activegs-ios/kegs/Src/StdString.h
2016-03-26 17:16:01 +01:00

4109 lines
124 KiB
C++

/*
ActiveGS, Copyright 2004-2016 Olivier Goguel, https://github.com/ogoguel/ActiveGS
Based on Kegs, Copyright 2004 Kent Dickey, https://kegs.sourceforge.net
This code is covered by the GNU GPL licence
*/
#ifndef STDSTRING_H
#define STDSTRING_H
// When using VC, turn off browser references
// Turn off unavoidable compiler warnings
#if defined(_MSC_VER) && (_MSC_VER > 1100)
#pragma component(browser, off, references, "CStdString")
#pragma warning (disable : 4290) // C++ Exception Specification ignored
#pragma warning (disable : 4127) // Conditional expression is constant
#pragma warning (disable : 4097) // typedef name used as synonym for class name
#if (_MSC_VER >= 1400) // AR: VS2005 and VCExpress
#define _SCL_SECURE_NO_DEPRECATE
#ifndef _INC_CRTDEFS // AR: should be defined before inclusion of <crtdefs.h>
#ifndef _CRT_SECURE_NO_DEPRECATE // OG
#define _CRT_SECURE_NO_DEPRECATE
#endif
#endif
#endif
#endif
// Borland warnings to turn off
#ifdef __BORLANDC__
#pragma option push -w-inl
// #pragma warn -inl // Turn off inline function warnings
#endif
// SS_IS_INTRESOURCE
// -----------------
// A copy of IS_INTRESOURCE from VC7. Because old VC6 version of winuser.h
// doesn't have this.
#define SS_IS_INTRESOURCE(_r) (false)
#if !defined (SS_ANSI) && defined(_MSC_VER)
#undef SS_IS_INTRESOURCE
#if defined(_WIN64)
#define SS_IS_INTRESOURCE(_r) (((unsigned __int64)(_r) >> 16) == 0)
#else
#define SS_IS_INTRESOURCE(_r) (((unsigned long)(_r) >> 16) == 0)
#endif
#endif
// MACRO: SS_UNSIGNED
// ------------------
// This macro causes the addition of a constructor and assignment operator
// which take unsigned characters. CString has such functions and in order
// to provide maximum CString-compatability, this code needs them as well.
// In practice you will likely never need these functions...
//#define SS_UNSIGNED
#if defined(SS_ALLOW_UNSIGNED_CHARS) || defined(_WTL_VER) // AR
#define SS_UNSIGNED
#endif
// MACRO: SS_SAFE_FORMAT
// ---------------------
// This macro provides limited compatability with a questionable CString
// "feature". You can define it in order to avoid a common problem that
// people encounter when switching from CString to CStdString.
//
// To illustrate the problem -- With CString, you can do this:
//
// CString sName("Joe");
// CString sTmp;
// sTmp.Format("My name is %s", sName); // WORKS!
//
// However if you were to try this with CStdString, your program would
// crash.
//
// CStdString sName("Joe");
// CStdString sTmp;
// sTmp.Format("My name is %s", sName); // CRASHES!
//
// You must explicitly call c_str() or cast the object to the proper type
//
// sTmp.Format("My name is %s", sName.c_str()); // WORKS!
// sTmp.Format("My name is %s", static_cast<PCSTR>(sName));// WORKS!
// sTmp.Format("My name is %s", (PCSTR)sName); // WORKS!
//
// This is because it is illegal to pass anything but a POD type as a
// variadic argument to a variadic function (i.e. as one of the "..."
// arguments). The type const char* is a POD type. The type CStdString
// is not. Of course, neither is the type CString, but CString lets you do
// it anyway due to the way they laid out the class in binary. I have no
// control over this in CStdString since I derive from whatever
// implementation of basic_string is available.
//
// However if you have legacy code (which does this) that you want to take
// out of the MFC world and you don't want to rewrite all your calls to
// Format(), then you can define this flag and it will no longer crash.
//
// Note however that this ONLY works for Format(), not sprintf, fprintf,
// etc. If you pass a CStdString object to one of those functions, your
// program will crash. Not much I can do to get around this, short of
// writing substitutes for those functions as well.
#define SS_SAFE_FORMAT // use new template style Format() function
// MACRO: SS_NO_IMPLICIT_CAST
// --------------------------
// Some people don't like the implicit cast to const char* (or rather to
// const CT*) that CStdString (and MFC's CString) provide. That was the
// whole reason I created this class in the first place, but hey, whatever
// bakes your cake. Just #define this macro to get rid of the the implicit
// cast.
//#define SS_NO_IMPLICIT_CAST // gets rid of operator const CT*()
// MACRO: SS_NO_REFCOUNT
// ---------------------
// turns off reference counting at the assignment level. Only needed
// for the version of basic_string<> that comes with Visual C++ versions
// 6.0 or earlier, and only then in some heavily multithreaded scenarios.
// Uncomment it if you feel you need it.
//#define SS_NO_REFCOUNT
// MACRO: SS_WIN32
// ---------------
// When this flag is set, we are building code for the Win32 platform and
// may use Win32 specific functions (such as LoadString). This gives us
// a couple of nice extras for the code.
//
// Obviously, Microsoft's is not the only compiler available for Win32 out
// there. So I can't just check to see if _MSC_VER is defined to detect
// if I'm building on Win32. So for now, if you use MS Visual C++ or
// Borland's compiler, I turn this on. Otherwise you may turn it on
// yourself, if you prefer
#if defined(_MSC_VER) || defined(__BORLANDC__) || defined(_WIN32)
//OG #define SS_WIN32
#endif
// MACRO: SS_ANSI
// --------------
// When this macro is defined, the code attempts only to use ANSI/ISO
// standard library functions to do it's work. It will NOT attempt to use
// any Win32 of Visual C++ specific functions -- even if they are
// available. You may define this flag yourself to prevent any Win32
// of VC++ specific functions from being called.
// If we're not on Win32, we MUST use an ANSI build
#ifndef SS_WIN32
#if !defined(SS_NO_ANSI)
#define SS_ANSI
#endif
#endif
// MACRO: SS_ALLOCA
// ----------------
// Some implementations of the Standard C Library have a non-standard
// function known as alloca(). This functions allows one to allocate a
// variable amount of memory on the stack. It is needed to implement
// the ASCII/MBCS conversion macros.
//
// I wanted to find some way to determine automatically if alloca() is
// available on this platform via compiler flags but that is asking for
// trouble. The crude test presented here will likely need fixing on
// other platforms. Therefore I'll leave it up to you to fiddle with
// this test to determine if it exists. Just make sure SS_ALLOCA is or
// is not defined as appropriate and you control this feature.
#if defined(_MSC_VER) && !defined(SS_ANSI)
#define SS_ALLOCA
#endif
// MACRO: SS_MBCS
// --------------
// Setting this macro means you are using MBCS characters. In MSVC builds,
// this macro gets set automatically by detection of the preprocessor flag
// _MBCS. For other platforms you may set it manually if you wish. The
// only effect it currently has is to cause the allocation of more space
// for wchar_t --> char conversions.
// Note that MBCS does not mean UNICODE.
//
// #define SS_MBCS
//
#ifdef _MBCS
#define SS_MBCS
#endif
// MACRO SS_NO_LOCALE
// ------------------
// If your implementation of the Standard C++ Library lacks the <locale> header,
// you can #define this macro to make your code build properly. Note that this
// is some of my newest code and frankly I'm not very sure of it, though it does
// pass my unit tests.
// Compiler Error regarding _UNICODE and UNICODE
// -----------------------------------------------
// Microsoft header files are screwy. Sometimes they depend on a preprocessor
// flag named "_UNICODE". Other times they check "UNICODE" (note the lack of
// leading underscore in the second version". In several places, they silently
// "synchronize" these two flags this by defining one of the other was defined.
// In older version of this header, I used to try to do the same thing.
//
// However experience has taught me that this is a bad idea. You get weird
// compiler errors that seem to indicate things like LPWSTR and LPTSTR not being
// equivalent in UNICODE builds, stuff like that (when they MUST be in a proper
// UNICODE build). You end up scratching your head and saying, "But that HAS
// to compile!".
//
// So what should you do if you get this error?
//
// Make sure that both macros (_UNICODE and UNICODE) are defined before this
// file is included. You can do that by either
//
// a) defining both yourself before any files get included
// b) including the proper MS headers in the proper order
// c) including this file before any other file, uncommenting
// the #defines below, and commenting out the #errors
//
// Personally I recommend solution a) but it's your call.
#ifdef _MSC_VER
#if defined (_UNICODE) && !defined (UNICODE)
#error UNICODE defined but not UNICODE
// #define UNICODE // no longer silently fix this
#endif
#if defined (UNICODE) && !defined (_UNICODE)
#error Warning, UNICODE defined but not _UNICODE
// #define _UNICODE // no longer silently fix this
#endif
#endif
// -----------------------------------------------------------------------------
// MIN and MAX. The Standard C++ template versions go by so many names (at
// at least in the MS implementation) that you never know what's available
// -----------------------------------------------------------------------------
template<class Type>
inline const Type& SSMIN(const Type& arg1, const Type& arg2)
{
return arg2 < arg1 ? arg2 : arg1;
}
template<class Type>
inline const Type& SSMAX(const Type& arg1, const Type& arg2)
{
return arg2 > arg1 ? arg2 : arg1;
}
// If they have not #included W32Base.h (part of my W32 utility library) then
// we need to define some stuff. Otherwise, this is all defined there.
#if !defined(W32BASE_H)
// If they want us to use only standard C++ stuff (no Win32 stuff)
#ifdef SS_ANSI
// On Win32 we have TCHAR.H so just include it. This is NOT violating
// the spirit of SS_ANSI as we are not calling any Win32 functions here.
#ifdef SS_WIN32
#include <TCHAR.H>
#include <WTYPES.H>
#ifndef STRICT
#define STRICT
#endif
// ... but on non-Win32 platforms, we must #define the types we need.
#else
typedef const char* PCSTR;
typedef char* PSTR;
typedef const wchar_t* PCWSTR;
typedef wchar_t* PWSTR;
#ifdef UNICODE
typedef wchar_t TCHAR;
#else
typedef char TCHAR;
#endif
typedef wchar_t OLECHAR;
#endif // #ifndef _WIN32
// Make sure ASSERT and verify are defined using only ANSI stuff
#ifndef ASSERT
#include <assert.h>
#ifndef ASSERT
#define ASSERT(f) assert((f))
#endif
#endif
#ifndef VERIFY
#ifdef _DEBUG
#define VERIFY(x) ASSERT((x))
#else
#define VERIFY(x) x
#endif
#endif
#else // ...else SS_ANSI is NOT defined
#include <TCHAR.H>
#include <WTYPES.H>
#ifndef STRICT
#define STRICT
#endif
// Make sure ASSERT and verify are defined
#ifndef ASSERT
#include <crtdbg.h>
#define ASSERT(f) _ASSERTE((f))
#endif
#ifndef VERIFY
#ifdef _DEBUG
#define VERIFY(x) ASSERT((x))
#else
#define VERIFY(x) x
#endif
#endif
#endif // #ifdef SS_ANSI
#ifndef UNUSED
#define UNUSED(x) x
#endif
#endif // #ifndef W32BASE_H
// Standard headers needed
#include <string> // basic_string
#include <algorithm> // for_each, etc.
#include <functional> // for StdStringLessNoCase, et al
#ifndef SS_NO_LOCALE
#ifdef _WIN32_WCE // AR
#define SS_NO_LOCALE
#else
#include <locale> // for various facets
#endif
#endif
// If this is a recent enough version of VC include comdef.h, so we can write
// member functions to deal with COM types & compiler support classes e.g.
// _bstr_t
#if defined (_MSC_VER) && (_MSC_VER >= 1100)
#include <comdef.h>
#define SS_INC_COMDEF // signal that we #included MS comdef.h file
#define STDSTRING_INC_COMDEF
#define SS_NOTHROW __declspec(nothrow)
#else
#define SS_NOTHROW
#endif
#ifndef TRACE
#define TRACE_DEFINED_HERE
#define TRACE
#endif
// Microsoft defines PCSTR, PCWSTR, etc, but no PCTSTR. I hate to use the
// versions with the "L" in front of them because that's a leftover from Win 16
// days, even though it evaluates to the same thing. Therefore, Define a PCSTR
// as an LPCTSTR.
#if !defined(PCTSTR) && !defined(PCTSTR_DEFINED)
typedef const TCHAR* PCTSTR;
#define PCTSTR_DEFINED
#endif
#if !defined(PCOLESTR) && !defined(PCOLESTR_DEFINED)
typedef const OLECHAR* PCOLESTR;
#define PCOLESTR_DEFINED
#endif
#if !defined(POLESTR) && !defined(POLESTR_DEFINED)
typedef OLECHAR* POLESTR;
#define POLESTR_DEFINED
#endif
#if !defined(PCUSTR) && !defined(PCUSTR_DEFINED)
typedef const unsigned char* PCUSTR;
typedef unsigned char* PUSTR;
#define PCUSTR_DEFINED
#endif
// SGI compiler 7.3 doesnt know these types - oh and btw, remember to use
// -LANG:std in the CXX Flags
#if defined(__sgi)
typedef unsigned long DWORD;
typedef void * LPCVOID;
#endif
// SS_USE_FACET macro and why we need it:
//
// Since I'm a good little Standard C++ programmer, I use locales. Thus, I
// need to make use of the use_facet<> template function here. Unfortunately,
// this need is complicated by the fact the MS' implementation of the Standard
// C++ Library has a non-standard version of use_facet that takes more
// arguments than the standard dictates. Since I'm trying to write CStdString
// to work with any version of the Standard library, this presents a problem.
//
// The upshot of this is that I can't do 'use_facet' directly. The MS' docs
// tell me that I have to use a macro, _USE() instead. Since _USE obviously
// won't be available in other implementations, this means that I have to write
// my OWN macro -- SS_USE_FACET -- that evaluates either to _USE or to the
// standard, use_facet.
//
// If you are having trouble with the SS_USE_FACET macro, in your implementation
// of the Standard C++ Library, you can define your own version of SS_USE_FACET.
#ifndef schMSG
#define schSTR(x) #x
#define schSTR2(x) schSTR(x)
#define schMSG(desc) message(__FILE__ "(" schSTR2(__LINE__) "):" #desc)
#endif
#ifndef SS_USE_FACET
// STLPort #defines a macro (__STL_NO_EXPLICIT_FUNCTION_TMPL_ARGS) for
// all MSVC builds, erroneously in my opinion. It causes problems for
// my SS_ANSI builds. In my code, I always comment out that line. You'll
// find it in \stlport\config\stl_msvc.h
#if defined(__SGI_STL_PORT) && (__SGI_STL_PORT >= 0x400 )
#if defined(__STL_NO_EXPLICIT_FUNCTION_TMPL_ARGS) && defined(_MSC_VER)
#ifdef SS_ANSI
#pragma schMSG(__STL_NO_EXPLICIT_FUNCTION_TMPL_ARGS defined!!)
#endif
#endif
#define SS_USE_FACET(loc, fac) std::use_facet<fac >(loc)
#elif defined(_MSC_VER )
#define SS_USE_FACET(loc, fac) std::_USE(loc, fac)
// ...and
#elif defined(_RWSTD_NO_TEMPLATE_ON_RETURN_TYPE)
#define SS_USE_FACET(loc, fac) std::use_facet(loc, (fac*)0)
#else
#define SS_USE_FACET(loc, fac) std::use_facet<fac >(loc)
#endif
#endif
// =============================================================================
// UNICODE/MBCS conversion macros. Made to work just like the MFC/ATL ones.
// =============================================================================
#include <wchar.h> // Added to Std Library with Amendment #1.
// First define the conversion helper functions. We define these regardless of
// any preprocessor macro settings since their names won't collide.
// Not sure if we need all these headers. I believe ANSI says we do.
#include <stdio.h>
#include <stdarg.h>
#include <wctype.h>
#include <ctype.h>
#include <stdlib.h>
#ifndef va_start
#include <varargs.h>
#endif
#ifdef SS_NO_LOCALE
#if defined(_WIN32)
inline PWSTR StdCodeCvt(PWSTR pDstW, int nDst, PCSTR pSrcA, int nSrc,
UINT acp=CP_ACP)
{
ASSERT(0 != pSrcA);
ASSERT(0 != pDstW);
pDstW[0] = '\0';
MultiByteToWideChar(acp, 0, pSrcA, nSrc, pDstW, nDst);
return pDstW;
}
inline PWSTR StdCodeCvt(PWSTR pDstW, int nDst, PCUSTR pSrcA, int nSrc,
UINT acp=CP_ACP)
{
return StdCodeCvt(pDstW, nDst, (PCSTR)pSrcA, nSrc, acp);
}
inline PSTR StdCodeCvt(PSTR pDstA, int nDst, PCWSTR pSrcW, int nSrc,
UINT acp=CP_ACP)
{
ASSERT(0 != pDstA);
ASSERT(0 != pSrcW);
pDstA[0] = '\0';
WideCharToMultiByte(acp, 0, pSrcW, nSrc, pDstA, nDst, 0, 0);
return pDstA;
}
inline PUSTR StdCodeCvt(PUSTR pDstA, int nDst, PCWSTR pSrcW, int nSrc,
UINT acp=CP_ACP)
{
return (PUSTR)StdCodeCvt((PSTR)pDstA, nDst, pSrcW, nSrc, acp);
}
#else
#endif
#else
// StdCodeCvt - made to look like Win32 functions WideCharToMultiByte
// and MultiByteToWideChar but uses locales in SS_ANSI
// builds. There are a number of overloads.
// First argument is the destination buffer.
// Second argument is the source buffer
//#if defined (SS_ANSI) || !defined (SS_WIN32)
// 'SSCodeCvt' - shorthand name for the codecvt facet we use
typedef std::codecvt<wchar_t, char, mbstate_t> SSCodeCvt;
inline PWSTR StdCodeCvt(PWSTR pDstW, int nDst, PCSTR pSrcA, int nSrc,
const std::locale& loc=std::locale())
{
ASSERT(0 != pSrcA);
ASSERT(0 != pDstW);
pDstW[0] = '\0';
if ( nSrc > 0 )
{
PCSTR pNextSrcA = pSrcA;
PWSTR pNextDstW = pDstW;
SSCodeCvt::result res = SSCodeCvt::ok;
const SSCodeCvt& conv = SS_USE_FACET(loc, SSCodeCvt);
SSCodeCvt::state_type st= { 0 };
res = conv.in(st,
pSrcA, pSrcA + nSrc, pNextSrcA,
pDstW, pDstW + nDst, pNextDstW);
ASSERT(SSCodeCvt::ok == res);
ASSERT(SSCodeCvt::error != res);
ASSERT(pNextDstW >= pDstW);
ASSERT(pNextSrcA >= pSrcA);
// Null terminate the converted string
if ( pNextDstW - pDstW > nDst )
*(pDstW + nDst) = '\0';
else
*pNextDstW = '\0';
}
return pDstW;
}
inline PWSTR StdCodeCvt(PWSTR pDstW, int nDst, PCUSTR pSrcA, int nSrc,
const std::locale& loc=std::locale())
{
return StdCodeCvt(pDstW, nDst, (PCSTR)pSrcA, nSrc, loc);
}
inline PSTR StdCodeCvt(PSTR pDstA, int nDst, PCWSTR pSrcW, int nSrc,
const std::locale& loc=std::locale())
{
ASSERT(0 != pDstA);
ASSERT(0 != pSrcW);
pDstA[0] = '\0';
if ( nSrc > 0 )
{
PSTR pNextDstA = pDstA;
PCWSTR pNextSrcW = pSrcW;
SSCodeCvt::result res = SSCodeCvt::ok;
const SSCodeCvt& conv = SS_USE_FACET(loc, SSCodeCvt);
SSCodeCvt::state_type st= { 0 };
res = conv.out(st,
pSrcW, pSrcW + nSrc, pNextSrcW,
pDstA, pDstA + nDst, pNextDstA);
ASSERT(SSCodeCvt::error != res);
ASSERT(SSCodeCvt::ok == res); // strict, comment out for sanity
ASSERT(pNextDstA >= pDstA);
ASSERT(pNextSrcW >= pSrcW);
// Null terminate the converted string
if ( pNextDstA - pDstA > nDst )
*(pDstA + nDst) = '\0';
else
*pNextDstA = '\0';
}
return pDstA;
}
inline PUSTR StdCodeCvt(PUSTR pDstA, int nDst, PCWSTR pSrcW, int nSrc,
const std::locale& loc=std::locale())
{
return (PUSTR)StdCodeCvt((PSTR)pDstA, nDst, pSrcW, nSrc, loc);
}
#endif
// Unicode/MBCS conversion macros are only available on implementations of
// the "C" library that have the non-standard _alloca function. As far as I
// know that's only Microsoft's though I've heard that the function exists
// elsewhere.
#if defined(SS_ALLOCA) && !defined SS_NO_CONVERSION
#include <malloc.h> // needed for _alloca
// Define our conversion macros to look exactly like Microsoft's to
// facilitate using this stuff both with and without MFC/ATL
#ifdef _CONVERSION_USES_THREAD_LOCALE
#ifndef _DEBUG
#define SSCVT int _cvt; _cvt; UINT _acp=GetACP(); \
_acp; PCWSTR _pw; _pw; PCSTR _pa; _pa
#else
#define SSCVT int _cvt = 0; _cvt; UINT _acp=GetACP();\
_acp; PCWSTR _pw=0; _pw; PCSTR _pa=0; _pa
#endif
#define SSA2W(pa) (\
((_pa = pa) == 0) ? 0 : (\
_cvt = (sslen(_pa)),\
StdCodeCvt((PWSTR) _alloca((_cvt+1)*2), (_cvt+1)*2, \
_pa, _cvt, _acp)))
#define SSW2A(pw) (\
((_pw = pw) == 0) ? 0 : (\
_cvt = sslen(_pw), \
StdCodeCvt((LPSTR) _alloca((_cvt+1)*2), (_cvt+1)*2, \
_pw, _cvt, _acp)))
#else
#ifndef _DEBUG
#define SSCVT int _cvt; _cvt; UINT _acp=CP_ACP; _acp;\
PCWSTR _pw; _pw; PCSTR _pa; _pa
#else
#define SSCVT int _cvt = 0; _cvt; UINT _acp=CP_ACP; \
_acp; PCWSTR _pw=0; _pw; PCSTR _pa=0; _pa
#endif
#define SSA2W(pa) (\
((_pa = pa) == 0) ? 0 : (\
_cvt = (sslen(_pa)),\
StdCodeCvt((PWSTR) _alloca((_cvt+1)*2), (_cvt+1)*2, \
_pa, _cvt)))
#define SSW2A(pw) (\
((_pw = pw) == 0) ? 0 : (\
_cvt = (sslen(_pw)),\
StdCodeCvt((LPSTR) _alloca((_cvt+1)*2), (_cvt+1)*2, \
_pw, _cvt)))
#endif
#define SSA2CW(pa) ((PCWSTR)SSA2W((pa)))
#define SSW2CA(pw) ((PCSTR)SSW2A((pw)))
#ifdef UNICODE
#define SST2A SSW2A
#define SSA2T SSA2W
#define SST2CA SSW2CA
#define SSA2CT SSA2CW
// (Did you get a compiler error here about not being able to convert
// PTSTR into PWSTR? Then your _UNICODE and UNICODE flags are messed
// up. Best bet: #define BOTH macros before including any MS headers.)
inline PWSTR SST2W(PTSTR p) { return p; }
inline PTSTR SSW2T(PWSTR p) { return p; }
inline PCWSTR SST2CW(PCTSTR p) { return p; }
inline PCTSTR SSW2CT(PCWSTR p) { return p; }
#else
#define SST2W SSA2W
#define SSW2T SSW2A
#define SST2CW SSA2CW
#define SSW2CT SSW2CA
inline PSTR SST2A(PTSTR p) { return p; }
inline PTSTR SSA2T(PSTR p) { return p; }
inline PCSTR SST2CA(PCTSTR p) { return p; }
inline PCTSTR SSA2CT(PCSTR p) { return p; }
#endif // #ifdef UNICODE
#if defined(UNICODE)
// in these cases the default (TCHAR) is the same as OLECHAR
inline PCOLESTR SST2COLE(PCTSTR p) { return p; }
inline PCTSTR SSOLE2CT(PCOLESTR p) { return p; }
inline POLESTR SST2OLE(PTSTR p) { return p; }
inline PTSTR SSOLE2T(POLESTR p) { return p; }
#elif defined(OLE2ANSI)
// in these cases the default (TCHAR) is the same as OLECHAR
inline PCOLESTR SST2COLE(PCTSTR p) { return p; }
inline PCTSTR SSOLE2CT(PCOLESTR p) { return p; }
inline POLESTR SST2OLE(PTSTR p) { return p; }
inline PTSTR SSOLE2T(POLESTR p) { return p; }
#else
//CharNextW doesn't work on Win95 so we use this
#define SST2COLE(pa) SSA2CW((pa))
#define SST2OLE(pa) SSA2W((pa))
#define SSOLE2CT(po) SSW2CA((po))
#define SSOLE2T(po) SSW2A((po))
#endif
#ifdef OLE2ANSI
#define SSW2OLE SSW2A
#define SSOLE2W SSA2W
#define SSW2COLE SSW2CA
#define SSOLE2CW SSA2CW
inline POLESTR SSA2OLE(PSTR p) { return p; }
inline PSTR SSOLE2A(POLESTR p) { return p; }
inline PCOLESTR SSA2COLE(PCSTR p) { return p; }
inline PCSTR SSOLE2CA(PCOLESTR p){ return p; }
#else
#define SSA2OLE SSA2W
#define SSOLE2A SSW2A
#define SSA2COLE SSA2CW
#define SSOLE2CA SSW2CA
inline POLESTR SSW2OLE(PWSTR p) { return p; }
inline PWSTR SSOLE2W(POLESTR p) { return p; }
inline PCOLESTR SSW2COLE(PCWSTR p) { return p; }
inline PCWSTR SSOLE2CW(PCOLESTR p){ return p; }
#endif
// Above we've defined macros that look like MS' but all have
// an 'SS' prefix. Now we need the real macros. We'll either
// get them from the macros above or from MFC/ATL.
#if defined (USES_CONVERSION)
#define _NO_STDCONVERSION // just to be consistent
#else
#ifdef _MFC_VER
#include <afxconv.h>
#define _NO_STDCONVERSION // just to be consistent
#else
#define USES_CONVERSION SSCVT
#define A2CW SSA2CW
#define W2CA SSW2CA
#define T2A SST2A
#define A2T SSA2T
#define T2W SST2W
#define W2T SSW2T
#define T2CA SST2CA
#define A2CT SSA2CT
#define T2CW SST2CW
#define W2CT SSW2CT
#define ocslen sslen
#define ocscpy sscpy
#define T2COLE SST2COLE
#define OLE2CT SSOLE2CT
#define T2OLE SST2COLE
#define OLE2T SSOLE2CT
#define A2OLE SSA2OLE
#define OLE2A SSOLE2A
#define W2OLE SSW2OLE
#define OLE2W SSOLE2W
#define A2COLE SSA2COLE
#define OLE2CA SSOLE2CA
#define W2COLE SSW2COLE
#define OLE2CW SSOLE2CW
#endif // #ifdef _MFC_VER
#endif // #ifndef USES_CONVERSION
#endif // #ifndef SS_NO_CONVERSION
// Define ostring - generic name for std::basic_string<OLECHAR>
#if !defined(ostring) && !defined(OSTRING_DEFINED)
typedef std::basic_string<OLECHAR> ostring;
#define OSTRING_DEFINED
#endif
// StdCodeCvt when there's no conversion to be done
inline PSTR StdCodeCvt(PSTR pDst, int nDst, PCSTR pSrc, int nSrc)
{
int nChars = SSMIN(nSrc, nDst);
if ( nChars > 0 )
{
pDst[0] = '\0';
std::basic_string<char>::traits_type::copy(pDst, pSrc, nChars);
// std::char_traits<char>::copy(pDst, pSrc, nChars);
pDst[nChars] = '\0';
}
return pDst;
}
inline PSTR StdCodeCvt(PSTR pDst, int nDst, PCUSTR pSrc, int nSrc)
{
return StdCodeCvt(pDst, nDst, (PCSTR)pSrc, nSrc);
}
inline PUSTR StdCodeCvt(PUSTR pDst, int nDst, PCSTR pSrc, int nSrc)
{
return (PUSTR)StdCodeCvt((PSTR)pDst, nDst, pSrc, nSrc);
}
inline PWSTR StdCodeCvt(PWSTR pDst, int nDst, PCWSTR pSrc, int nSrc)
{
int nChars = SSMIN(nSrc, nDst);
if ( nChars > 0 )
{
pDst[0] = '\0';
std::basic_string<wchar_t>::traits_type::copy(pDst, pSrc, nChars);
// std::char_traits<wchar_t>::copy(pDst, pSrc, nChars);
pDst[nChars] = '\0';
}
return pDst;
}
// Define tstring -- generic name for std::basic_string<TCHAR>
#if !defined(tstring) && !defined(TSTRING_DEFINED)
typedef std::basic_string<TCHAR> tstring;
#define TSTRING_DEFINED
#endif
// a very shorthand way of applying the fix for KB problem Q172398
// (basic_string assignment bug)
#if defined ( _MSC_VER ) && ( _MSC_VER < 1200 )
#define Q172398(x) (x).erase()
#else
#define Q172398(x)
#endif
// =============================================================================
// INLINE FUNCTIONS ON WHICH CSTDSTRING RELIES
//
// Usually for generic text mapping, we rely on preprocessor macro definitions
// to map to string functions. However the CStdStr<> template cannot use
// macro-based generic text mappings because its character types do not get
// resolved until template processing which comes AFTER macro processing. In
// other words, the preprocessor macro UNICODE is of little help to us in the
// CStdStr template
//
// Therefore, to keep the CStdStr declaration simple, we have these inline
// functions. The template calls them often. Since they are inline (and NOT
// exported when this is built as a DLL), they will probably be resolved away
// to nothing.
//
// Without these functions, the CStdStr<> template would probably have to broken
// out into two, almost identical classes. Either that or it would be a huge,
// convoluted mess, with tons of "if" statements all over the place checking the
// size of template parameter CT.
// =============================================================================
#ifdef SS_NO_LOCALE
// --------------------------------------------------------------------------
// Win32 GetStringTypeEx wrappers
// --------------------------------------------------------------------------
inline bool wsGetStringType(LCID lc, DWORD dwT, PCSTR pS, int nSize,
WORD* pWd)
{
return FALSE;
//OG return FALSE != GetStringTypeExA(lc, dwT, pS, nSize, pWd);
}
inline bool wsGetStringType(LCID lc, DWORD dwT, PCWSTR pS, int nSize,
WORD* pWd)
{
return FALSE != GetStringTypeExW(lc, dwT, pS, nSize, pWd);
}
template<typename CT>
inline bool ssisspace (CT t)
{
WORD toYourMother;
return wsGetStringType(GetThreadLocale(), CT_CTYPE1, &t, 1, &toYourMother)
&& 0 != (C1_BLANK & toYourMother);
}
#endif
// If they defined SS_NO_REFCOUNT, then we must convert all assignments
#if defined (_MSC_VER) && (_MSC_VER < 1300)
#ifdef SS_NO_REFCOUNT
#define SSREF(x) (x).c_str()
#else
#define SSREF(x) (x)
#endif
#else
#define SSREF(x) (x)
#endif
// -----------------------------------------------------------------------------
// sslen: strlen/wcslen wrappers
// -----------------------------------------------------------------------------
template<typename CT> inline int sslen(const CT* pT)
{
return 0 == pT ? 0 : (int)std::basic_string<CT>::traits_type::length(pT);
// return 0 == pT ? 0 : std::char_traits<CT>::length(pT);
}
inline SS_NOTHROW int sslen(const std::string& s)
{
return static_cast<int>(s.length());
}
inline SS_NOTHROW int sslen(const std::wstring& s)
{
return static_cast<int>(s.length());
}
// -----------------------------------------------------------------------------
// sstolower/sstoupper -- convert characters to upper/lower case
// -----------------------------------------------------------------------------
#ifdef SS_NO_LOCALE
inline char sstoupper(char ch) { return (char)::toupper(ch); }
inline wchar_t sstoupper(wchar_t ch){ return (wchar_t)::towupper(ch); }
inline char sstolower(char ch) { return (char)::tolower(ch); }
inline wchar_t sstolower(wchar_t ch){ return (wchar_t)::tolower(ch); }
#else
template<typename CT>
inline CT sstolower(const CT& t, const std::locale& loc = std::locale())
{
return std::tolower<CT>(t, loc);
}
template<typename CT>
inline CT sstoupper(const CT& t, const std::locale& loc = std::locale())
{
return std::toupper<CT>(t, loc);
}
#endif
// -----------------------------------------------------------------------------
// ssasn: assignment functions -- assign "sSrc" to "sDst"
// -----------------------------------------------------------------------------
typedef std::string::size_type SS_SIZETYPE; // just for shorthand, really
typedef std::string::pointer SS_PTRTYPE;
typedef std::wstring::size_type SW_SIZETYPE;
typedef std::wstring::pointer SW_PTRTYPE;
inline void ssasn(std::string& sDst, const std::string& sSrc)
{
if ( sDst.c_str() != sSrc.c_str() )
{
sDst.erase();
sDst.assign(SSREF(sSrc));
}
}
inline void ssasn(std::string& sDst, PCSTR pA)
{
// Watch out for NULLs, as always.
if ( 0 == pA )
{
sDst.erase();
}
// If pA actually points to part of sDst, we must NOT erase(), but
// rather take a substring
else if ( pA >= sDst.c_str() && pA <= sDst.c_str() + sDst.size() )
{
sDst =sDst.substr(static_cast<SS_SIZETYPE>(pA-sDst.c_str()));
}
// Otherwise (most cases) apply the assignment bug fix, if applicable
// and do the assignment
else
{
Q172398(sDst);
sDst.assign(pA);
}
}
inline void ssasn(std::string& sDst, const std::wstring& sSrc)
{
if ( sSrc.empty() )
{
sDst.erase();
}
else
{
int nDst = static_cast<int>(sSrc.size());
// In MBCS builds, pad the buffer to account for the possibility of
// some 3 byte characters. Not perfect but should get most cases.
#ifdef SS_MBCS
nDst = static_cast<int>(static_cast<double>(nDst) * 1.3);
#endif
sDst.resize(nDst+1);
#ifdef SS_MBCS
PCSTR szCvt = StdCodeCvt(const_cast<SS_PTRTYPE>(sDst.data()), nDst,
sSrc.c_str(), static_cast<int>(sSrc.size()));
// In MBCS builds, we don't know how long the destination string will be.
sDst.resize(sslen(szCvt));
#else
// szCvt;
sDst.resize(sSrc.size());
#endif
}
}
inline void ssasn(std::string& sDst, PCWSTR pW)
{
int nSrc = sslen(pW);
if ( nSrc > 0 )
{
int nSrc = sslen(pW);
int nDst = nSrc;
// In MBCS builds, pad the buffer to account for the possibility of
// some 3 byte characters. Not perfect but should get most cases.
#ifdef SS_MBCS
nDst = static_cast<int>(static_cast<double>(nDst) * 1.3);
#endif
sDst.resize(nDst + 1);
#ifdef SS_MBCS
PCSTR szCvt = StdCodeCvt(const_cast<SS_PTRTYPE>(sDst.data()), nDst,
pW, nSrc);
// In MBCS builds, we don't know how long the destination string will be.
sDst.resize(sslen(szCvt));
#else
sDst.resize(nDst);
// szCvt;
#endif
}
else
{
sDst.erase();
}
}
#ifdef _DEBUG
inline void ssasn(std::string& sDst, const int nNull)
{
ASSERT(nNull==0);
#else
inline void ssasn(std::string& sDst, const int /*nNull*/)
{
#endif
sDst.assign("");
}
inline void ssasn(std::wstring& sDst, const std::wstring& sSrc)
{
if ( sDst.c_str() != sSrc.c_str() )
{
sDst.erase();
sDst.assign(SSREF(sSrc));
}
}
inline void ssasn(std::wstring& sDst, PCWSTR pW)
{
// Watch out for NULLs, as always.
if ( 0 == pW )
{
sDst.erase();
}
// If pW actually points to part of sDst, we must NOT erase(), but
// rather take a substring
else if ( pW >= sDst.c_str() && pW <= sDst.c_str() + sDst.size() )
{
sDst = sDst.substr(static_cast<SW_SIZETYPE>(pW-sDst.c_str()));
}
// Otherwise (most cases) apply the assignment bug fix, if applicable
// and do the assignment
else
{
Q172398(sDst);
sDst.assign(pW);
}
}
// #undef StrSizeType // AR: never referenced
inline void ssasn(std::wstring& sDst, const std::string& sSrc)
{
if ( sSrc.empty() )
{
sDst.erase();
}
else
{
int nSrc = static_cast<int>(sSrc.size());
int nDst = nSrc;
sDst.resize(nSrc+1);
PCWSTR szCvt = StdCodeCvt(const_cast<SW_PTRTYPE>(sDst.data()), nDst,
sSrc.c_str(), nSrc);
#ifndef _WIN32_WCE // AR: WinCE MultiByteToWideChar() does no multibyte length adjustment
sDst.resize(sslen(szCvt));
#else
sDst.resize(nDst);
#endif
}
}
inline void ssasn(std::wstring& sDst, PCSTR pA)
{
int nSrc = sslen(pA);
if ( 0 == nSrc )
{
sDst.erase();
}
else
{
int nDst = nSrc;
sDst.resize(nDst+1);
PCWSTR szCvt = StdCodeCvt(const_cast<SW_PTRTYPE>(sDst.data()), nDst, pA,
nSrc);
#ifndef _WIN32_WCE // AR: WinCE MultiByteToWideChar() does no multibyte length adjustment
sDst.resize(sslen(szCvt));
#else
sDst.resize(nDst);
#endif
}
}
#ifdef _DEBUG
inline void ssasn(std::wstring& sDst, const int nNull)
{
ASSERT(nNull==0);
#else
inline void ssasn(std::wstring& sDst, const int /*nNull*/)
{
#endif
sDst.assign(L"");
}
// -----------------------------------------------------------------------------
// ssadd: string object concatenation -- add second argument to first
// -----------------------------------------------------------------------------
inline void ssadd(std::string& sDst, const std::wstring& sSrc)
{
int nSrc = static_cast<int>(sSrc.size());
if ( nSrc > 0 )
{
int nDst = static_cast<int>(sDst.size());
int nAdd = nSrc;
// In MBCS builds, pad the buffer to account for the possibility of
// some 3 byte characters. Not perfect but should get most cases.
#ifdef SS_MBCS
nAdd = static_cast<int>(static_cast<double>(nAdd) * 1.3);
#endif
sDst.resize(nDst+nAdd+1);
#ifdef SS_MBCS
PCSTR szCvt = StdCodeCvt(const_cast<SS_PTRTYPE>(sDst.data()+nDst),
nAdd, sSrc.c_str(), nSrc);
sDst.resize(nDst + sslen(szCvt));
#else
sDst.resize(nDst + nAdd);
#endif
}
}
inline void ssadd(std::string& sDst, const std::string& sSrc)
{
sDst += sSrc;
}
inline void ssadd(std::string& sDst, PCWSTR pW)
{
int nSrc = sslen(pW);
if ( nSrc > 0 )
{
int nDst = static_cast<int>(sDst.size());
int nAdd = nSrc;
#ifdef SS_MBCS
nAdd = static_cast<int>(static_cast<double>(nAdd) * 1.3);
#endif
sDst.resize(nDst + nAdd + 1);
#ifdef SS_MBCS
PCSTR szCvt = StdCodeCvt(const_cast<SS_PTRTYPE>(sDst.data()+nDst),
nAdd, pW, nSrc);
sDst.resize(nDst + sslen(szCvt));
#else
sDst.resize(nDst + nSrc);
#endif
}
}
inline void ssadd(std::string& sDst, PCSTR pA)
{
if ( pA )
{
// If the string being added is our internal string or a part of our
// internal string, then we must NOT do any reallocation without
// first copying that string to another object (since we're using a
// direct pointer)
if ( pA >= sDst.c_str() && pA <= sDst.c_str()+sDst.length())
{
if ( sDst.capacity() <= sDst.size()+sslen(pA) )
sDst.append(std::string(pA));
else
sDst.append(pA);
}
else
{
sDst.append(pA);
}
}
}
inline void ssadd(std::wstring& sDst, const std::wstring& sSrc)
{
sDst += sSrc;
}
inline void ssadd(std::wstring& sDst, const std::string& sSrc)
{
if ( !sSrc.empty() )
{
int nSrc = static_cast<int>(sSrc.size());
int nDst = static_cast<int>(sDst.size());
sDst.resize(nDst + nSrc + 1);
#ifdef SS_MBCS
PCWSTR szCvt = StdCodeCvt(const_cast<SW_PTRTYPE>(sDst.data()+nDst),
nSrc, sSrc.c_str(), nSrc+1);
sDst.resize(nDst + sslen(szCvt));
#else
sDst.resize(nDst + nSrc);
#endif
}
}
inline void ssadd(std::wstring& sDst, PCSTR pA)
{
int nSrc = sslen(pA);
if ( nSrc > 0 )
{
int nDst = static_cast<int>(sDst.size());
sDst.resize(nDst + nSrc + 1);
#ifdef SS_MBCS
PCWSTR szCvt = StdCodeCvt(const_cast<SW_PTRTYPE>(sDst.data()+nDst),
nSrc, pA, nSrc+1);
sDst.resize(nDst + sslen(szCvt));
#else
sDst.resize(nDst + nSrc);
#endif
}
}
inline void ssadd(std::wstring& sDst, PCWSTR pW)
{
if ( pW )
{
// If the string being added is our internal string or a part of our
// internal string, then we must NOT do any reallocation without
// first copying that string to another object (since we're using a
// direct pointer)
if ( pW >= sDst.c_str() && pW <= sDst.c_str()+sDst.length())
{
if ( sDst.capacity() <= sDst.size()+sslen(pW) )
sDst.append(std::wstring(pW));
else
sDst.append(pW);
}
else
{
sDst.append(pW);
}
}
}
// -----------------------------------------------------------------------------
// sscmp: comparison (case sensitive, not affected by locale)
// -----------------------------------------------------------------------------
template<typename CT>
inline int sscmp(const CT* pA1, const CT* pA2)
{
CT f;
CT l;
do
{
f = *(pA1++);
l = *(pA2++);
} while ( (f) && (f == l) );
return (int)(f - l);
}
#ifdef SS_NO_LOCALE // AR: we need these because StdStringxxxNoCasex calls them
inline int ssicmp(const char* pA1, const char* pA2)
{
return _stricmp(pA1, pA2);
}
inline int ssicmp(const wchar_t* pA1, const wchar_t* pA2)
{
return _wcsicmp(pA1, pA2);
}
#else
// -----------------------------------------------------------------------------
// ssicmp: comparison (case INsensitive, not affected by locale)
// -----------------------------------------------------------------------------
template<typename CT>
inline int ssicmp(const CT* pA1, const CT* pA2)
{
// Using the "C" locale = "not affected by locale"
std::locale loc = std::locale::classic();
const std::ctype<CT>& ct = SS_USE_FACET(loc, std::ctype<CT>);
CT f;
CT l;
do
{
f = ct.tolower(*(pA1++));
l = ct.tolower(*(pA2++));
} while ( (f) && (f == l) );
return (int)(f - l);
}
// -----------------------------------------------------------------------------
// ssupr/sslwr: Uppercase/Lowercase conversion functions
// -----------------------------------------------------------------------------
template<typename CT>
inline void sslwr(CT* pT, size_t nLen, const std::locale& loc=std::locale())
{
SS_USE_FACET(loc, std::ctype<CT>).tolower(pT, pT+nLen);
}
template<typename CT>
inline void ssupr(CT* pT, size_t nLen, const std::locale& loc=std::locale())
{
SS_USE_FACET(loc, std::ctype<CT>).toupper(pT, pT+nLen);
}
#endif // SS_NO_LOCALE // AR
// -----------------------------------------------------------------------------
// vsprintf/vswprintf or _vsnprintf/_vsnwprintf equivalents. In standard
// builds we can't use _vsnprintf/_vsnwsprintf because they're MS extensions.
//
// -----------------------------------------------------------------------------
// Borland's headers put some ANSI "C" functions in the 'std' namespace.
// Promote them to the global namespace so we can use them here.
#if defined(__BORLANDC__)
using std::vsprintf;
using std::vswprintf;
#endif
// GNU is supposed to have vsnprintf and vsnwprintf. But only the newer
// distributions do.
#if defined(__GNUC__)
inline int ssvsprintf(PSTR pA, size_t nCount, PCSTR pFmtA, va_list vl)
{
return vsnprintf(pA, nCount, pFmtA, vl);
}
inline int ssvsprintf(PWSTR pW, size_t nCount, PCWSTR pFmtW, va_list vl)
{
return vswprintf(pW, nCount, pFmtW, vl);
}
// Microsofties can use
#elif defined(_MSC_VER) && !defined(SS_ANSI)
inline int ssnprintf(PSTR pA, size_t nCount, PCSTR pFmtA, va_list vl)
{
return _vsnprintf(pA, nCount, pFmtA, vl);
}
inline int ssnprintf(PWSTR pW, size_t nCount, PCWSTR pFmtW, va_list vl)
{
return _vsnwprintf(pW, nCount, pFmtW, vl);
}
#elif defined (SS_DANGEROUS_FORMAT) // ignore buffer size parameter if needed?
inline int ssvsprintf(PSTR pA, size_t /*nCount*/, PCSTR pFmtA, va_list vl)
{
return vsprintf(pA, pFmtA, vl);
}
inline int ssvsprintf(PWSTR pW, size_t nCount, PCWSTR pFmtW, va_list vl)
{
// JMO: Some distributions of the "C" have a version of vswprintf that
// takes 3 arguments (e.g. Microsoft, Borland, GNU). Others have a
// version which takes 4 arguments (an extra "count" argument in the
// second position. The best stab I can take at this so far is that if
// you are NOT running with MS, Borland, or GNU, then I'll assume you
// have the version that takes 4 arguments.
//
// I'm sure that these checks don't catch every platform correctly so if
// you get compiler errors on one of the lines immediately below, it's
// probably because your implemntation takes a different number of
// arguments. You can comment out the offending line (and use the
// alternate version) or you can figure out what compiler flag to check
// and add that preprocessor check in. Regardless, if you get an error
// on these lines, I'd sure like to hear from you about it.
//
// Thanks to Ronny Schulz for the SGI-specific checks here.
// #if !defined(__MWERKS__) && !defined(__SUNPRO_CC_COMPAT) && !defined(__SUNPRO_CC)
#if !defined(_MSC_VER) \
&& !defined (__BORLANDC__) \
&& !defined(__GNUC__) \
&& !defined(__sgi)
return vswprintf(pW, nCount, pFmtW, vl);
// suddenly with the current SGI 7.3 compiler there is no such function as
// vswprintf and the substitute needs explicit casts to compile
#elif defined(__sgi)
nCount;
return vsprintf( (char *)pW, (char *)pFmtW, vl);
#else
nCount;
return vswprintf(pW, pFmtW, vl);
#endif
}
#else
// GOT COMPILER PROBLEMS HERE?
// ---------------------------
// Does your compiler choke on one or more of the following 2 functions? It
// probably means that you don't have have either vsnprintf or vsnwprintf in
// your version of the CRT. This is understandable since neither is an ANSI
// "C" function. However it still leaves you in a dilemma. In order to make
// this code build, you're going to have to to use some non-length-checked
// formatting functions that every CRT has: vsprintf and vswprintf.
//
// This is very dangerous. With the proper erroneous (or malicious) code, it
// can lead to buffer overlows and crashing your PC. Use at your own risk
// In order to use them, just #define SS_DANGEROUS_FORMAT at the top of
// this file.
//
// Even THEN you might not be all the way home due to some non-conforming
// distributions. More on this in the comments below.
inline int ssnprintf(PSTR pA, size_t nCount, PCSTR pFmtA, va_list vl)
{
#ifdef _MSC_VER
return _vsnprintf(pA, nCount, pFmtA, vl);
#else
return vsnprintf(pA, nCount, pFmtA, vl);
#endif
}
inline int ssnprintf(PWSTR pW, size_t nCount, PCWSTR pFmtW, va_list vl)
{
#ifdef _MSC_VER
return _vsnwprintf(pW, nCount, pFmtW, vl);
#else
return vsnwprintf(pW, nCount, pFmtW, vl);
#endif
}
#endif
// -----------------------------------------------------------------------------
// ssload: Type safe, overloaded ::LoadString wrappers
// There is no equivalent of these in non-Win32-specific builds. However, I'm
// thinking that with the message facet, there might eventually be one
// -----------------------------------------------------------------------------
#if defined (SS_WIN32) && !defined(SS_ANSI)
inline int ssload(HMODULE hInst, UINT uId, PSTR pBuf, int nMax)
{
#ifndef _WIN32_WCE // AR: WinCE has no defined LoadStringA
return ::LoadStringA(hInst, uId, pBuf, nMax);
#else
return 0;
#endif
}
inline int ssload(HMODULE hInst, UINT uId, PWSTR pBuf, int nMax)
{
return ::LoadStringW(hInst, uId, pBuf, nMax);
}
#endif
// -----------------------------------------------------------------------------
// sscoll/ssicoll: Collation wrappers
// Note -- with MSVC I have reversed the arguments order here because the
// functions appear to return the opposite of what they should
// -----------------------------------------------------------------------------
#ifndef SS_NO_LOCALE
template <typename CT>
inline int sscoll(const CT* sz1, int nLen1, const CT* sz2, int nLen2)
{
const std::collate<CT>& coll =
SS_USE_FACET(std::locale(), std::collate<CT>);
return coll.compare(sz2, sz2+nLen2, sz1, sz1+nLen1);
}
template <typename CT>
inline int ssicoll(const CT* sz1, int nLen1, const CT* sz2, int nLen2)
{
const std::locale loc;
const std::collate<CT>& coll = SS_USE_FACET(loc, std::collate<CT>);
// Some implementations seem to have trouble using the collate<>
// facet typedefs so we'll just default to basic_string and hope
// that's what the collate facet uses (which it generally should)
// std::collate<CT>::string_type s1(sz1);
// std::collate<CT>::string_type s2(sz2);
const std::basic_string<CT> sEmpty;
std::basic_string<CT> s1(sz1 ? sz1 : sEmpty.c_str());
std::basic_string<CT> s2(sz2 ? sz2 : sEmpty.c_str());
sslwr(const_cast<CT*>(s1.c_str()), nLen1, loc);
sslwr(const_cast<CT*>(s2.c_str()), nLen2, loc);
return coll.compare(s2.c_str(), s2.c_str()+nLen2,
s1.c_str(), s1.c_str()+nLen1);
}
#endif
// -----------------------------------------------------------------------------
// ssfmtmsg: FormatMessage equivalents. Needed because I added a CString facade
// Again -- no equivalent of these on non-Win32 builds but their might one day
// be one if the message facet gets implemented
// -----------------------------------------------------------------------------
#if defined (SS_WIN32) && !defined(SS_ANSI)
inline DWORD ssfmtmsg(DWORD dwFlags, LPCVOID pSrc, DWORD dwMsgId,
DWORD dwLangId, PSTR pBuf, DWORD nSize,
va_list* vlArgs)
{
return FormatMessageA(dwFlags, pSrc, dwMsgId, dwLangId,
pBuf, nSize,vlArgs);
}
inline DWORD ssfmtmsg(DWORD dwFlags, LPCVOID pSrc, DWORD dwMsgId,
DWORD dwLangId, PWSTR pBuf, DWORD nSize,
va_list* vlArgs)
{
return FormatMessageW(dwFlags, pSrc, dwMsgId, dwLangId,
pBuf, nSize,vlArgs);
}
#else
#endif
// FUNCTION: sscpy. Copies up to 'nMax' characters from pSrc to pDst.
// -----------------------------------------------------------------------------
// FUNCTION: sscpy
// inline int sscpy(PSTR pDst, PCSTR pSrc, int nMax=-1);
// inline int sscpy(PUSTR pDst, PCSTR pSrc, int nMax=-1)
// inline int sscpy(PSTR pDst, PCWSTR pSrc, int nMax=-1);
// inline int sscpy(PWSTR pDst, PCWSTR pSrc, int nMax=-1);
// inline int sscpy(PWSTR pDst, PCSTR pSrc, int nMax=-1);
//
// DESCRIPTION:
// This function is very much (but not exactly) like strcpy. These
// overloads simplify copying one C-style string into another by allowing
// the caller to specify two different types of strings if necessary.
//
// The strings must NOT overlap
//
// "Character" is expressed in terms of the destination string, not
// the source. If no 'nMax' argument is supplied, then the number of
// characters copied will be sslen(pSrc). A NULL terminator will
// also be added so pDst must actually be big enough to hold nMax+1
// characters. The return value is the number of characters copied,
// not including the NULL terminator.
//
// PARAMETERS:
// pSrc - the string to be copied FROM. May be a char based string, an
// MBCS string (in Win32 builds) or a wide string (wchar_t).
// pSrc - the string to be copied TO. Also may be either MBCS or wide
// nMax - the maximum number of characters to be copied into szDest. Note
// that this is expressed in whatever a "character" means to pDst.
// If pDst is a wchar_t type string than this will be the maximum
// number of wchar_ts that my be copied. The pDst string must be
// large enough to hold least nMaxChars+1 characters.
// If the caller supplies no argument for nMax this is a signal to
// the routine to copy all the characters in pSrc, regardless of
// how long it is.
//
// RETURN VALUE: none
// -----------------------------------------------------------------------------
template<typename CT1, typename CT2>
inline int sscpycvt(CT1* pDst, const CT2* pSrc, int nMax)
{
// Note -- we assume pDst is big enough to hold pSrc. If not, we're in
// big trouble. No bounds checking. Caveat emptor.
int nSrc = sslen(pSrc);
const CT1* szCvt = StdCodeCvt(pDst, nMax, pSrc, nSrc);
// If we're copying the same size characters, then all the "code convert"
// just did was basically memcpy so the #of characters copied is the same
// as the number requested. I should probably specialize this function
// template to achieve this purpose as it is silly to do a runtime check
// of a fact known at compile time. I'll get around to it.
return sslen(szCvt);
}
inline int sscpycvt(PSTR pDst, PCSTR pSrc, int nMax)
{
int nCount = nMax;
for (; nCount > 0 && *pSrc; ++pSrc, ++pDst, --nCount)
std::basic_string<char>::traits_type::assign(*pDst, *pSrc);
*pDst = '\0';
return nMax - nCount;
}
inline int sscpycvt(PWSTR pDst, PCWSTR pSrc, int nMax)
{
int nCount = nMax;
for (; nCount > 0 && *pSrc; ++pSrc, ++pDst, --nCount)
std::basic_string<wchar_t>::traits_type::assign(*pDst, *pSrc);
*pDst = L'\0';
return nMax - nCount;
}
inline int sscpycvt(PWSTR pDst, PCSTR pSrc, int nMax)
{
// Note -- we assume pDst is big enough to hold pSrc. If not, we're in
// big trouble. No bounds checking. Caveat emptor.
const PWSTR szCvt = StdCodeCvt(pDst, nMax, pSrc, nMax);
return sslen(szCvt);
}
template<typename CT1, typename CT2>
inline int sscpy(CT1* pDst, const CT2* pSrc, int nMax, int nLen)
{
return sscpycvt(pDst, pSrc, SSMIN(nMax, nLen));
}
template<typename CT1, typename CT2>
inline int sscpy(CT1* pDst, const CT2* pSrc, int nMax)
{
return sscpycvt(pDst, pSrc, SSMIN(nMax, sslen(pSrc)));
}
template<typename CT1, typename CT2>
inline int sscpy(CT1* pDst, const CT2* pSrc)
{
return sscpycvt(pDst, pSrc, sslen(pSrc));
}
template<typename CT1, typename CT2>
inline int sscpy(CT1* pDst, const std::basic_string<CT2>& sSrc, int nMax)
{
return sscpycvt(pDst, sSrc.c_str(), SSMIN(nMax, (int)sSrc.length()));
}
template<typename CT1, typename CT2>
inline int sscpy(CT1* pDst, const std::basic_string<CT2>& sSrc)
{
return sscpycvt(pDst, sSrc.c_str(), (int)sSrc.length());
}
#ifdef SS_INC_COMDEF
template<typename CT1>
inline int sscpy(CT1* pDst, const _bstr_t& bs, int nMax)
{
return sscpycvt(pDst, static_cast<PCOLESTR>(bs),
SSMIN(nMax, static_cast<int>(bs.length())));
}
template<typename CT1>
inline int sscpy(CT1* pDst, const _bstr_t& bs)
{
return sscpy(pDst, bs, static_cast<int>(bs.length()));
}
#endif
// -----------------------------------------------------------------------------
// Functional objects for changing case. They also let you pass locales
// -----------------------------------------------------------------------------
#ifdef SS_NO_LOCALE
template<typename CT>
struct SSToUpper : public std::unary_function<CT, CT>
{
inline CT operator()(const CT& t) const
{
return sstoupper(t);
}
};
template<typename CT>
struct SSToLower : public std::unary_function<CT, CT>
{
inline CT operator()(const CT& t) const
{
return sstolower(t);
}
};
#else
template<typename CT>
struct SSToUpper : public std::binary_function<CT, std::locale, CT>
{
inline CT operator()(const CT& t, const std::locale& loc) const
{
return sstoupper<CT>(t, loc);
}
};
template<typename CT>
struct SSToLower : public std::binary_function<CT, std::locale, CT>
{
inline CT operator()(const CT& t, const std::locale& loc) const
{
return sstolower<CT>(t, loc);
}
};
#endif
// This struct is used for TrimRight() and TrimLeft() function implementations.
//template<typename CT>
//struct NotSpace : public std::unary_function<CT, bool>
//{
// const std::locale& loc;
// inline NotSpace(const std::locale& locArg) : loc(locArg) {}
// inline bool operator() (CT t) { return !std::isspace(t, loc); }
//};
template<typename CT>
struct NotSpace : public std::unary_function<CT, bool>
{
// DINKUMWARE BUG:
// Note -- using std::isspace in a COM DLL gives us access violations
// because it causes the dynamic addition of a function to be called
// when the library shuts down. Unfortunately the list is maintained
// in DLL memory but the function is in static memory. So the COM DLL
// goes away along with the function that was supposed to be called,
// and then later when the DLL CRT shuts down it unloads the list and
// tries to call the long-gone function.
// This is DinkumWare's implementation problem. If you encounter this
// problem, you may replace the calls here with good old isspace() and
// iswspace() from the CRT unless they specify SS_ANSI
#ifdef SS_NO_LOCALE
// OG
bool operator() (CT t) const { return !ssisspace(t); }
#else
const std::locale loc;
NotSpace(const std::locale& locArg=std::locale()) : loc(locArg) {}
bool operator() (CT t) const { return !std::isspace(t, loc); }
#endif
};
// Now we can define the template (finally!)
// =============================================================================
// TEMPLATE: CStdStr
// template<typename CT> class CStdStr : public std::basic_string<CT>
//
// REMARKS:
// This template derives from basic_string<CT> and adds some MFC CString-
// like functionality
//
// Basically, this is my attempt to make Standard C++ library strings as
// easy to use as the MFC CString class.
//
// Note that although this is a template, it makes the assumption that the
// template argument (CT, the character type) is either char or wchar_t.
// =============================================================================
//#define CStdStr _SS // avoid compiler warning 4786
// template<typename ARG> ARG& FmtArg(ARG& arg) { return arg; }
// PCSTR FmtArg(const std::string& arg) { return arg.c_str(); }
// PCWSTR FmtArg(const std::wstring& arg) { return arg.c_str(); }
template<typename ARG>
struct FmtArg
{
explicit FmtArg(const ARG& arg) : a_(arg) {}
const ARG& operator()() const { return a_; }
const ARG& a_;
private:
FmtArg& operator=(const FmtArg&) { return *this; }
};
template<typename CT>
class CStdStr : public std::basic_string<CT>
{
// Typedefs for shorter names. Using these names also appears to help
// us avoid some ambiguities that otherwise arise on some platforms
//#define MYBASE std::basic_string<CT> // my base class // AR: use the typedef with WTL
typedef typename std::basic_string<CT> MYBASE; // my base class
typedef CStdStr<CT> MYTYPE; // myself
typedef typename MYBASE::const_pointer PCMYSTR; // PCSTR or PCWSTR
typedef typename MYBASE::pointer PMYSTR; // PSTR or PWSTR
typedef typename MYBASE::iterator MYITER; // my iterator type
typedef typename MYBASE::const_iterator MYCITER; // you get the idea...
typedef typename MYBASE::reverse_iterator MYRITER;
typedef typename MYBASE::size_type MYSIZE;
typedef typename MYBASE::value_type MYVAL;
typedef typename MYBASE::allocator_type MYALLOC;
public:
// shorthand conversion from PCTSTR to string resource ID
#define SSRES(pctstr) LOWORD(reinterpret_cast<unsigned long>(pctstr))
bool TryLoad(const void* pT)
{
bool bLoaded = false;
#if defined(SS_WIN32) && !defined(SS_ANSI)
if ( ( pT != NULL ) && SS_IS_INTRESOURCE(pT) )
{
UINT nId = LOWORD(reinterpret_cast<unsigned long>(pT));
if ( !LoadString(nId) )
{
TRACE(_T("Can't load string %u\n"), SSRES(pT));
}
bLoaded = true;
}
#endif
return bLoaded;
}
// CStdStr inline constructors
CStdStr()
{
}
/*
// OG Added getExt
PCMYSTR getExt()
{
int pos = ReverseFind('.');
return c_str()+pos+1;
}
*/
CStdStr(const MYTYPE& str) : MYBASE(SSREF(str))
{
}
CStdStr(const std::string& str)
{
ssasn(*this, SSREF(str));
}
CStdStr(const std::wstring& str)
{
ssasn(*this, SSREF(str));
}
#ifndef _WTL_VER // AR: kept the existing for compatibility security
CStdStr(PCMYSTR pT, MYSIZE n) : MYBASE(pT, n)
{
}
#else // AR: WTL::CString exposes constructors with both types
template <typename TC>
CStdStr(const TC* pTC, MYSIZE n)
{
*this = pTC;
this->resize(n);
}
#endif
#ifdef SS_UNSIGNED
CStdStr(PCUSTR pU)
{
*this = reinterpret_cast<PCSTR>(pU);
}
#endif
CStdStr(PCSTR pA)
{
#ifdef SS_ANSI
*this = pA;
#else
if ( !TryLoad(pA) )
*this = pA;
#endif
}
CStdStr(PCWSTR pW)
{
#ifdef SS_ANSI
*this = pW;
#else
if ( !TryLoad(pW) )
*this = pW;
#endif
}
CStdStr(MYCITER first, MYCITER last)
: MYBASE(first, last)
{
}
CStdStr(MYSIZE nSize, MYVAL ch, const MYALLOC& al=MYALLOC())
: MYBASE(nSize, ch, al)
{
}
#ifdef SS_INC_COMDEF
CStdStr(const _bstr_t& bstr)
{
if ( bstr.length() > 0 )
this->append(static_cast<PCMYSTR>(bstr), bstr.length());
}
#endif
// CStdStr inline assignment operators -- the ssasn function now takes care
// of fixing the MSVC assignment bug (see knowledge base article Q172398).
MYTYPE& operator=(const MYTYPE& str)
{
ssasn(*this, str);
return *this;
}
MYTYPE& operator=(const std::string& str)
{
ssasn(*this, str);
return *this;
}
MYTYPE& operator=(const std::wstring& str)
{
ssasn(*this, str);
return *this;
}
MYTYPE& operator=(PCSTR pA)
{
ssasn(*this, pA);
return *this;
}
MYTYPE& operator=(PCWSTR pW)
{
ssasn(*this, pW);
return *this;
}
#ifdef SS_UNSIGNED
MYTYPE& operator=(PCUSTR pU)
{
ssasn(*this, reinterpret_cast<PCSTR>(pU));
return *this;
}
#endif
MYTYPE& operator=(CT t)
{
Q172398(*this);
this->assign(1, t);
return *this;
}
#ifdef SS_INC_COMDEF
MYTYPE& operator=(const _bstr_t& bstr)
{
if ( bstr.length() > 0 )
{
this->assign(static_cast<PCMYSTR>(bstr), bstr.length());
return *this;
}
else
{
this->erase();
return *this;
}
}
#endif
// Overloads also needed to fix the MSVC assignment bug (KB: Q172398)
// *** Thanks to Pete The Plumber for catching this one ***
// They also are compiled if you have explicitly turned off refcounting
#if ( defined(_MSC_VER) && ( _MSC_VER < 1200 ) ) || defined(SS_NO_REFCOUNT)
MYTYPE& assign(const MYTYPE& str)
{
Q172398(*this);
sscpy(GetBuffer(str.size()+1), SSREF(str));
this->ReleaseBuffer(str.size());
return *this;
}
MYTYPE& assign(const MYTYPE& str, MYSIZE nStart, MYSIZE nChars)
{
// This overload of basic_string::assign is supposed to assign up to
// <nChars> or the NULL terminator, whichever comes first. Since we
// are about to call a less forgiving overload (in which <nChars>
// must be a valid length), we must adjust the length here to a safe
// value. Thanks to Ullrich Pollähne for catching this bug
nChars = SSMIN(nChars, str.length() - nStart);
MYTYPE strTemp(str.c_str()+nStart, nChars);
Q172398(*this);
this->assign(strTemp);
return *this;
}
MYTYPE& assign(const MYBASE& str)
{
ssasn(*this, str);
return *this;
}
MYTYPE& assign(const MYBASE& str, MYSIZE nStart, MYSIZE nChars)
{
// This overload of basic_string::assign is supposed to assign up to
// <nChars> or the NULL terminator, whichever comes first. Since we
// are about to call a less forgiving overload (in which <nChars>
// must be a valid length), we must adjust the length here to a safe
// value. Thanks to Ullrich Pollähne for catching this bug
nChars = SSMIN(nChars, str.length() - nStart);
// Watch out for assignment to self
if ( this == &str )
{
MYTYPE strTemp(str.c_str() + nStart, nChars);
static_cast<MYBASE*>(this)->assign(strTemp);
}
else
{
Q172398(*this);
static_cast<MYBASE*>(this)->assign(str.c_str()+nStart, nChars);
}
return *this;
}
MYTYPE& assign(const CT* pC, MYSIZE nChars)
{
// Q172398 only fix -- erase before assigning, but not if we're
// assigning from our own buffer
#if defined ( _MSC_VER ) && ( _MSC_VER < 1200 )
if ( !this->empty() &&
( pC < this->data() || pC > this->data() + this->capacity() ) )
{
this->erase();
}
#endif
Q172398(*this);
static_cast<MYBASE*>(this)->assign(pC, nChars);
return *this;
}
MYTYPE& assign(MYSIZE nChars, MYVAL val)
{
Q172398(*this);
static_cast<MYBASE*>(this)->assign(nChars, val);
return *this;
}
MYTYPE& assign(const CT* pT)
{
return this->assign(pT, MYBASE::traits_type::length(pT));
}
MYTYPE& assign(MYCITER iterFirst, MYCITER iterLast)
{
#if defined ( _MSC_VER ) && ( _MSC_VER < 1200 )
// Q172398 fix. don't call erase() if we're assigning from ourself
if ( iterFirst < this->begin() ||
iterFirst > this->begin() + this->size() )
{
this->erase()
}
#endif
this->replace(this->begin(), this->end(), iterFirst, iterLast);
return *this;
}
#endif
// -------------------------------------------------------------------------
// CStdStr inline concatenation.
// -------------------------------------------------------------------------
MYTYPE& operator+=(const MYTYPE& str)
{
ssadd(*this, str);
return *this;
}
MYTYPE& operator+=(const std::string& str)
{
ssadd(*this, str);
return *this;
}
MYTYPE& operator+=(const std::wstring& str)
{
ssadd(*this, str);
return *this;
}
MYTYPE& operator+=(PCSTR pA)
{
ssadd(*this, pA);
return *this;
}
MYTYPE& operator+=(PCWSTR pW)
{
ssadd(*this, pW);
return *this;
}
MYTYPE& operator+=(CT t)
{
this->append(1, t);
return *this;
}
#ifdef SS_INC_COMDEF // if we have _bstr_t, define a += for it too.
MYTYPE& operator+=(const _bstr_t& bstr)
{
return this->operator+=(static_cast<PCMYSTR>(bstr));
}
#endif
// -------------------------------------------------------------------------
// Case changing functions
// -------------------------------------------------------------------------
#ifndef SS_NO_LOCALE // AR
MYTYPE& ToUpper(const std::locale& loc=std::locale())
{
// Note -- if there are any MBCS character sets in which the lowercase
// form a character takes up a different number of bytes than the
// uppercase form, this would probably not work...
std::transform(this->begin(),
this->end(),
this->begin(),
std::bind2nd(SSToUpper<CT>(), loc));
// ...but if it were, this would probably work better. Also, this way
// seems to be a bit faster when anything other then the "C" locale is
// used...
// if ( !empty() )
// {
// ssupr(this->GetBuf(), this->size(), loc);
// this->RelBuf();
// }
return *this;
}
MYTYPE& ToLower(const std::locale& loc=std::locale())
{
// Note -- if there are any MBCS character sets in which the lowercase
// form a character takes up a different number of bytes than the
// uppercase form, this would probably not work...
std::transform(this->begin(),
this->end(),
this->begin(),
std::bind2nd(SSToLower<CT>(), loc));
// ...but if it were, this would probably work better. Also, this way
// seems to be a bit faster when anything other then the "C" locale is
// used...
// if ( !empty() )
// {
// sslwr(this->GetBuf(), this->size(), loc);
// this->RelBuf();
// }
return *this;
}
#endif
MYTYPE& Normalize()
{
return Trim().ToLower();
}
// -------------------------------------------------------------------------
// CStdStr -- Direct access to character buffer. In the MS' implementation,
// the at() function that we use here also calls _Freeze() providing us some
// protection from multithreading problems associated with ref-counting.
// In VC 7 and later, of course, the ref-counting stuff is gone.
// -------------------------------------------------------------------------
CT* GetBuf(int nMinLen=-1)
{
if ( static_cast<int>(this->size()) < nMinLen )
this->resize(static_cast<MYSIZE>(nMinLen));
return this->empty() ? const_cast<CT*>(this->data()) : &(this->at(0));
}
CT* SetBuf(int nLen)
{
nLen = ( nLen > 0 ? nLen : 0 );
if ( this->capacity() < 1 && nLen == 0 )
this->resize(1);
this->resize(static_cast<MYSIZE>(nLen));
return const_cast<CT*>(this->data());
}
void RelBuf(int nNewLen=-1)
{
this->resize(static_cast<MYSIZE>(nNewLen > -1 ? nNewLen :
sslen(this->c_str())));
}
void BufferRel() { RelBuf(); } // backwards compatability
CT* Buffer() { return GetBuf(); } // backwards compatability
CT* BufferSet(int nLen) { return SetBuf(nLen);}// backwards compatability
bool Equals(const CT* pT, bool bUseCase=false) const
{
return 0 == (bUseCase ? this->compare(pT) : ssicmp(this->c_str(), pT));
}
// -------------------------------------------------------------------------
// FUNCTION: CStdStr::Load
// REMARKS:
// Loads string from resource specified by nID
//
// PARAMETERS:
// nID - resource Identifier. Purely a Win32 thing in this case
//
// RETURN VALUE:
// true if successful, false otherwise
// -------------------------------------------------------------------------
#ifndef SS_ANSI
bool Load(UINT nId, HMODULE hModule=NULL)
{
bool bLoaded = false; // set to true of we succeed.
#ifdef _MFC_VER // When in Rome (or MFC land)...
// If they gave a resource handle, use it. Note - this is archaic
// and not really what I would recommend. But then again, in MFC
// land, you ought to be using CString for resources anyway since
// it walks the resource chain for you.
HMODULE hModuleOld = NULL;
if ( NULL != hModule )
{
hModuleOld = AfxGetResourceHandle();
AfxSetResourceHandle(hModule);
}
// ...load the string
CString strRes;
bLoaded = FALSE != strRes.LoadString(nId);
// ...and if we set the resource handle, restore it.
if ( NULL != hModuleOld )
AfxSetResourceHandle(hModule);
if ( bLoaded )
*this = strRes;
#else // otherwise make our own hackneyed version of CString's Load
// Get the resource name and module handle
if ( NULL == hModule )
hModule = GetResourceHandle();
PCTSTR szName = MAKEINTRESOURCE((nId>>4)+1); // lifted
DWORD dwSize = 0;
// No sense continuing if we can't find the resource
HRSRC hrsrc = ::FindResource(hModule, szName, RT_STRING);
if ( NULL == hrsrc )
{
TRACE(_T("Cannot find resource %d: 0x%X"), nId, ::GetLastError());
}
else if ( 0 == (dwSize = ::SizeofResource(hModule, hrsrc) / sizeof(CT)))
{
TRACE(_T("Cant get size of resource %d 0x%X\n"),nId,GetLastError());
}
else
{
bLoaded = 0 != ssload(hModule, nId, GetBuf(dwSize), dwSize);
ReleaseBuffer();
}
#endif // #ifdef _MFC_VER
if ( !bLoaded )
TRACE(_T("String not loaded 0x%X\n"), ::GetLastError());
return bLoaded;
}
#endif // #ifdef SS_ANSI
// -------------------------------------------------------------------------
// FUNCTION: CStdStr::Format
// void _cdecl Formst(CStdStringA& PCSTR szFormat, ...)
// void _cdecl Format(PCSTR szFormat);
//
// DESCRIPTION:
// This function does sprintf/wsprintf style formatting on CStdStringA
// objects. It looks a lot like MFC's CString::Format. Some people
// might even call this identical. Fortunately, these people are now
// dead... heh heh.
//
// PARAMETERS:
// nId - ID of string resource holding the format string
// szFormat - a PCSTR holding the format specifiers
// argList - a va_list holding the arguments for the format specifiers.
//
// RETURN VALUE: None.
// -------------------------------------------------------------------------
// formatting (using wsprintf style formatting)
// If they want a Format() function that safely handles string objects
// without casting
#ifdef SS_SAFE_FORMAT
// Question: Joe, you wacky coder you, why do you have so many overloads
// of the Format() function
// Answer: One reason only - CString compatability. In short, by making
// the Format() function a template this way, I can do strong typing
// and allow people to pass CStdString arguments as fillers for
// "%s" format specifiers without crashing their program! The downside
// is that I need to overload on the number of arguments. If you are
// passing more arguments than I have listed below in any of my
// overloads, just add another one.
//
// Yes, yes, this is really ugly. In essence what I am doing here is
// protecting people from a bad (and incorrect) programming practice
// that they should not be doing anyway. I am protecting them from
// themselves. Why am I doing this? Well, if you had any idea the
// number of times I've been emailed by people about this
// "incompatability" in my code, you wouldn't ask.
void Fmt(const CT* szFmt, ...)
{
va_list argList;
va_start(argList, szFmt);
FormatV(szFmt, argList);
va_end(argList);
}
#ifndef SS_ANSI
void Format(UINT nId)
{
MYTYPE strFmt;
if ( strFmt.Load(nId) )
this->swap(strFmt);
}
template<class A1>
void Format(UINT nId, const A1& v)
{
MYTYPE strFmt;
if ( strFmt.Load(nId) )
Fmt(strFmt, FmtArg<A1>(v)());
}
template<class A1, class A2>
void Format(UINT nId, const A1& v1, const A2& v2)
{
MYTYPE strFmt;
if ( strFmt.Load(nId) )
Fmt(strFmt, FmtArg<A1>(v1)(), FmtArg<A2>(v2)());
}
template<class A1, class A2, class A3>
void Format(UINT nId, const A1& v1, const A2& v2, const A3& v3)
{
MYTYPE strFmt;
if ( strFmt.Load(nId) )
{
Fmt(strFmt, FmtArg<A1>(v1)(), FmtArg<A2>(v2)(),
FmtArg<A3>(v3)());
}
}
template<class A1, class A2, class A3, class A4>
void Format(UINT nId, const A1& v1, const A2& v2, const A3& v3,
const A4& v4)
{
MYTYPE strFmt;
if ( strFmt.Load(nId) )
{
Fmt(strFmt, FmtArg<A1>(v1)(), FmtArg<A2>(v2)(),
FmtArg<A3>(v3)(), FmtArg<A4>(v4)());
}
}
template<class A1, class A2, class A3, class A4, class A5>
void Format(UINT nId, const A1& v1, const A2& v2, const A3& v3,
const A4& v4, const A5& v5)
{
MYTYPE strFmt;
if ( strFmt.Load(nId) )
{
Fmt(strFmt, FmtArg<A1>(v1)(), FmtArg<A2>(v2)(),
FmtArg<A3>(v3)(), FmtArg<A4>(v4)(), FmtArg<A5>(v5)());
}
}
template<class A1, class A2, class A3, class A4, class A5, class A6>
void Format(UINT nId, const A1& v1, const A2& v2, const A3& v3,
const A4& v4, const A5& v5, const A6& v6)
{
MYTYPE strFmt;
if ( strFmt.Load(nId) )
{
Fmt(strFmt, FmtArg<A1>(v1)(), FmtArg<A2>(v2)(),
FmtArg<A3>(v3)(), FmtArg<A4>(v4)(),FmtArg<A5>(v5)(),
FmtArg<A6>(v6)());
}
}
template<class A1, class A2, class A3, class A4, class A5, class A6,
class A7>
void Format(UINT nId, const A1& v1, const A2& v2, const A3& v3,
const A4& v4, const A5& v5, const A6& v6, const A7& v7)
{
MYTYPE strFmt;
if ( strFmt.Load(nId) )
{
Fmt(strFmt, FmtArg<A1>(v1)(), FmtArg<A2>(v2)(),
FmtArg<A3>(v3)(), FmtArg<A4>(v4)(),FmtArg<A5>(v5)(),
FmtArg<A6>(v6)(), FmtArg<A7>(v7)());
}
}
template<class A1, class A2, class A3, class A4, class A5, class A6,
class A7, class A8>
void Format(UINT nId, const A1& v1, const A2& v2, const A3& v3,
const A4& v4, const A5& v5, const A6& v6, const A7& v7,
const A8& v8)
{
MYTYPE strFmt;
if ( strFmt.Load(nId) )
{
Fmt(strFmt, FmtArg<A1>(v1)(), FmtArg<A2>(v2)(),
FmtArg<A3>(v3)(), FmtArg<A4>(v4)(), FmtArg<A5>(v5)(),
FmtArg<A6>(v6)(), FmtArg<A7>(v7)(), FmtArg<A8>(v8)());
}
}
template<class A1, class A2, class A3, class A4, class A5, class A6,
class A7, class A8, class A9>
void Format(UINT nId, const A1& v1, const A2& v2, const A3& v3,
const A4& v4, const A5& v5, const A6& v6, const A7& v7,
const A8& v8, const A9& v9)
{
MYTYPE strFmt;
if ( strFmt.Load(nId) )
{
Fmt(strFmt, FmtArg<A1>(v1)(), FmtArg<A2>(v2)(),
FmtArg<A3>(v3)(), FmtArg<A4>(v4)(), FmtArg<A5>(v5)(),
FmtArg<A6>(v6)(), FmtArg<A7>(v7)(), FmtArg<A8>(v8)(),
FmtArg<A9>(v9)());
}
}
template<class A1, class A2, class A3, class A4, class A5, class A6,
class A7, class A8, class A9, class A10>
void Format(UINT nId, const A1& v1, const A2& v2, const A3& v3,
const A4& v4, const A5& v5, const A6& v6, const A7& v7,
const A8& v8, const A9& v9, const A10& v10)
{
MYTYPE strFmt;
if ( strFmt.Load(nId) )
{
Fmt(strFmt, FmtArg<A1>(v1)(), FmtArg<A2>(v2)(),
FmtArg<A3>(v3)(), FmtArg<A4>(v4)(), FmtArg<A5>(v5)(),
FmtArg<A6>(v6)(), FmtArg<A7>(v7)(), FmtArg<A8>(v8)(),
FmtArg<A9>(v9)(), FmtArg<A10>(v10)());
}
}
template<class A1, class A2, class A3, class A4, class A5, class A6,
class A7, class A8, class A9, class A10, class A11>
void Format(UINT nId, const A1& v1, const A2& v2, const A3& v3,
const A4& v4, const A5& v5, const A6& v6, const A7& v7,
const A8& v8, const A9& v9, const A10& v10, const A11& v11)
{
MYTYPE strFmt;
if ( strFmt.Load(nId) )
{
Fmt(strFmt, FmtArg<A1>(v1)(), FmtArg<A2>(v2)(),
FmtArg<A3>(v3)(), FmtArg<A4>(v4)(), FmtArg<A5>(v5)(),
FmtArg<A6>(v6)(), FmtArg<A7>(v7)(), FmtArg<A8>(v8)(),
FmtArg<A9>(v9)(),FmtArg<A10>(v10)(),FmtArg<A11>(v11)());
}
}
template<class A1, class A2, class A3, class A4, class A5, class A6,
class A7, class A8, class A9, class A10, class A11, class A12>
void Format(UINT nId, const A1& v1, const A2& v2, const A3& v3,
const A4& v4, const A5& v5, const A6& v6, const A7& v7,
const A8& v8, const A9& v9, const A10& v10, const A11& v11,
const A12& v12)
{
MYTYPE strFmt;
if ( strFmt.Load(nId) )
{
Fmt(strFmt, FmtArg<A1>(v1)(), FmtArg<A2>(v2)(),
FmtArg<A3>(v3)(), FmtArg<A4>(v4)(), FmtArg<A5>(v5)(),
FmtArg<A6>(v6)(), FmtArg<A7>(v7)(), FmtArg<A8>(v8)(),
FmtArg<A9>(v9)(), FmtArg<A10>(v10)(),FmtArg<A11>(v11)(),
FmtArg<A12>(v12)());
}
}
template<class A1, class A2, class A3, class A4, class A5, class A6,
class A7, class A8, class A9, class A10, class A11, class A12,
class A13>
void Format(UINT nId, const A1& v1, const A2& v2, const A3& v3,
const A4& v4, const A5& v5, const A6& v6, const A7& v7,
const A8& v8, const A9& v9, const A10& v10, const A11& v11,
const A12& v12, const A13& v13)
{
MYTYPE strFmt;
if ( strFmt.Load(nId) )
{
Fmt(strFmt, FmtArg<A1>(v1)(), FmtArg<A2>(v2)(),
FmtArg<A3>(v3)(), FmtArg<A4>(v4)(), FmtArg<A5>(v5)(),
FmtArg<A6>(v6)(), FmtArg<A7>(v7)(), FmtArg<A8>(v8)(),
FmtArg<A9>(v9)(), FmtArg<A10>(v10)(),FmtArg<A11>(v11)(),
FmtArg<A12>(v12)(), FmtArg<A13>(v13)());
}
}
template<class A1, class A2, class A3, class A4, class A5, class A6,
class A7, class A8, class A9, class A10, class A11, class A12,
class A13, class A14>
void Format(UINT nId, const A1& v1, const A2& v2, const A3& v3,
const A4& v4, const A5& v5, const A6& v6, const A7& v7,
const A8& v8, const A9& v9, const A10& v10, const A11& v11,
const A12& v12, const A13& v13, const A14& v14)
{
MYTYPE strFmt;
if ( strFmt.Load(nId) )
{
Fmt(strFmt, FmtArg<A1>(v1)(), FmtArg<A2>(v2)(),
FmtArg<A3>(v3)(), FmtArg<A4>(v4)(), FmtArg<A5>(v5)(),
FmtArg<A6>(v6)(), FmtArg<A7>(v7)(), FmtArg<A8>(v8)(),
FmtArg<A9>(v9)(), FmtArg<A10>(v10)(),FmtArg<A11>(v11)(),
FmtArg<A12>(v12)(), FmtArg<A13>(v13)(),FmtArg<A14>(v14)());
}
}
template<class A1, class A2, class A3, class A4, class A5, class A6,
class A7, class A8, class A9, class A10, class A11, class A12,
class A13, class A14, class A15>
void Format(UINT nId, const A1& v1, const A2& v2, const A3& v3,
const A4& v4, const A5& v5, const A6& v6, const A7& v7,
const A8& v8, const A9& v9, const A10& v10, const A11& v11,
const A12& v12, const A13& v13, const A14& v14, const A15& v15)
{
MYTYPE strFmt;
if ( strFmt.Load(nId) )
{
Fmt(strFmt, FmtArg<A1>(v1)(), FmtArg<A2>(v2)(),
FmtArg<A3>(v3)(), FmtArg<A4>(v4)(), FmtArg<A5>(v5)(),
FmtArg<A6>(v6)(), FmtArg<A7>(v7)(), FmtArg<A8>(v8)(),
FmtArg<A9>(v9)(), FmtArg<A10>(v10)(),FmtArg<A11>(v11)(),
FmtArg<A12>(v12)(),FmtArg<A13>(v13)(),FmtArg<A14>(v14)(),
FmtArg<A15>(v15)());
}
}
template<class A1, class A2, class A3, class A4, class A5, class A6,
class A7, class A8, class A9, class A10, class A11, class A12,
class A13, class A14, class A15, class A16>
void Format(UINT nId, const A1& v1, const A2& v2, const A3& v3,
const A4& v4, const A5& v5, const A6& v6, const A7& v7,
const A8& v8, const A9& v9, const A10& v10, const A11& v11,
const A12& v12, const A13& v13, const A14& v14, const A15& v15,
const A16& v16)
{
MYTYPE strFmt;
if ( strFmt.Load(nId) )
{
Fmt(strFmt, FmtArg<A1>(v1)(), FmtArg<A2>(v2)(),
FmtArg<A3>(v3)(), FmtArg<A4>(v4)(), FmtArg<A5>(v5)(),
FmtArg<A6>(v6)(), FmtArg<A7>(v7)(), FmtArg<A8>(v8)(),
FmtArg<A9>(v9)(), FmtArg<A10>(v10)(),FmtArg<A11>(v11)(),
FmtArg<A12>(v12)(),FmtArg<A13>(v13)(),FmtArg<A14>(v14)(),
FmtArg<A15>(v15)(), FmtArg<A16>(v16)());
}
}
template<class A1, class A2, class A3, class A4, class A5, class A6,
class A7, class A8, class A9, class A10, class A11, class A12,
class A13, class A14, class A15, class A16, class A17>
void Format(UINT nId, const A1& v1, const A2& v2, const A3& v3,
const A4& v4, const A5& v5, const A6& v6, const A7& v7,
const A8& v8, const A9& v9, const A10& v10, const A11& v11,
const A12& v12, const A13& v13, const A14& v14, const A15& v15,
const A16& v16, const A17& v17)
{
MYTYPE strFmt;
if ( strFmt.Load(nId) )
{
Fmt(strFmt, FmtArg<A1>(v1)(), FmtArg<A2>(v2)(),
FmtArg<A3>(v3)(), FmtArg<A4>(v4)(), FmtArg<A5>(v5)(),
FmtArg<A6>(v6)(), FmtArg<A7>(v7)(), FmtArg<A8>(v8)(),
FmtArg<A9>(v9)(), FmtArg<A10>(v10)(),FmtArg<A11>(v11)(),
FmtArg<A12>(v12)(),FmtArg<A13>(v13)(),FmtArg<A14>(v14)(),
FmtArg<A15>(v15)(),FmtArg<A16>(v16)(),FmtArg<A17>(v17)());
}
}
#endif // #ifndef SS_ANSI
// ...now the other overload of Format: the one that takes a string literal
void Format(const CT* szFmt)
{
*this = szFmt;
}
template<class A1>
void Format(const CT* szFmt, const A1& v)
{
Fmt(szFmt, FmtArg<A1>(v)());
}
template<class A1, class A2>
void Format(const CT* szFmt, const A1& v1, const A2& v2)
{
Fmt(szFmt, FmtArg<A1>(v1)(), FmtArg<A2>(v2)());
}
template<class A1, class A2, class A3>
void Format(const CT* szFmt, const A1& v1, const A2& v2, const A3& v3)
{
Fmt(szFmt, FmtArg<A1>(v1)(), FmtArg<A2>(v2)(),
FmtArg<A3>(v3)());
}
template<class A1, class A2, class A3, class A4>
void Format(const CT* szFmt, const A1& v1, const A2& v2, const A3& v3,
const A4& v4)
{
Fmt(szFmt, FmtArg<A1>(v1)(), FmtArg<A2>(v2)(),
FmtArg<A3>(v3)(), FmtArg<A4>(v4)());
}
template<class A1, class A2, class A3, class A4, class A5>
void Format(const CT* szFmt, const A1& v1, const A2& v2, const A3& v3,
const A4& v4, const A5& v5)
{
Fmt(szFmt, FmtArg<A1>(v1)(), FmtArg<A2>(v2)(),
FmtArg<A3>(v3)(), FmtArg<A4>(v4)(), FmtArg<A5>(v5)());
}
template<class A1, class A2, class A3, class A4, class A5, class A6>
void Format(const CT* szFmt, const A1& v1, const A2& v2, const A3& v3,
const A4& v4, const A5& v5, const A6& v6)
{
Fmt(szFmt, FmtArg<A1>(v1)(), FmtArg<A2>(v2)(),
FmtArg<A3>(v3)(), FmtArg<A4>(v4)(), FmtArg<A5>(v5)(),
FmtArg<A6>(v6)());
}
template<class A1, class A2, class A3, class A4, class A5, class A6,
class A7>
void Format(const CT* szFmt, const A1& v1, const A2& v2, const A3& v3,
const A4& v4, const A5& v5, const A6& v6, const A7& v7)
{
Fmt(szFmt, FmtArg<A1>(v1)(), FmtArg<A2>(v2)(),
FmtArg<A3>(v3)(), FmtArg<A4>(v4)(), FmtArg<A5>(v5)(),
FmtArg<A6>(v6)(), FmtArg<A7>(v7)());
}
template<class A1, class A2, class A3, class A4, class A5, class A6,
class A7, class A8>
void Format(const CT* szFmt, const A1& v1, const A2& v2, const A3& v3,
const A4& v4, const A5& v5, const A6& v6, const A7& v7,
const A8& v8)
{
Fmt(szFmt, FmtArg<A1>(v1)(), FmtArg<A2>(v2)(),
FmtArg<A3>(v3)(), FmtArg<A4>(v4)(), FmtArg<A5>(v5)(),
FmtArg<A6>(v6)(), FmtArg<A7>(v7)(), FmtArg<A8>(v8)());
}
template<class A1, class A2, class A3, class A4, class A5, class A6,
class A7, class A8, class A9>
void Format(const CT* szFmt, const A1& v1, const A2& v2, const A3& v3,
const A4& v4, const A5& v5, const A6& v6, const A7& v7,
const A8& v8, const A9& v9)
{
Fmt(szFmt, FmtArg<A1>(v1)(), FmtArg<A2>(v2)(),
FmtArg<A3>(v3)(), FmtArg<A4>(v4)(), FmtArg<A5>(v5)(),
FmtArg<A6>(v6)(), FmtArg<A7>(v7)(), FmtArg<A8>(v8)(),
FmtArg<A9>(v9)());
}
template<class A1, class A2, class A3, class A4, class A5, class A6,
class A7, class A8, class A9, class A10>
void Format(const CT* szFmt, const A1& v1, const A2& v2, const A3& v3,
const A4& v4, const A5& v5, const A6& v6, const A7& v7,
const A8& v8, const A9& v9, const A10& v10)
{
Fmt(szFmt, FmtArg<A1>(v1)(), FmtArg<A2>(v2)(),
FmtArg<A3>(v3)(), FmtArg<A4>(v4)(), FmtArg<A5>(v5)(),
FmtArg<A6>(v6)(), FmtArg<A7>(v7)(), FmtArg<A8>(v8)(),
FmtArg<A9>(v9)(), FmtArg<A10>(v10)());
}
template<class A1, class A2, class A3, class A4, class A5, class A6,
class A7, class A8, class A9, class A10, class A11>
void Format(const CT* szFmt, const A1& v1, const A2& v2, const A3& v3,
const A4& v4, const A5& v5, const A6& v6, const A7& v7,
const A8& v8, const A9& v9, const A10& v10, const A11& v11)
{
Fmt(szFmt, FmtArg<A1>(v1)(), FmtArg<A2>(v2)(),
FmtArg<A3>(v3)(), FmtArg<A4>(v4)(), FmtArg<A5>(v5)(),
FmtArg<A6>(v6)(), FmtArg<A7>(v7)(), FmtArg<A8>(v8)(),
FmtArg<A9>(v9)(),FmtArg<A10>(v10)(),FmtArg<A11>(v11)());
}
template<class A1, class A2, class A3, class A4, class A5, class A6,
class A7, class A8, class A9, class A10, class A11, class A12>
void Format(const CT* szFmt, const A1& v1, const A2& v2, const A3& v3,
const A4& v4, const A5& v5, const A6& v6, const A7& v7,
const A8& v8, const A9& v9, const A10& v10, const A11& v11,
const A12& v12)
{
Fmt(szFmt, FmtArg<A1>(v1)(), FmtArg<A2>(v2)(),
FmtArg<A3>(v3)(), FmtArg<A4>(v4)(), FmtArg<A5>(v5)(),
FmtArg<A6>(v6)(), FmtArg<A7>(v7)(), FmtArg<A8>(v8)(),
FmtArg<A9>(v9)(), FmtArg<A10>(v10)(),FmtArg<A11>(v11)(),
FmtArg<A12>(v12)());
}
template<class A1, class A2, class A3, class A4, class A5, class A6,
class A7, class A8, class A9, class A10, class A11, class A12,
class A13>
void Format(const CT* szFmt, const A1& v1, const A2& v2, const A3& v3,
const A4& v4, const A5& v5, const A6& v6, const A7& v7,
const A8& v8, const A9& v9, const A10& v10, const A11& v11,
const A12& v12, const A13& v13)
{
Fmt(szFmt, FmtArg<A1>(v1)(), FmtArg<A2>(v2)(),
FmtArg<A3>(v3)(), FmtArg<A4>(v4)(), FmtArg<A5>(v5)(),
FmtArg<A6>(v6)(), FmtArg<A7>(v7)(), FmtArg<A8>(v8)(),
FmtArg<A9>(v9)(), FmtArg<A10>(v10)(),FmtArg<A11>(v11)(),
FmtArg<A12>(v12)(), FmtArg<A13>(v13)());
}
template<class A1, class A2, class A3, class A4, class A5, class A6,
class A7, class A8, class A9, class A10, class A11, class A12,
class A13, class A14>
void Format(const CT* szFmt, const A1& v1, const A2& v2, const A3& v3,
const A4& v4, const A5& v5, const A6& v6, const A7& v7,
const A8& v8, const A9& v9, const A10& v10, const A11& v11,
const A12& v12, const A13& v13, const A14& v14)
{
Fmt(szFmt, FmtArg<A1>(v1)(), FmtArg<A2>(v2)(),
FmtArg<A3>(v3)(), FmtArg<A4>(v4)(), FmtArg<A5>(v5)(),
FmtArg<A6>(v6)(), FmtArg<A7>(v7)(), FmtArg<A8>(v8)(),
FmtArg<A9>(v9)(), FmtArg<A10>(v10)(),FmtArg<A11>(v11)(),
FmtArg<A12>(v12)(), FmtArg<A13>(v13)(),FmtArg<A14>(v14)());
}
template<class A1, class A2, class A3, class A4, class A5, class A6,
class A7, class A8, class A9, class A10, class A11, class A12,
class A13, class A14, class A15>
void Format(const CT* szFmt, const A1& v1, const A2& v2, const A3& v3,
const A4& v4, const A5& v5, const A6& v6, const A7& v7,
const A8& v8, const A9& v9, const A10& v10, const A11& v11,
const A12& v12, const A13& v13, const A14& v14, const A15& v15)
{
Fmt(szFmt, FmtArg<A1>(v1)(), FmtArg<A2>(v2)(),
FmtArg<A3>(v3)(), FmtArg<A4>(v4)(), FmtArg<A5>(v5)(),
FmtArg<A6>(v6)(), FmtArg<A7>(v7)(), FmtArg<A8>(v8)(),
FmtArg<A9>(v9)(), FmtArg<A10>(v10)(),FmtArg<A11>(v11)(),
FmtArg<A12>(v12)(),FmtArg<A13>(v13)(),FmtArg<A14>(v14)(),
FmtArg<A15>(v15)());
}
template<class A1, class A2, class A3, class A4, class A5, class A6,
class A7, class A8, class A9, class A10, class A11, class A12,
class A13, class A14, class A15, class A16>
void Format(const CT* szFmt, const A1& v1, const A2& v2, const A3& v3,
const A4& v4, const A5& v5, const A6& v6, const A7& v7,
const A8& v8, const A9& v9, const A10& v10, const A11& v11,
const A12& v12, const A13& v13, const A14& v14, const A15& v15,
const A16& v16)
{
Fmt(szFmt, FmtArg<A1>(v1)(), FmtArg<A2>(v2)(),
FmtArg<A3>(v3)(), FmtArg<A4>(v4)(), FmtArg<A5>(v5)(),
FmtArg<A6>(v6)(), FmtArg<A7>(v7)(), FmtArg<A8>(v8)(),
FmtArg<A9>(v9)(), FmtArg<A10>(v10)(),FmtArg<A11>(v11)(),
FmtArg<A12>(v12)(),FmtArg<A13>(v13)(),FmtArg<A14>(v14)(),
FmtArg<A15>(v15)(), FmtArg<A16>(v16)());
}
template<class A1, class A2, class A3, class A4, class A5, class A6,
class A7, class A8, class A9, class A10, class A11, class A12,
class A13, class A14, class A15, class A16, class A17>
void Format(const CT* szFmt, const A1& v1, const A2& v2, const A3& v3,
const A4& v4, const A5& v5, const A6& v6, const A7& v7,
const A8& v8, const A9& v9, const A10& v10, const A11& v11,
const A12& v12, const A13& v13, const A14& v14, const A15& v15,
const A16& v16, const A17& v17)
{
Fmt(szFmt, FmtArg<A1>(v1)(), FmtArg<A2>(v2)(),
FmtArg<A3>(v3)(), FmtArg<A4>(v4)(), FmtArg<A5>(v5)(),
FmtArg<A6>(v6)(), FmtArg<A7>(v7)(), FmtArg<A8>(v8)(),
FmtArg<A9>(v9)(), FmtArg<A10>(v10)(),FmtArg<A11>(v11)(),
FmtArg<A12>(v12)(),FmtArg<A13>(v13)(),FmtArg<A14>(v14)(),
FmtArg<A15>(v15)(),FmtArg<A16>(v16)(),FmtArg<A17>(v17)());
}
#else // #ifdef SS_SAFE_FORMAT
#ifndef SS_ANSI
void Format(UINT nId, ...)
{
va_list argList;
va_start(argList, nId);
MYTYPE strFmt;
if ( strFmt.Load(nId) )
FormatV(strFmt, argList);
va_end(argList);
}
#endif // #ifdef SS_ANSI
void Format(const CT* szFmt, ...)
{
va_list argList;
va_start(argList, szFmt);
FormatV(szFmt, argList);
va_end(argList);
}
#endif // #ifdef SS_SAFE_FORMAT
void AppendFormat(const CT* szFmt, ...)
{
va_list argList;
va_start(argList, szFmt);
AppendFormatV(szFmt, argList);
va_end(argList);
}
#define MAX_FMT_TRIES 5 // #of times we try
#define FMT_BLOCK_SIZE 2048 // # of bytes to increment per try
#define BUFSIZE_1ST 256
#define BUFSIZE_2ND 512
#define STD_BUF_SIZE 1024
// an efficient way to add formatted characters to the string. You may only
// add up to STD_BUF_SIZE characters at a time, though
void AppendFormatV(const CT* szFmt, va_list argList)
{
CT szBuf[STD_BUF_SIZE];
int nLen = ssnprintf(szBuf, STD_BUF_SIZE-1, szFmt, argList);
if ( 0 < nLen )
this->append(szBuf, nLen);
}
// -------------------------------------------------------------------------
// FUNCTION: FormatV
// void FormatV(PCSTR szFormat, va_list, argList);
//
// DESCRIPTION:
// This function formats the string with sprintf style format-specs.
// It makes a general guess at required buffer size and then tries
// successively larger buffers until it finds one big enough or a
// threshold (MAX_FMT_TRIES) is exceeded.
//
// PARAMETERS:
// szFormat - a PCSTR holding the format of the output
// argList - a Microsoft specific va_list for variable argument lists
//
// RETURN VALUE:
// -------------------------------------------------------------------------
void FormatV(const CT* szFormat, va_list argList)
{
#ifdef SS_ANSI
MYTYPE str;
int nLen = sslen(szFormat) + STD_BUF_SIZE;
// OG replace ssnprint by ssvsprint for mac osx
#if !defined(DRIVER_WINDOWS)
ssvsprintf(str.GetBuffer(nLen), nLen-1, szFormat, argList);
#else
ssnprintf(str.GetBuffer(nLen), nLen-1, szFormat, argList);
#endif
str.ReleaseBuffer();
*this = str;
#else
CT* pBuf = NULL;
int nChars = 1;
int nUsed = 0;
size_type nActual = 0;
int nTry = 0;
do
{
// Grow more than linearly (e.g. 512, 1536, 3072, etc)
nChars += ((nTry+1) * FMT_BLOCK_SIZE);
pBuf = reinterpret_cast<CT*>(_alloca(sizeof(CT)*nChars));
nUsed = ssnprintf(pBuf, nChars-1, szFormat, argList);
// Ensure proper NULL termination.
nActual = nUsed == -1 ? nChars-1 : SSMIN(nUsed, nChars-1);
pBuf[nActual]= '\0';
} while ( nUsed < 0 && nTry++ < MAX_FMT_TRIES );
// assign whatever we managed to format
this->assign(pBuf, nActual);
#endif
}
// -------------------------------------------------------------------------
// CString Facade Functions:
//
// The following methods are intended to allow you to use this class as a
// near drop-in replacement for CString.
// -------------------------------------------------------------------------
#ifdef SS_WIN32
BSTR AllocSysString() const
{
ostring os;
ssasn(os, *this);
return ::SysAllocString(os.c_str());
}
#endif
#ifndef SS_NO_LOCALE
int Collate(PCMYSTR szThat) const
{
return sscoll(this->c_str(), this->length(), szThat, sslen(szThat));
}
int CollateNoCase(PCMYSTR szThat) const
{
return ssicoll(this->c_str(), this->length(), szThat, sslen(szThat));
}
#endif
int Compare(PCMYSTR szThat) const
{
return this->compare(szThat);
}
int CompareNoCase(PCMYSTR szThat) const
{
return ssicmp(this->c_str(), szThat);
}
int Delete(int nIdx, int nCount=1)
{
if ( nIdx < 0 )
nIdx = 0;
if ( nIdx < this->GetLength() )
this->erase(static_cast<MYSIZE>(nIdx), static_cast<MYSIZE>(nCount));
return GetLength();
}
void Empty()
{
this->erase();
}
int Find(CT ch) const
{
MYSIZE nIdx = this->find_first_of(ch);
return static_cast<int>(MYBASE::npos == nIdx ? -1 : nIdx);
}
int Find(PCMYSTR szSub) const
{
MYSIZE nIdx = this->find(szSub);
return static_cast<int>(MYBASE::npos == nIdx ? -1 : nIdx);
}
int Find(CT ch, int nStart) const
{
// CString::Find docs say add 1 to nStart when it's not zero
// CString::Find code doesn't do that however. We'll stick
// with what the code does
MYSIZE nIdx = this->find_first_of(ch, static_cast<MYSIZE>(nStart));
return static_cast<int>(MYBASE::npos == nIdx ? -1 : nIdx);
}
int Find(PCMYSTR szSub, int nStart) const
{
// CString::Find docs say add 1 to nStart when it's not zero
// CString::Find code doesn't do that however. We'll stick
// with what the code does
MYSIZE nIdx = this->find(szSub, static_cast<MYSIZE>(nStart));
return static_cast<int>(MYBASE::npos == nIdx ? -1 : nIdx);
}
int FindOneOf(PCMYSTR szCharSet) const
{
MYSIZE nIdx = this->find_first_of(szCharSet);
return static_cast<int>(MYBASE::npos == nIdx ? -1 : nIdx);
}
#ifndef SS_ANSI
void FormatMessage(PCMYSTR szFormat, ...) throw(std::exception)
{
va_list argList;
va_start(argList, szFormat);
PMYSTR szTemp;
if ( ssfmtmsg(FORMAT_MESSAGE_FROM_STRING|FORMAT_MESSAGE_ALLOCATE_BUFFER,
szFormat, 0, 0,
reinterpret_cast<PMYSTR>(&szTemp), 0, &argList) == 0 ||
szTemp == 0 )
{
throw std::runtime_error("out of memory");
}
*this = szTemp;
LocalFree(szTemp);
va_end(argList);
}
void FormatMessage(UINT nFormatId, ...) throw(std::exception)
{
MYTYPE sFormat;
VERIFY(sFormat.LoadString(nFormatId));
va_list argList;
va_start(argList, nFormatId);
PMYSTR szTemp;
if ( ssfmtmsg(FORMAT_MESSAGE_FROM_STRING|FORMAT_MESSAGE_ALLOCATE_BUFFER,
sFormat, 0, 0,
reinterpret_cast<PMYSTR>(&szTemp), 0, &argList) == 0 ||
szTemp == 0)
{
throw std::runtime_error("out of memory");
}
*this = szTemp;
LocalFree(szTemp);
va_end(argList);
}
#endif
// GetAllocLength -- an MSVC7 function but it costs us nothing to add it.
int GetAllocLength()
{
return static_cast<int>(this->capacity());
}
// -------------------------------------------------------------------------
// GetXXXX -- Direct access to character buffer
// -------------------------------------------------------------------------
CT GetAt(int nIdx) const
{
return this->at(static_cast<MYSIZE>(nIdx));
}
CT* GetBuffer(int nMinLen=-1)
{
return GetBuf(nMinLen);
}
CT* GetBufferSetLength(int nLen)
{
return BufferSet(nLen);
}
// GetLength() -- MFC docs say this is the # of BYTES but
// in truth it is the number of CHARACTERs (chars or wchar_ts)
int GetLength() const
{
return static_cast<int>(this->length());
}
int Insert(int nIdx, CT ch)
{
if ( static_cast<MYSIZE>(nIdx) > this->size()-1 )
this->append(1, ch);
else
this->insert(static_cast<MYSIZE>(nIdx), 1, ch);
return GetLength();
}
int Insert(int nIdx, PCMYSTR sz)
{
if ( static_cast<MYSIZE>(nIdx) >= this->size() )
this->append(sz, static_cast<MYSIZE>(sslen(sz)));
else
this->insert(static_cast<MYSIZE>(nIdx), sz);
return GetLength();
}
bool IsEmpty() const
{
return this->empty();
}
MYTYPE Left(int nCount) const
{
// Range check the count.
nCount = SSMAX(0, SSMIN(nCount, static_cast<int>(this->size())));
return this->substr(0, static_cast<MYSIZE>(nCount));
}
#ifndef SS_ANSI
bool LoadString(UINT nId)
{
return this->Load(nId);
}
#endif
void MakeLower()
{
ToLower();
}
void MakeReverse()
{
std::reverse(this->begin(), this->end());
}
void MakeUpper()
{
ToUpper();
}
MYTYPE Mid(int nFirst) const
{
return Mid(nFirst, this->GetLength()-nFirst);
}
MYTYPE Mid(int nFirst, int nCount) const
{
// CString does range checking here. Since we're trying to emulate it,
// we must check too.
if ( nFirst < 0 )
nFirst = 0;
if ( nCount < 0 )
nCount = 0;
int nSize = static_cast<int>(this->size());
if ( nFirst + nCount > nSize )
nCount = nSize - nFirst;
if ( nFirst > nSize )
return MYTYPE();
ASSERT(nFirst >= 0);
ASSERT(nFirst + nCount <= nSize);
return this->substr(static_cast<MYSIZE>(nFirst),
static_cast<MYSIZE>(nCount));
}
void ReleaseBuffer(int nNewLen=-1)
{
RelBuf(nNewLen);
}
int Remove(CT ch)
{
MYSIZE nIdx = 0;
int nRemoved = 0;
while ( (nIdx=this->find_first_of(ch)) != MYBASE::npos )
{
this->erase(nIdx, 1);
nRemoved++;
}
return nRemoved;
}
int Replace(CT chOld, CT chNew)
{
int nReplaced = 0;
for ( MYITER iter=this->begin(); iter != this->end(); iter++ )
{
if ( *iter == chOld )
{
*iter = chNew;
nReplaced++;
}
}
return nReplaced;
}
int Replace(PCMYSTR szOld, PCMYSTR szNew)
{
int nReplaced = 0;
MYSIZE nIdx = 0;
MYSIZE nOldLen = sslen(szOld);
if ( 0 != nOldLen )
{
// If the replacement string is longer than the one it replaces, this
// string is going to have to grow in size, Figure out how much
// and grow it all the way now, rather than incrementally
MYSIZE nNewLen = sslen(szNew);
if ( nNewLen > nOldLen )
{
int nFound = 0;
while ( nIdx < this->length() &&
(nIdx=this->find(szOld, nIdx)) != MYBASE::npos )
{
nFound++;
nIdx += nOldLen;
}
this->reserve(this->size() + nFound * (nNewLen - nOldLen));
}
static const CT ch = CT(0);
PCMYSTR szRealNew = szNew == 0 ? &ch : szNew;
nIdx = 0;
while ( nIdx < this->length() &&
(nIdx=this->find(szOld, nIdx)) != MYBASE::npos )
{
this->replace(this->begin()+nIdx, this->begin()+nIdx+nOldLen,
szRealNew);
nReplaced++;
nIdx += nNewLen;
}
}
return nReplaced;
}
int ReverseFind(CT ch) const
{
MYSIZE nIdx = this->find_last_of(ch);
return static_cast<int>(MYBASE::npos == nIdx ? -1 : nIdx);
}
// ReverseFind overload that's not in CString but might be useful
// OG : had to add (PCMYSTR) cast to cope with XCode compilation issue
int ReverseFind(PCMYSTR szFind, MYSIZE pos=MYBASE::npos) const
{
MYSIZE nIdx = this->rfind(0 == szFind ? (PCMYSTR) MYTYPE() : szFind, pos);
return static_cast<int>(MYBASE::npos == nIdx ? -1 : nIdx);
}
MYTYPE Right(int nCount) const
{
// Range check the count.
nCount = SSMAX(0, SSMIN(nCount, static_cast<int>(this->size())));
return this->substr(this->size()-static_cast<MYSIZE>(nCount));
}
void SetAt(int nIndex, CT ch)
{
ASSERT(this->size() > static_cast<MYSIZE>(nIndex));
this->at(static_cast<MYSIZE>(nIndex)) = ch;
}
#ifndef SS_ANSI
BSTR SetSysString(BSTR* pbstr) const
{
ostring os;
ssasn(os, *this);
if ( !::SysReAllocStringLen(pbstr, os.c_str(), os.length()) )
throw std::runtime_error("out of memory");
ASSERT(*pbstr != 0);
return *pbstr;
}
#endif
MYTYPE SpanExcluding(PCMYSTR szCharSet) const
{
MYSIZE pos = this->find_first_of(szCharSet);
return pos == MYBASE::npos ? *this : Left(pos);
}
MYTYPE SpanIncluding(PCMYSTR szCharSet) const
{
MYSIZE pos = this->find_first_not_of(szCharSet);
return pos == MYBASE::npos ? *this : Left(pos);
}
#if defined SS_WIN32 && !defined(UNICODE) && !defined(SS_ANSI)
// CString's OemToAnsi and AnsiToOem functions are available only in
// Unicode builds. However since we're a template we also need a
// runtime check of CT and a reinterpret_cast to account for the fact
// that CStdStringW gets instantiated even in non-Unicode builds.
void AnsiToOem()
{
if ( sizeof(CT) == sizeof(char) && !empty() )
{
::CharToOem(reinterpret_cast<PCSTR>(this->c_str()),
reinterpret_cast<PSTR>(GetBuf()));
}
else
{
ASSERT(false);
}
}
void OemToAnsi()
{
if ( sizeof(CT) == sizeof(char) && !empty() )
{
::OemToChar(reinterpret_cast<PCSTR>(this->c_str()),
reinterpret_cast<PSTR>(GetBuf()));
}
else
{
ASSERT(false);
}
}
#endif
// -------------------------------------------------------------------------
// Trim and its variants
// -------------------------------------------------------------------------
MYTYPE& Trim()
{
return TrimLeft().TrimRight();
}
MYTYPE& TrimLeft()
{
this->erase(this->begin(),
std::find_if(this->begin(), this->end(), NotSpace<CT>()));
return *this;
}
MYTYPE& TrimLeft(CT tTrim)
{
this->erase(0, this->find_first_not_of(tTrim));
return *this;
}
MYTYPE& TrimLeft(PCMYSTR szTrimChars)
{
this->erase(0, this->find_first_not_of(szTrimChars));
return *this;
}
MYTYPE& TrimRight()
{
// NOTE: When comparing reverse_iterators here (MYRITER), I avoid using
// operator!=. This is because namespace rel_ops also has a template
// operator!= which conflicts with the global operator!= already defined
// for reverse_iterator in the header <utility>.
// Thanks to John James for alerting me to this.
MYRITER it = std::find_if(this->rbegin(), this->rend(), NotSpace<CT>());
if ( !(this->rend() == it) )
this->erase(this->rend() - it);
this->erase(!(it == this->rend()) ? this->find_last_of(*it) + 1 : 0);
return *this;
}
MYTYPE& TrimRight(CT tTrim)
{
MYSIZE nIdx = this->find_last_not_of(tTrim);
this->erase(MYBASE::npos == nIdx ? 0 : ++nIdx);
return *this;
}
MYTYPE& TrimRight(PCMYSTR szTrimChars)
{
MYSIZE nIdx = this->find_last_not_of(szTrimChars);
this->erase(MYBASE::npos == nIdx ? 0 : ++nIdx);
return *this;
}
void FreeExtra()
{
MYTYPE mt;
this->swap(mt);
if ( !mt.empty() )
this->assign(mt.c_str(), mt.size());
}
// I have intentionally not implemented the following CString
// functions. You cannot make them work without taking advantage
// of implementation specific behavior. However if you absolutely
// MUST have them, uncomment out these lines for "sort-of-like"
// their behavior. You're on your own.
CT* LockBuffer() { return GetBuf(); }// won't really lock
void UnlockBuffer() { }; // why have UnlockBuffer w/o LockBuffer?
// Array-indexing operators. Required because we defined an implicit cast
// to operator const CT* (Thanks to Julian Selman for pointing this out)
CT& operator[](int nIdx)
{
return static_cast<MYBASE*>(this)->operator[](static_cast<MYSIZE>(nIdx));
}
const CT& operator[](int nIdx) const
{
return static_cast<const MYBASE*>(this)->operator[](static_cast<MYSIZE>(nIdx));
}
CT& operator[](unsigned int nIdx)
{
return static_cast<MYBASE*>(this)->operator[](static_cast<MYSIZE>(nIdx));
}
const CT& operator[](unsigned int nIdx) const
{
return static_cast<const MYBASE*>(this)->operator[](static_cast<MYSIZE>(nIdx));
}
#ifndef SS_NO_IMPLICIT_CAST
operator const CT*() const
{
return this->c_str();
}
#endif
// IStream related functions. Useful in IPersistStream implementations
#ifdef SS_INC_COMDEF
// struct SSSHDR - useful for non Std C++ persistence schemes.
typedef struct SSSHDR
{
BYTE byCtrl;
ULONG nChars;
} SSSHDR; // as in "Standard String Stream Header"
#define SSSO_UNICODE 0x01 // the string is a wide string
#define SSSO_COMPRESS 0x02 // the string is compressed
// -------------------------------------------------------------------------
// FUNCTION: StreamSize
// REMARKS:
// Returns how many bytes it will take to StreamSave() this CStdString
// object to an IStream.
// -------------------------------------------------------------------------
ULONG StreamSize() const
{
// Control header plus string
ASSERT(this->size()*sizeof(CT) < 0xffffffffUL - sizeof(SSSHDR));
return (this->size() * sizeof(CT)) + sizeof(SSSHDR);
}
// -------------------------------------------------------------------------
// FUNCTION: StreamSave
// REMARKS:
// Saves this CStdString object to a COM IStream.
// -------------------------------------------------------------------------
HRESULT StreamSave(IStream* pStream) const
{
ASSERT(this->size()*sizeof(CT) < 0xffffffffUL - sizeof(SSSHDR));
HRESULT hr = E_FAIL;
ASSERT(pStream != 0);
SSSHDR hdr;
hdr.byCtrl = sizeof(CT) == 2 ? SSSO_UNICODE : 0;
hdr.nChars = this->size();
if ( FAILED(hr=pStream->Write(&hdr, sizeof(SSSHDR), 0)) )
{
TRACE(_T("StreamSave: Cannot write control header, ERR=0x%X\n"),hr);
}
else if ( empty() )
{
; // nothing to write
}
else if ( FAILED(hr=pStream->Write(this->c_str(),
this->size()*sizeof(CT), 0)) )
{
TRACE(_T("StreamSave: Cannot write string to stream 0x%X\n"), hr);
}
return hr;
}
// -------------------------------------------------------------------------
// FUNCTION: StreamLoad
// REMARKS:
// This method loads the object from an IStream.
// -------------------------------------------------------------------------
HRESULT StreamLoad(IStream* pStream)
{
ASSERT(pStream != 0);
SSSHDR hdr;
HRESULT hr = E_FAIL;
if ( FAILED(hr=pStream->Read(&hdr, sizeof(SSSHDR), 0)) )
{
TRACE(_T("StreamLoad: Cant read control header, ERR=0x%X\n"), hr);
}
else if ( hdr.nChars > 0 )
{
ULONG nRead = 0;
PMYSTR pMyBuf = BufferSet(hdr.nChars);
// If our character size matches the character size of the string
// we're trying to read, then we can read it directly into our
// buffer. Otherwise, we have to read into an intermediate buffer
// and convert.
if ( (hdr.byCtrl & SSSO_UNICODE) != 0 )
{
ULONG nBytes = hdr.nChars * sizeof(wchar_t);
if ( sizeof(CT) == sizeof(wchar_t) )
{
if ( FAILED(hr=pStream->Read(pMyBuf, nBytes, &nRead)) )
TRACE(_T("StreamLoad: Cannot read string: 0x%X\n"), hr);
}
else
{
PWSTR pBufW = reinterpret_cast<PWSTR>(_alloca((nBytes)+1));
if ( FAILED(hr=pStream->Read(pBufW, nBytes, &nRead)) )
TRACE(_T("StreamLoad: Cannot read string: 0x%X\n"), hr);
else
sscpy(pMyBuf, pBufW, hdr.nChars);
}
}
else
{
ULONG nBytes = hdr.nChars * sizeof(char);
if ( sizeof(CT) == sizeof(char) )
{
if ( FAILED(hr=pStream->Read(pMyBuf, nBytes, &nRead)) )
TRACE(_T("StreamLoad: Cannot read string: 0x%X\n"), hr);
}
else
{
PSTR pBufA = reinterpret_cast<PSTR>(_alloca(nBytes));
if ( FAILED(hr=pStream->Read(pBufA, hdr.nChars, &nRead)) )
TRACE(_T("StreamLoad: Cannot read string: 0x%X\n"), hr);
else
sscpy(pMyBuf, pBufA, hdr.nChars);
}
}
}
else
{
this->erase();
}
return hr;
}
#endif // #ifdef SS_INC_COMDEF
#ifndef SS_ANSI
// SetResourceHandle/GetResourceHandle. In MFC builds, these map directly
// to AfxSetResourceHandle and AfxGetResourceHandle. In non-MFC builds they
// point to a single static HINST so that those who call the member
// functions that take resource IDs can provide an alternate HINST of a DLL
// to search. This is not exactly the list of HMODULES that MFC provides
// but it's better than nothing.
#ifdef _MFC_VER
static void SetResourceHandle(HMODULE hNew)
{
AfxSetResourceHandle(hNew);
}
static HMODULE GetResourceHandle()
{
return AfxGetResourceHandle();
}
#elif defined(_WTL_VER) // AR: WTL has no SetResourceHandle equivalent
static HMODULE GetResourceHandle()
{
#if (_ATL_VER >= 0x0700)
return ATL::_AtlBaseModule.GetResourceInstance();
#else // !(_ATL_VER >= 0x0700)
return _Module.GetResourceInstance();
#endif // !(_ATL_VER >= 0x0700)
}
#else
static void SetResourceHandle(HMODULE hNew)
{
SSResourceHandle() = hNew;
}
static HMODULE GetResourceHandle()
{
return SSResourceHandle();
}
#endif
#endif
};
// -----------------------------------------------------------------------------
// MSVC USERS: HOW TO EXPORT CSTDSTRING FROM A DLL
//
// If you are using MS Visual C++ and you want to export CStdStringA and
// CStdStringW from a DLL, then all you need to
//
// 1. make sure that all components link to the same DLL version
// of the CRT (not the static one).
// 2. Uncomment the 3 lines of code below
// 3. #define 2 macros per the instructions in MS KnowledgeBase
// article Q168958. The macros are:
//
// MACRO DEFINTION WHEN EXPORTING DEFINITION WHEN IMPORTING
// ----- ------------------------ -------------------------
// SSDLLEXP (nothing, just #define it) extern
// SSDLLSPEC __declspec(dllexport) __declspec(dllimport)
//
// Note that these macros must be available to ALL clients who want to
// link to the DLL and use the class. If they
//
// A word of advice: Don't bother.
//
// Really, it is not necessary to export CStdString functions from a DLL. I
// never do. In my projects, I do generally link to the DLL version of the
// Standard C++ Library, but I do NOT attempt to export CStdString functions.
// I simply include the header where it is needed and allow for the code
// redundancy.
//
// That redundancy is a lot less than you think. This class does most of its
// work via the Standard C++ Library, particularly the base_class basic_string<>
// member functions. Most of the functions here are small enough to be inlined
// anyway. Besides, you'll find that in actual practice you use less than 1/2
// of the code here, even in big projects and different modules will use as
// little as 10% of it. That means a lot less functions actually get linked
// your binaries. If you export this code from a DLL, it ALL gets linked in.
//
// I've compared the size of the binaries from exporting vs NOT exporting. Take
// my word for it -- exporting this code is not worth the hassle.
//
// -----------------------------------------------------------------------------
//#pragma warning(disable:4231) // non-standard extension ("extern template")
// SSDLLEXP template class SSDLLSPEC CStdStr<char>;
// SSDLLEXP template class SSDLLSPEC CStdStr<wchar_t>;
// =============================================================================
// END OF CStdStr INLINE FUNCTION DEFINITIONS
// =============================================================================
// Now typedef our class names based upon this humongous template
typedef CStdStr<char> CStdStringA; // a better std::string
typedef CStdStr<wchar_t> CStdStringW; // a better std::wstring
typedef CStdStr<OLECHAR> CStdStringO; // almost always CStdStringW
// -----------------------------------------------------------------------------
// CStdStr addition functions defined as inline
// -----------------------------------------------------------------------------
inline CStdStringA operator+(const CStdStringA& s1, const CStdStringA& s2)
{
CStdStringA sRet(SSREF(s1));
sRet.append(s2);
return sRet;
}
inline CStdStringA operator+(const CStdStringA& s1, CStdStringA::value_type t)
{
CStdStringA sRet(SSREF(s1));
sRet.append(1, t);
return sRet;
}
inline CStdStringA operator+(const CStdStringA& s1, PCSTR pA)
{
CStdStringA sRet(SSREF(s1));
sRet.append(pA);
return sRet;
}
inline CStdStringA operator+(PCSTR pA, const CStdStringA& sA)
{
CStdStringA sRet;
CStdStringA::size_type nObjSize = sA.size();
CStdStringA::size_type nLitSize =
static_cast<CStdStringA::size_type>(sslen(pA));
sRet.reserve(nLitSize + nObjSize);
sRet.assign(pA);
sRet.append(sA);
return sRet;
}
inline CStdStringA operator+(const CStdStringA& s1, const CStdStringW& s2)
{
return s1 + CStdStringA(s2);
}
inline CStdStringW operator+(const CStdStringW& s1, const CStdStringW& s2)
{
CStdStringW sRet(SSREF(s1));
sRet.append(s2);
return sRet;
}
inline CStdStringA operator+(const CStdStringA& s1, PCWSTR pW)
{
return s1 + CStdStringA(pW);
}
#ifdef UNICODE
inline CStdStringW operator+(PCWSTR pW, const CStdStringA& sA)
{
return CStdStringW(pW) + CStdStringW(SSREF(sA));
}
inline CStdStringW operator+(PCSTR pA, const CStdStringW& sW)
{
return CStdStringW(pA) + sW;
}
#else
inline CStdStringA operator+(PCWSTR pW, const CStdStringA& sA)
{
return CStdStringA(pW) + sA;
}
inline CStdStringA operator+(PCSTR pA, const CStdStringW& sW)
{
return pA + CStdStringA(sW);
}
#endif
// ...Now the wide string versions.
inline CStdStringW operator+(const CStdStringW& s1, CStdStringW::value_type t)
{
CStdStringW sRet(SSREF(s1));
sRet.append(1, t);
return sRet;
}
inline CStdStringW operator+(const CStdStringW& s1, PCWSTR pW)
{
CStdStringW sRet(SSREF(s1));
sRet.append(pW);
return sRet;
}
inline CStdStringW operator+(PCWSTR pW, const CStdStringW& sW)
{
CStdStringW sRet;
CStdStringW::size_type nObjSize = sW.size();
CStdStringA::size_type nLitSize =
static_cast<CStdStringW::size_type>(sslen(pW));
sRet.reserve(nLitSize + nObjSize);
sRet.assign(pW);
sRet.append(sW);
return sRet;
}
inline CStdStringW operator+(const CStdStringW& s1, const CStdStringA& s2)
{
return s1 + CStdStringW(s2);
}
inline CStdStringW operator+(const CStdStringW& s1, PCSTR pA)
{
return s1 + CStdStringW(pA);
}
// New-style format function is a template
#ifdef SS_SAFE_FORMAT
template<>
struct FmtArg<CStdStringA>
{
explicit FmtArg(const CStdStringA& arg) : a_(arg) {}
PCSTR operator()() const { return a_.c_str(); }
const CStdStringA& a_;
private:
FmtArg<CStdStringA>& operator=(const FmtArg<CStdStringA>&) { return *this; }
};
template<>
struct FmtArg<CStdStringW>
{
explicit FmtArg(const CStdStringW& arg) : a_(arg) {}
PCWSTR operator()() const { return a_.c_str(); }
const CStdStringW& a_;
private:
FmtArg<CStdStringW>& operator=(const FmtArg<CStdStringW>&) { return *this; }
};
template<>
struct FmtArg<std::string>
{
explicit FmtArg(const std::string& arg) : a_(arg) {}
PCSTR operator()() const { return a_.c_str(); }
const std::string& a_;
private:
FmtArg<std::string>& operator=(const FmtArg<std::string>&) { return *this; }
};
template<>
struct FmtArg<std::wstring>
{
explicit FmtArg(const std::wstring& arg) : a_(arg) {}
PCWSTR operator()() const { return a_.c_str(); }
const std::wstring& a_;
private:
FmtArg<std::wstring>& operator=(const FmtArg<std::wstring>&) {return *this;}
};
#endif // #ifdef SS_SAFEFORMAT
#ifndef SS_ANSI
// SSResourceHandle: our MFC-like resource handle
inline HMODULE& SSResourceHandle()
{
static HMODULE hModuleSS = GetModuleHandle(0);
return hModuleSS;
}
#endif
// In MFC builds, define some global serialization operators
// Special operators that allow us to serialize CStdStrings to CArchives.
// Note that we use an intermediate CString object in order to ensure that
// we use the exact same format.
#ifdef _MFC_VER
/*
//OG
inline CArchive& AFXAPI operator<<(CArchive& ar, const CStdStringA& strA)
{
CString strTemp = strA;
return ar << strTemp;
}
inline CArchive& AFXAPI operator<<(CArchive& ar, const CStdStringW& strW)
{
CString strTemp = strW;
return ar << strTemp;
}
*/
inline CArchive& AFXAPI operator>>(CArchive& ar, CStdStringA& strA)
{
CString strTemp;
ar >> strTemp;
strA = strTemp;
return ar;
}
inline CArchive& AFXAPI operator>>(CArchive& ar, CStdStringW& strW)
{
CString strTemp;
ar >> strTemp;
strW = strTemp;
return ar;
}
#endif // #ifdef _MFC_VER -- (i.e. is this MFC?)
// -----------------------------------------------------------------------------
// GLOBAL FUNCTION: WUFormat
// CStdStringA WUFormat(UINT nId, ...);
// CStdStringA WUFormat(PCSTR szFormat, ...);
//
// REMARKS:
// This function allows the caller for format and return a CStdStringA
// object with a single line of code.
// -----------------------------------------------------------------------------
inline CStdStringA WUFormatA(PCSTR szFormat, ...)
{
va_list argList;
va_start(argList, szFormat);
CStdStringA strOut;
strOut.FormatV(szFormat, argList);
va_end(argList);
return strOut;
}
inline CStdStringW WUFormatW(PCWSTR szwFormat, ...)
{
va_list argList;
va_start(argList, szwFormat);
CStdStringW strOut;
strOut.FormatV(szwFormat, argList);
va_end(argList);
return strOut;
}
#ifdef SS_ANSI
#else
inline CStdStringA WUFormatA(UINT nId, ...)
{
va_list argList;
va_start(argList, nId);
CStdStringA strFmt;
CStdStringA strOut;
if ( strFmt.Load(nId) )
strOut.FormatV(strFmt, argList);
va_end(argList);
return strOut;
}
inline CStdStringW WUFormatW(UINT nId, ...)
{
va_list argList;
va_start(argList, nId);
CStdStringW strFmt;
CStdStringW strOut;
if ( strFmt.Load(nId) )
strOut.FormatV(strFmt, argList);
va_end(argList);
return strOut;
}
#endif // #ifdef SS_ANSI
#if defined(SS_WIN32) && !defined (SS_ANSI)
// -------------------------------------------------------------------------
// FUNCTION: WUSysMessage
// CStdStringA WUSysMessageA(DWORD dwError, DWORD dwLangId=SS_DEFLANGID);
// CStdStringW WUSysMessageW(DWORD dwError, DWORD dwLangId=SS_DEFLANGID);
//
// DESCRIPTION:
// This function simplifies the process of obtaining a string equivalent
// of a system error code returned from GetLastError(). You simply
// supply the value returned by GetLastError() to this function and the
// corresponding system string is returned in the form of a CStdStringA.
//
// PARAMETERS:
// dwError - a DWORD value representing the error code to be translated
// dwLangId - the language id to use. defaults to english.
//
// RETURN VALUE:
// a CStdStringA equivalent of the error code. Currently, this function
// only returns either English of the system default language strings.
// -------------------------------------------------------------------------
#define SS_DEFLANGID MAKELANGID(LANG_NEUTRAL,SUBLANG_DEFAULT)
inline CStdStringA WUSysMessageA(DWORD dwError, DWORD dwLangId=SS_DEFLANGID)
{
CHAR szBuf[512];
if ( 0 != ::FormatMessageA(FORMAT_MESSAGE_FROM_SYSTEM, NULL, dwError,
dwLangId, szBuf, 511, NULL) )
return WUFormatA("%s (0x%X)", szBuf, dwError);
else
return WUFormatA("Unknown error (0x%X)", dwError);
}
inline CStdStringW WUSysMessageW(DWORD dwError, DWORD dwLangId=SS_DEFLANGID)
{
WCHAR szBuf[512];
if ( 0 != ::FormatMessageW(FORMAT_MESSAGE_FROM_SYSTEM, NULL, dwError,
dwLangId, szBuf, 511, NULL) )
return WUFormatW(L"%s (0x%X)", szBuf, dwError);
else
return WUFormatW(L"Unknown error (0x%X)", dwError);
}
#endif
// Define TCHAR based friendly names for some of these functions
#ifdef UNICODE
//#define CStdString CStdStringW
typedef CStdStringW CStdString;
#define WUSysMessage WUSysMessageW
#define WUFormat WUFormatW
#else
//#define CStdString CStdStringA
typedef CStdStringA CStdString;
#define WUSysMessage WUSysMessageA
#define WUFormat WUFormatA
#endif
// ...and some shorter names for the space-efficient
#define WUSysMsg WUSysMessage
#define WUSysMsgA WUSysMessageA
#define WUSysMsgW WUSysMessageW
#define WUFmtA WUFormatA
#define WUFmtW WUFormatW
#define WUFmt WUFormat
#define WULastErrMsg() WUSysMessage(::GetLastError())
#define WULastErrMsgA() WUSysMessageA(::GetLastError())
#define WULastErrMsgW() WUSysMessageW(::GetLastError())
// -----------------------------------------------------------------------------
// FUNCTIONAL COMPARATORS:
// REMARKS:
// These structs are derived from the std::binary_function template. They
// give us functional classes (which may be used in Standard C++ Library
// collections and algorithms) that perform case-insensitive comparisons of
// CStdString objects. This is useful for maps in which the key may be the
// proper string but in the wrong case.
// -----------------------------------------------------------------------------
#define StdStringLessNoCaseW SSLNCW // avoid VC compiler warning 4786
#define StdStringEqualsNoCaseW SSENCW
#define StdStringLessNoCaseA SSLNCA
#define StdStringEqualsNoCaseA SSENCA
#ifdef UNICODE
#define StdStringLessNoCase SSLNCW
#define StdStringEqualsNoCase SSENCW
#else
#define StdStringLessNoCase SSLNCA
#define StdStringEqualsNoCase SSENCA
#endif
struct StdStringLessNoCaseW
: std::binary_function<CStdStringW, CStdStringW, bool>
{
inline
bool operator()(const CStdStringW& sLeft, const CStdStringW& sRight) const
{ return ssicmp(sLeft.c_str(), sRight.c_str()) < 0; }
};
struct StdStringEqualsNoCaseW
: std::binary_function<CStdStringW, CStdStringW, bool>
{
inline
bool operator()(const CStdStringW& sLeft, const CStdStringW& sRight) const
{ return ssicmp(sLeft.c_str(), sRight.c_str()) == 0; }
};
struct StdStringLessNoCaseA
: std::binary_function<CStdStringA, CStdStringA, bool>
{
inline
bool operator()(const CStdStringA& sLeft, const CStdStringA& sRight) const
{ return ssicmp(sLeft.c_str(), sRight.c_str()) < 0; }
};
struct StdStringEqualsNoCaseA
: std::binary_function<CStdStringA, CStdStringA, bool>
{
inline
bool operator()(const CStdStringA& sLeft, const CStdStringA& sRight) const
{ return ssicmp(sLeft.c_str(), sRight.c_str()) == 0; }
};
// If we had to define our own version of TRACE above, get rid of it now
#ifdef TRACE_DEFINED_HERE
#undef TRACE
#undef TRACE_DEFINED_HERE
#endif
// These std::swap specializations come courtesy of Mike Crusader.
//namespace std
//{
// inline void swap(CStdStringA& s1, CStdStringA& s2) throw()
// {
// s1.swap(s2);
// }
// template<>
// inline void swap(CStdStringW& s1, CStdStringW& s2) throw()
// {
// s1.swap(s2);
// }
//}
// Turn back on any Borland warnings we turned off.
#ifdef __BORLANDC__
#pragma option pop // Turn back on inline function warnings
// #pragma warn +inl // Turn back on inline function warnings
#endif
#define MyString CStdStringA // Force Non Unicode
#endif // #ifndef STDSTRING_H