apple2js/js/cards/smartport.ts
Ian Flanigan 04ae0327c2
Add the recommended eslint plugins for TypeScript (#121)
This adds both the recommended TypeScript checks, plus the recommended
TypeScript checks that require type checking.  This latter addition
means that eslint essentially has to compile all of the TypeScript in
the project, causing it to be slower. This isn't much of a problem in
VS Code because there's a lot of caching being done, but it's clearly
slower when run on the commandline.

All of the errors are either fixed or suppressed.  Some errors are
suppressed because fixing them would be too laborious for the little
value gained.

The eslint config is also slightly refactored to separate the strictly
TypeScript checks from the JavaScript checks.
2022-05-31 08:38:40 -07:00

544 lines
16 KiB
TypeScript

import { debug, toHex } from '../util';
import { rom as smartPortRom } from '../roms/cards/smartport';
import { Card, Restorable, byte, word, rom } from '../types';
import { MassStorage, BlockDisk, ENCODING_BLOCK } from '../formats/types';
import CPU6502, { CpuState, flags } from '../cpu6502';
import { read2MGHeader } from '../formats/2mg';
import createBlockDisk from '../formats/block';
import { ProDOSVolume } from '../formats/prodos';
import { dump } from '../formats/prodos/utils';
const ID = 'SMARTPORT.J.S';
export interface SmartPortState {
disks: BlockDisk[];
}
export interface SmartPortOptions {
block: boolean;
}
class Address {
lo: byte;
hi: byte;
constructor(private cpu: CPU6502, a: byte | word, b?: byte) {
if (b === undefined) {
this.lo = a & 0xff;
this.hi = a >> 8;
} else {
this.lo = a;
this.hi = b;
}
}
loByte() {
return this.lo;
}
hiByte() {
return this.hi;
}
inc(val: byte) {
return new Address(this.cpu, ((this.hi << 8 | this.lo) + val) & 0xffff);
}
readByte() {
return this.cpu.read(this.hi, this.lo);
}
readWord() {
const readLo = this.readByte();
const readHi = this.inc(1).readByte();
return readHi << 8 | readLo;
}
readAddress() {
const readLo = this.readByte();
const readHi = this.inc(1).readByte();
return new Address(this.cpu, readLo, readHi);
}
writeByte(val: byte) {
this.cpu.write(this.hi, this.lo, val);
}
writeWord(val: word) {
this.writeByte(val & 0xff);
this.inc(1).writeByte(val >> 8);
}
writeAddress(val: Address) {
this.writeByte(val.loByte());
this.inc(1).writeByte(val.hiByte());
}
toString() {
return '$' + toHex(this.hi) + toHex(this.lo);
}
}
// ProDOS zero page locations
const COMMAND = 0x42;
const UNIT = 0x43;
const ADDRESS_LO = 0x44;
// const ADDRESS_HI = 0x45;
const BLOCK_LO = 0x46;
// const BLOCK_HI = 0x47;
// const IO_ERROR = 0x27;
const NO_DEVICE_CONNECTED = 0x28;
const WRITE_PROTECTED = 0x2B;
const DEVICE_OFFLINE = 0x2F;
// const VOLUME_DIRECTORY_NOT_FOUND = 0x45;
// const NOT_A_PRODOS_DISK = 0x52;
// const VOLUME_CONTROL_BLOCK_FULL = 0x55;
// const BAD_BUFFER_ADDRESS = 0x56;
// const DUPLICATE_VOLUME_ONLINE = 0x57;
// Type: Device
// $00: Memory Expansion Card (RAM disk)
// $01: 3.5" disk
// $02: ProFile-type hard disk
// $03: Generic SCSI
// $04: ROM disk
// $05: SCSI CD-ROM
// $06: SCSI tape or other SCSI sequential device
// $07: SCSI hard disk
const DEVICE_TYPE_SCSI_HD = 0x07;
// $08: Reserved
// $09: SCSI printer
// $0A: 5-1/4" disk
// $0B: Reserved
// $0C: Reserved
// $0D: Printer
// $0E: Clock
// $0F: Modem
export default class SmartPort implements Card, MassStorage, Restorable<SmartPortState> {
private rom: rom;
private disks: BlockDisk[] = [];
constructor(private cpu: CPU6502, options: SmartPortOptions) {
if (options?.block) {
const dumbPortRom = new Uint8Array(smartPortRom);
dumbPortRom[0x07] = 0x3C;
this.rom = dumbPortRom;
debug('DumbPort card');
} else {
debug('SmartPort card');
this.rom = smartPortRom;
}
}
private debug(..._args: unknown[]) {
// debug.apply(this, arguments);
}
/*
* dumpBlock
*/
dumpBlock(drive: number, block: number) {
let result = '';
let b;
let jdx;
for (let idx = 0; idx < 32; idx++) {
result += toHex(idx << 4, 4) + ': ';
for (jdx = 0; jdx < 16; jdx++) {
b = this.disks[drive].blocks[block][idx * 16 + jdx];
if (jdx === 8) {
result += ' ';
}
result += toHex(b) + ' ';
}
result += ' ';
for (jdx = 0; jdx < 16; jdx++) {
b = this.disks[drive].blocks[block][idx * 16 + jdx] & 0x7f;
if (jdx === 8) {
result += ' ';
}
if (b >= 0x20 && b < 0x7f) {
result += String.fromCharCode(b);
} else {
result += '.';
}
}
result += '\n';
}
return result;
}
/*
* getDeviceInfo
*/
getDeviceInfo(state: CpuState, drive: number) {
if (this.disks[drive]) {
const blocks = this.disks[drive].blocks.length;
state.x = blocks & 0xff;
state.y = blocks >> 8;
state.a = 0;
state.s &= ~flags.C;
} else {
state.a = NO_DEVICE_CONNECTED;
state.s |= flags.C;
}
}
/*
* readBlock
*/
readBlock(state: CpuState, drive: number, block: number, buffer: Address) {
this.debug(`read drive=${drive}`);
this.debug(`read buffer=${buffer.toString()}`);
this.debug(`read block=$${toHex(block)}`);
if (!this.disks[drive]?.blocks.length) {
debug('Drive', drive, 'is empty');
state.a = DEVICE_OFFLINE;
state.s |= flags.C;
return;
}
// debug('read', '\n' + dumpBlock(drive, block));
for (let idx = 0; idx < 512; idx++) {
buffer.writeByte(this.disks[drive].blocks[block][idx]);
buffer = buffer.inc(1);
}
state.a = 0;
state.s &= ~flags.C;
}
/*
* writeBlock
*/
writeBlock(state: CpuState, drive: number, block: number, buffer: Address) {
this.debug(`write drive=${drive}`);
this.debug(`write buffer=${buffer.toString()}`);
this.debug(`write block=$${toHex(block)}`);
if (!this.disks[drive]?.blocks.length) {
debug('Drive', drive, 'is empty');
state.a = DEVICE_OFFLINE;
state.s |= flags.C;
return;
}
if (this.disks[drive].readOnly) {
debug('Drive', drive, 'is write protected');
state.a = WRITE_PROTECTED;
state.s |= flags.C;
return;
}
// debug('write', '\n' + dumpBlock(drive, block));
for (let idx = 0; idx < 512; idx++) {
this.disks[drive].blocks[block][idx] = buffer.readByte();
buffer = buffer.inc(1);
}
state.a = 0;
state.s &= flags.C;
}
/*
* formatDevice
*/
formatDevice(state: CpuState, drive: number) {
if (!this.disks[drive]?.blocks.length) {
debug('Drive', drive, 'is empty');
state.a = DEVICE_OFFLINE;
state.s |= flags.C;
return;
}
if (this.disks[drive].readOnly) {
debug('Drive', drive, 'is write protected');
state.a = WRITE_PROTECTED;
state.s |= flags.C;
return;
}
for (let idx = 0; idx < this.disks[drive].blocks.length; idx++) {
this.disks[drive].blocks[idx] = new Uint8Array();
for (let jdx = 0; jdx < 512; jdx++) {
this.disks[drive].blocks[idx][jdx] = 0;
}
}
state.a = 0;
state.s &= flags.C;
}
private access(off: byte, val: byte) {
let result;
const readMode = val === undefined;
switch (off & 0x8f) {
case 0x80:
if (readMode) {
result = 0;
for (let idx = 0; idx < this.disks.length; idx++) {
result <<= 1;
if (this.disks[idx]) {
result |= 0x01;
}
}
}
break;
}
return result;
}
/*
* Interface
*/
ioSwitch(off: byte, val: byte) {
return this.access(off, val);
}
read(_page: byte, off: byte) {
const state = this.cpu.getState();
let cmd;
let unit;
let buffer;
let block;
const blockOff = this.rom[0xff];
const smartOff = blockOff + 3;
if (off === blockOff && this.cpu.getSync()) { // Regular block device entry POINT
this.debug('block device entry');
cmd = this.cpu.read(0x00, COMMAND);
unit = this.cpu.read(0x00, UNIT);
const bufferAddr = new Address(this.cpu, ADDRESS_LO);
const blockAddr = new Address(this.cpu, BLOCK_LO);
const drive = (unit & 0x80) ? 2 : 1;
const driveSlot = (unit & 0x70) >> 4;
buffer = bufferAddr.readAddress();
block = blockAddr.readWord();
this.debug(`cmd=${cmd}`);
this.debug('unit=$' + toHex(unit));
this.debug(`slot=${driveSlot} drive=${drive}`);
this.debug(`buffer=${buffer.toString()} block=$${toHex(block)}`);
switch (cmd) {
case 0: // INFO
this.getDeviceInfo(state, drive);
break;
case 1: // READ
this.readBlock(state, drive, block, buffer);
break;
case 2: // WRITE
this.writeBlock(state, drive, block, buffer);
break;
case 3: // FORMAT
this.formatDevice(state, unit);
break;
}
} else if (off === smartOff && this.cpu.getSync()) {
this.debug('smartport entry');
const stackAddr = new Address(this.cpu, state.sp + 1, 0x01);
let blocks;
const retVal = stackAddr.readAddress();
this.debug(`return=${retVal.toString()}`);
const cmdBlockAddr = retVal.inc(1);
cmd = cmdBlockAddr.readByte();
const cmdListAddr = cmdBlockAddr.inc(1).readAddress();
this.debug(`cmd=${cmd}`);
this.debug(`cmdListAddr=${cmdListAddr.toString()}`);
stackAddr.writeAddress(retVal.inc(3));
const parameterCount = cmdListAddr.readByte();
unit = cmdListAddr.inc(1).readByte();
buffer = cmdListAddr.inc(2).readAddress();
let status;
this.debug(`parameterCount=${parameterCount}`);
switch (cmd) {
case 0x00: // INFO
status = cmdListAddr.inc(4).readByte();
this.debug(`info unit=${unit}`);
this.debug(`info buffer=${buffer.toString()}`);
this.debug(`info status=${status}`);
switch (unit) {
case 0:
switch (status) {
case 0:
buffer.writeByte(2); // two devices
buffer.inc(1).writeByte(1 << 6); // no interrupts
buffer.inc(2).writeByte(0x2); // Other vendor
buffer.inc(3).writeByte(0x0); // Other vendor
buffer.inc(4).writeByte(0); // reserved
buffer.inc(5).writeByte(0); // reserved
buffer.inc(6).writeByte(0); // reserved
buffer.inc(7).writeByte(0); // reserved
state.x = 8;
state.y = 0;
state.a = 0;
state.s &= ~flags.C;
break;
}
break;
default: // Unit 1
switch (status) {
case 0:
blocks = this.disks[unit]?.blocks.length ?? 0;
buffer.writeByte(0xf0); // W/R Block device in drive
buffer.inc(1).writeByte(blocks & 0xff); // 1600 blocks
buffer.inc(2).writeByte((blocks & 0xff00) >> 8);
buffer.inc(3).writeByte((blocks & 0xff0000) >> 16);
state.x = 4;
state.y = 0;
state.a = 0;
state.s &= ~flags.C;
break;
case 3:
blocks = this.disks[unit]?.blocks.length ?? 0;
buffer.writeByte(0xf0); // W/R Block device in drive
buffer.inc(1).writeByte(blocks & 0xff); // Blocks low byte
buffer.inc(2).writeByte((blocks & 0xff00) >> 8); // Blocks middle byte
buffer.inc(3).writeByte((blocks & 0xff0000) >> 16); // Blocks high byte
buffer.inc(4).writeByte(ID.length); // Vendor ID length
for (let idx = 0; idx < ID.length; idx++) { // Vendor ID
buffer.inc(5 + idx).writeByte(ID.charCodeAt(idx));
}
buffer.inc(21).writeByte(DEVICE_TYPE_SCSI_HD); // Device Type
buffer.inc(22).writeByte(0x0); // Device Subtype
buffer.inc(23).writeWord(0x0101); // Version
state.x = 24;
state.y = 0;
state.a = 0;
state.s &= ~flags.C;
break;
}
break;
}
state.a = 0;
state.s &= ~flags.C;
break;
case 0x01: // READ BLOCK
block = cmdListAddr.inc(4).readWord();
this.readBlock(state, unit, block, buffer);
break;
case 0x02: // WRITE BLOCK
block = cmdListAddr.inc(4).readWord();
this.writeBlock(state, unit, block, buffer);
break;
case 0x03: // FORMAT
this.formatDevice(state, unit);
break;
case 0x04: // CONTROL
break;
case 0x05: // INIT
break;
case 0x06: // OPEN
break;
case 0x07: // CLOSE
break;
case 0x08: // READ
break;
case 0x09: // WRITE
break;
}
}
this.cpu.setState(state);
return this.rom[off];
}
write() {
// not writable
}
getState() {
return {
disks: this.disks.map(
(disk) => {
const result: BlockDisk = {
blocks: disk.blocks.map(
(block) => new Uint8Array(block)
),
encoding: ENCODING_BLOCK,
readOnly: disk.readOnly,
name: disk.name,
};
return result;
}
)
};
}
setState(state: SmartPortState) {
this.disks = state.disks.map(
(disk) => {
const result: BlockDisk = {
blocks: disk.blocks.map(
(block) => new Uint8Array(block)
),
encoding: ENCODING_BLOCK,
readOnly: disk.readOnly,
name: disk.name,
};
return result;
}
);
}
setBinary(drive: number, name: string, fmt: string, rawData: ArrayBuffer) {
const volume = 254;
const readOnly = false;
if (fmt === '2mg') {
const { bytes, offset } = read2MGHeader(rawData);
rawData = rawData.slice(offset, offset + bytes);
}
const options = {
rawData,
name,
readOnly,
volume,
};
this.disks[drive] = createBlockDisk(options);
const prodos = new ProDOSVolume(this.disks[drive]);
dump(prodos);
return true;
}
}