mirror of
https://github.com/dschmenk/apple2pi.git
synced 2024-11-24 12:31:30 +00:00
Merge branch 'master' of https://github.com/dschmenk/apple2pi
This commit is contained in:
commit
cf2bb2e883
@ -3,14 +3,14 @@ apple2pi
|
|||||||
|
|
||||||
What is the Apple II Pi?
|
What is the Apple II Pi?
|
||||||
------------------------
|
------------------------
|
||||||
Basically, the Apple II Pi is the integration of an Apple IIe, IIc, or IIgs with a Raspberry Pi (http://www.raspberrypi.org) to create a hybrid computer combining the input devices and storage mediums of the Apple with the CPU, GPU (graphical processing unit), USB, and network capabilities of the Broadcom BCM2835 SoC (think smartphone processor). The concept is to create an updated version of the Apple II using some imagination, low-level drivers, off-the-shelf hardware, and a closely coupled communications channel; thus bringing semi-modern hardware and 32 bit *nix software to the Apple II platform. The Apple II is running as a dedicated I/O processor for the Raspberry Pi under ProDOS. The Raspberry Pi is running a version of Debian Linux: Raspbian. Much like the PC Transporter card brought MS-DOS and the Z-80 card brought CP/M, the Apple II Pi brings Linux to the Apple II using the Apple’s input devices and the Raspberry Pi’s video output. As such, knowledge and familiarity with Linux is required to get the most out of its environment. Under Linux, the Apple II Pi can read and write the Apple’s storage devices (floppies/harddrives/CFFA) and also run the GSport Apple IIgs emulator (http://gsport.sourceforge.net). Together, GSport and Apple II Pi provide an immersive environment providing access to most of the Apple II hardware you own plus an accelerated ~20MHz 65816 with up to 8 MB RAM, and all the disk images you can fit on the SD card.
|
Basically, the Apple II Pi is the integration of an Apple II with a Raspberry Pi (http://www.raspberrypi.org) to create a hybrid computer combining the input devices and storage mediums of the Apple with the CPU, GPU (graphical processing unit), USB, and network capabilities of the Broadcom BCM2835 SoC (think smartphone processor). The concept is to create an updated version of the Apple II using some imagination, low-level drivers, off-the-shelf hardware, and a closely coupled communications channel; thus bringing semi-modern hardware and 32 bit *nix software to the Apple II platform. The Apple II is running as a dedicated I/O processor for the Raspberry Pi under ProDOS. The Raspberry Pi is running a version of Debian Linux: Raspbian. Much like the PC Transporter card brought MS-DOS and the Z-80 card brought CP/M, the Apple II Pi brings Linux to the Apple II using the Apple’s input devices and the Raspberry Pi’s video output. As such, knowledge and familiarity with Linux is required to get the most out of its environment. Under Linux, the Apple II Pi can read and write the Apple’s storage devices (floppies/harddrives/CFFA) and also run the GSport Apple IIgs emulator (http://gsport.sourceforge.net). Together, GSport and Apple II Pi provide an immersive environment providing access to most of the Apple II hardware you own plus an accelerated ~20MHz 65816 with up to 8 MB RAM, and all the disk images you can fit on the SD card.
|
||||||
|
|
||||||
Apple II client/server for Raspberry Pi
|
Apple II client/server for Raspberry Pi
|
||||||
---------------------------------------
|
---------------------------------------
|
||||||
|
|
||||||
Apple II Pi works by connecting an Apple II to a Raspberry Pi using a RS232 serial connection. In order to get the Raspberry Pi to talk RS232 from it's 3.3V GPIO serial port, you will need to build or buy a converter. They are very cheap on eBay, so I would recommend going that route. Alternatively, you can use a USB serial port converter, but you will need to know its tty device name. To ensure you've hooked the converter up correctly, try loggin into the Raspberry Pi from another modern-ish computer. Raspbian, the default Debian based Linux for the Raspberry Pi, opens up a login (getty) session on the serial port at 115.2K baud. You will probably need a null modem or cross-over cable to login from another computer. Once it all checks out, time to connect your Apple II. All the 3.3V converters and USB serial ports I see have a DB-9 connector and many of the Apple II era connectors are DB-25 so you may need a DB-9 to DB-25 converter.
|
Apple II Pi works by connecting an Apple II to a Raspberry Pi using a RS232 serial connection. In order to get the Raspberry Pi to talk RS232 from it's 3.3V GPIO serial port, you will need to build or buy a converter. They are very cheap on eBay, so I would recommend going that route. Alternatively, you can use a USB serial port converter, but you will need to know its tty device name. To ensure you've hooked the converter up correctly, try loggin into the Raspberry Pi from another modern-ish computer. Raspbian, the default Debian based Linux for the Raspberry Pi, opens up a login (getty) session on the serial port at 115.2K baud. You will probably need a null modem or cross-over cable to login from another computer. Once it all checks out, time to connect your Apple II. All the 3.3V converters and USB serial ports I see have a DB-9 connector and many of the Apple II era connectors are DB-25 so you may need a DB-9 to DB-25 converter.
|
||||||
|
|
||||||
Installing and configuring the Apple II: You will need an Apple //c or Apple //e w/ SuperSerial Card. An Apple II Mouse is recommended for that full-on retro feel, but not required. Download and install the A2PI.PO disk image onto a 5 1/4 floppy. ADTPro would be the recommended tool for that operation although once you have the latest apple2pi version running, you can use the included dskwrite and dskread utilities for writing and reading ProDOS floppies.
|
Installing and configuring the Apple II: You will need an Apple //c or Apple ][, //e, IIgs w/ SuperSerial Card. An Apple ][ requires the SHIFT key mod. An Apple II Mouse is recommended for that full-on retro feel, but not required. Download and install the A2PI.PO disk image onto a 5 1/4 floppy. ADTPro would be the recommended tool for that operation although once you have the latest apple2pi version running, you can use the included dskwrite and dskread utilities for writing and reading ProDOS floppies.
|
||||||
|
|
||||||
Installing and configuring the Raspberry Pi: Download the apple2pi project to your Raspberry Pi. Enter the apple2pi/src directory. Compile the daemon and tools with 'make' and copy the results to /usr/local/bin with 'sudo make install'. To build the FUSE driver needed to mount ProDOS devices under Linux, you will need the libfuse-dev package installed. Get this from apt-get, aptitude, or whichever package manager you like. Build with 'make fusea2pi' and install with 'sudo make fuse-install'.
|
Installing and configuring the Raspberry Pi: Download the apple2pi project to your Raspberry Pi. Enter the apple2pi/src directory. Compile the daemon and tools with 'make' and copy the results to /usr/local/bin with 'sudo make install'. To build the FUSE driver needed to mount ProDOS devices under Linux, you will need the libfuse-dev package installed. Get this from apt-get, aptitude, or whichever package manager you like. Build with 'make fusea2pi' and install with 'sudo make fuse-install'.
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user