* Add tests for Applesoft compiler in preparation for refactoring
While refactoring the compiler, I found several small bugs:
* Lower-case letters in strings and REM statements were converted
to upper-case.
* Lines are stored in the order received, not sorted by line number.
* Does not prefer `ATN` to `AT`.
* Does not prefer `TO` to `AT`.
* `DATA` statements don't preserve spaces.
* `DATA` statements don't preserve lowercase.
These will be fixed in the upcoming refactoring.
* Refactor the Applesoft Compiler
Before, the compiler had a few bugs that were not trivial to solve
because the implementation was in one heavily-nested function.
In this refactoring of the compiler, things like tokenization have
been split into separate methods which makes them a bit easier to
understand.
This refactoring also passes all of the tests.
* Set `PRGEND` when compiling to memory
Before, `PRGEND` was not adjusted which made round-tripping from
the Applesoft compiler to the decompiler not work. This change
now updates `PRGEND` with the end-of-program + 2 bytes which seems
to be the most frequent value that I have observed.
* Fix two compiler bugs
In debugging the decompiler, I noticed two bugs in the compiler:
* The first character after a line number was skipped.
* `?` was not accepted as a shortcut for `PRINT`.
This change fixes these two problems and adds tests.
* Ignore spaces more aggressively
It turns out that Applesoft happily accepts 'T H E N' for `THEN`
but the parser did not. This change fixes that and adds tests for
some odd cases.
Interestingly, this means that there are some valid statements
that Applesoft can never parse correctly because it is greedy
and ignores (most) spaces. For example, `NOT RACE` will always
parse as `NOTRACE` even though `NOT RACE` is a valid expression.
* Move tokens into a separate file
Because the token lists are just maps in opposite directions, put
them in the same file. In the future, maybe we can build one
automatically.
* Fix `apple2.ts`
I had neglected to actually update `apple2.ts` to use the new
compiler and decompiler. They now do.
Also, the decompiler can be created from `Memory`. It assumes,
though, that the zero page pointers to the start and end of the
program are correct.
* Address comments
* No more `as const` for tokens.
* Extracted zero page constants to their own file.
Co-authored-by: Will Scullin <scullin@scullin.com>
This adds both the recommended TypeScript checks, plus the recommended
TypeScript checks that require type checking. This latter addition
means that eslint essentially has to compile all of the TypeScript in
the project, causing it to be slower. This isn't much of a problem in
VS Code because there's a lot of caching being done, but it's clearly
slower when run on the commandline.
All of the errors are either fixed or suppressed. Some errors are
suppressed because fixing them would be too laborious for the little
value gained.
The eslint config is also slightly refactored to separate the strictly
TypeScript checks from the JavaScript checks.
Disk side information was being dropped and thus not displayable in the UI. This plumbs the value through various formats and adds some light testing.
Also fixes an issue where URL encoded hashes were not properly interpreted.
* Refactor disk handling to allow disk processing to happen in a worker
* Type cleanup
* Convert format handlers to TypeScript
* Convert CFFA to TypeScript
* Switch modules to `esnext` to allow `webpack` to see import statements
* Pass rom names into Apple2 class
* Move ROMs into `system` and `character` directories to allow webpack bundle appropriate ROMs.
* Wait for ROMs to load before completing initialization.
This is mostly a mechanical change; there are still lots of things
about `ui/apple2` that could be improved. The change also converts a
few dependencies of `ui/apple2`, like `applesoft/compiler`.
Besides the straight conversions, some other packages have changes to
make all of the typing work out.
Lastly, `@types/micromodal` has been added as a development
dependency.
* Typescriptify all of the UI peripherals
This converts the audio, gamepad, keyboard, printer, and tape
peripherals into Typescript. This is a pretty mechanical change.
It does fix issue #72, though.
* Add and that were missing
* Convert `cards/disk2.js` to Typescript
This is mostly a straightforward conversion of `cards/disk2.js` to
Typescript, with the following exceptions:
* `setState()` did not restore the drive light state correctly
because the callback was called with the old `on` value.
* `setPhase()` did not work for WOZ images.
* `getBinary()` did not work for `nib` files.
* `getBase64()` did not work for `nib` files and maybe didn't work
right at all.
Even with these fixes, local storage still doesn't work correctly.
I have also added several TODOs where methods don't support WOZ disks.
* Convert most uses of `memory` to `Uint8Array`
There are many places in the existing code where we use `Uint8Array`
directly. This change merely makes the `memory` type equivalent to
`Uint8Array`.
This change also changes most ROM data to be read-only in Typescript
to ensure that it is not modified by mistake. This can't be done just
by applying `as const` to the declaration because `Uint8Array`s are
can not be expressed as literals. Instead, we create a new type,
`ReadonlyUint8Array` that drops the mutation methods and makes indexed
access read-only.
See
https://www.growingwiththeweb.com/2020/10/typescript-readonly-typed-arrays.html
for details.
* Tighten types and document `disk2.ts`
While trying to understand the Disk ][ emulation, I tighted the types
and documented the parts that I could, including references to other
sources, like _Understanding the Apple //e_ by Jim Sather.
The one functional change is the addition of the P6 ROM of DOS 3.2 and
earlier. This is automatically selected if the card is initialized for
13 sector disks.
* Convert js/ram to a class
* Convert js/mmu to Typescript
* Convert js/apple2io to Typescript
* Convert js/canvas to Typescript
* Use new types in js/mmu
* Rename js/symbols.js to js/symbols.ts
* Remove the difference between readPages and writePages
As @whscullin said in PR #38, there's no need to have both readable
and writable pages since all implementations are currently both. This
change combines them into `Page`. Likewise, `PageHandler` now extends
`Page`.
`Apple2IO` now implements `PageHandler`. This caught a bug where `end`
had been renamed `endend` by mistake.
There are a few other formatting changes as well.
* Convert js/apple2 to Typescript
* Convert js/prefs to Typescript
* Convert all of the ROMs in js/roms to Typescript
Now all of the ROMs are classes that extend the ROM class. There is
some rudamentary checking to make sure that the length of the ROM
matches the declared start and end pages. (This caught what looks to
be an error in roms/apple2e, but it's hard for me to tell.)
The typing also caught an error where the character ROM was being
used for the main ROM for the apple2j version.
* Convert js/roms/cards/* to Typescript
* Convert js/formats/format_utils to Typescript
This change also seems to fix a bug with `.po` image files that
weren't being read correctly.
Apparently, I broke everything when I removed the underscores from the
field names and added them to the method names. The fix is just to
rename the methods `getCycles` and `getSync` and call it a day.
This change adds a download link to the printer dialog. The contents
of the download will be the raw bytes written to the parallel
interface. Note that often these bytes will have the high-bit set
causing the contents to look like gibberish.
However, this is extremely handy because it allows one to turn the
printer output into a PDF:
1. In Appleworks (for example) configure an Apple ImageWriter in slot
1 and print a file.
2. Download the printer output.
3. Download the header file from https://github.com/AppleWin/AppleWin/files/1168047/ImageWriterEmulator-NoLF.ps.txt
4. In Linux, run:
```shell
$ cat ImageWriterEmulator-NoLF.ps.txt raw_printer_output.bin | ps2pdf - printer_output.pdf
```
Note that the parallel port emulation in apple2js does not yet support
Print Shop, so I haven't been able to test that out.
Micromodal maintains a reference to the current open dialog in
this.modal. If one dialog is open while opening another, Micromodal
can get confused and maintain a reference to the wrong one.
One of the problems is that the close action is not instantaneous, so
even closing one dialog and opening another immediately after can
cause the problem.
This change adds a small delay before opening the alert dialog to work
around the problem.