {
if(g_clock.g_clk_read) {
/* Yup, read */
g_moremem.g_c033_data = g_clock.g_bram_ptr[g_clock.g_clk_reg1];
clk_printf("Reading BRAM loc %02x: %02x\n",
g_clock.g_clk_reg1, g_moremem.g_c033_data);
} else {
halt_printf("CLK_BRAM1: said wr, now read\n");
}
} else {
if(g_clock.g_clk_read) {
halt_printf("CLK_BRAM1: said rd, now write\n");
} else {
/* Yup, write */
clk_printf("Writing BRAM loc %02x with %02x\n",g_clock.g_clk_reg1, g_moremem.g_c033_data);
g_clock.g_bram_ptr[g_clock.g_clk_reg1] = g_moremem.g_c033_data;
g_config_kegs_update_needed = 1;
}
}
g_clock.g_clk_mode = CLK_IDLE;
break;
case CLK_TIME:
if(read) {
if(g_clock.g_clk_read == 0) {
halt_printf("Reading time, but in set mode!\n");
}
g_moremem.g_c033_data = (g_clock.g_clk_cur_time >> (g_clock.g_clk_reg1 * 8)) &
0xff;
clk_printf("Returning time byte %d: %02x\n",
g_clock.g_clk_reg1, g_moremem.g_c033_data);
} else {
/* Write */
if(g_clock.g_clk_read) {
halt_printf("Write time, but in read mode!\n");
}
clk_printf("Writing TIME loc %d with %02x\n",
g_clock.g_clk_reg1, g_moremem.g_c033_data);
mask = 0xff << (8 * g_clock.g_clk_reg1);
g_clock.g_clk_cur_time = (g_clock.g_clk_cur_time & (~mask)) |
((g_moremem.g_c033_data & 0xff) << (8 * g_clock.g_clk_reg1));
}
g_clock.g_clk_mode = CLK_IDLE;
break;
case CLK_INTERNAL:
if(read) {
printf("Attempting to read internal reg %02x!\n",
g_clock.g_clk_reg1);
} else {
switch(g_clock.g_clk_reg1) {
case 0x0: /* test register */
if(g_moremem.g_c033_data & 0xc0) {
printf("Writing test reg: %02x!\n",
g_moremem.g_c033_data);
/* set_halt(1); */
}
break;
case 0x1: /* write protect reg */
clk_printf("Writing clk wr_protect: %02x\n",
g_moremem.g_c033_data);
if(g_moremem.g_c033_data & 0x80) {
printf("Stop, wr clk wr_prot: %02x\n",
g_moremem.g_c033_data);
/* set_halt(1); */
}
break;
default:
halt_printf("Writing int reg: %02x with %02x\n",
g_clock.g_clk_reg1, g_moremem.g_c033_data);
}
}
g_clock.g_clk_mode = CLK_IDLE;
break;
default:
halt_printf("clk mode: %d unknown!\n", g_clock.g_clk_mode);
g_clock.g_clk_mode = CLK_IDLE;
break;
}
}