/* Public methods: CPU6502(CLK& clk, BUS& bus); - construct using clk and bus cycle() - issue one instruction and add necessary cycles to clk reset() - reset CPU state irq() - put CPU in IRQ nmi() - put CPU in NMI CLK template parameter must provide methods: void add_cpu_cycles(int N); - add N CPU cycles to the clock BUS template parameter must provide methods: uint8_t read(uint16_t addr); void write(uint16_t addr, uint8_t data); */ /* Candidates for refactor effective address carry flag from BCD and !BCD addition */ #ifndef CPU6502_H #define CPU6502_H #include #include #define EMULATE_65C02 1 template struct CPU6502 { CLK &clk; BUS &bus; const static int32_t cycles[256]; static constexpr uint8_t N = 0x80; static constexpr uint8_t V = 0x40; static constexpr uint8_t B2 = 0x20; static constexpr uint8_t B = 0x10; static constexpr uint8_t D = 0x08; static constexpr uint8_t I = 0x04; static constexpr uint8_t Z = 0x02; static constexpr uint8_t C = 0x01; uint8_t a, x, y, s, p; uint16_t pc = 0; enum Exception { NONE, RESET, NMI, BRK, INT, } exception; void stack_push(uint8_t d) { bus.write(0x100 + s--, d); } uint8_t stack_pull() { return bus.read(0x100 + ++s); } uint8_t read_pc_inc() { return bus.read(pc++); } void flag_change(uint8_t flag, bool v) { if(v) { p |= flag; } else { p &= ~flag; } } void flag_set(uint8_t flag) { p |= flag; } void flag_clear(uint8_t flag) { p &= ~flag; } uint8_t carry() { return (p & C) ? 1 : 0; } bool isset(uint8_t flag) { return (p & flag) != 0; } void set_flags(uint8_t flags, uint8_t v) { if(flags & Z) { flag_change(Z, v == 0x00); } if(flags & N) { flag_change(N, v & 0x80); } } static bool sbc_overflow_d(uint8_t a, uint8_t b, uint8_t borrow) { int8_t a_ = a; int8_t b_ = b; int16_t c = a_ - (b_ + borrow); return (c < 0) || (c > 99); } static bool adc_overflow_d(uint8_t a, uint8_t b, uint8_t carry) { int8_t a_ = a; int8_t b_ = b; int16_t c = a_ + b_ + carry; return (c < 0) || (c > 99); } static bool sbc_overflow(uint8_t a, uint8_t b, uint8_t borrow) { int8_t a_ = a; int8_t b_ = b; int16_t c = a_ - (b_ + borrow); return (c < -128) || (c > 127); } static bool adc_overflow(uint8_t a, uint8_t b, uint8_t carry) { int8_t a_ = a; int8_t b_ = b; int16_t c = a_ + b_ + carry; return (c < -128) || (c > 127); } CPU6502(CLK& clk_, BUS& bus_) : clk(clk_), bus(bus_), a(0), x(0), y(0), s(0xFF), p(I), exception(RESET) { } void reset() { s = 0xFF; uint8_t low = bus.read(0xFFFC); uint8_t high = bus.read(0xFFFD); pc = low + high * 256; exception = NONE; } void irq() { stack_push((pc - 1) >> 8); stack_push((pc - 1) & 0xFF); stack_push(p | B2); uint8_t low = bus.read(0xFFFE); uint8_t high = bus.read(0xFFFF); pc = low + high * 256; exception = NONE; } void nmi() { stack_push((pc - 1) >> 8); stack_push((pc - 1) & 0xFF); stack_push(p | B2); uint8_t low = bus.read(0xFFFA); uint8_t high = bus.read(0xFFFB); pc = low + high * 256; exception = NONE; } void cycle() { if(exception == RESET) { reset(); } if(exception == NMI) { nmi(); } if(exception == INT) { irq(); } // BRK is a special case caused directly by an instruction uint8_t inst = read_pc_inc(); uint8_t m; switch(inst) { case 0x00: { // BRK stack_push((pc + 1) >> 8); stack_push((pc + 1) & 0xFF); stack_push(p | B2 | B); // | B says the Synertek 6502 reference p |= I; #if EMULATE_65C02 p &= ~D; #endif /* EMULATE_65C02 */ uint8_t low = bus.read(0xFFFE); uint8_t high = bus.read(0xFFFF); pc = low + high * 256; exception = NONE; break; } case 0xEA: { // NOP break; } case 0x8A: { // TXA set_flags(N | Z, a = x); break; } case 0xAA: { // TAX set_flags(N | Z, x = a); break; } case 0xBA: { // TSX set_flags(N | Z, x = s); break; } case 0x9A: { // TXS s = x; break; } case 0xA8: { // TAY set_flags(N | Z, y = a); break; } case 0x98: { // TYA set_flags(N | Z, a = y); break; } case 0x18: { // CLC flag_clear(C); break; } case 0x38: { // SEC flag_set(C); break; } case 0xF8: { // SED flag_set(D); break; } case 0xD8: { // CLD flag_clear(D); break; } case 0x58: { // CLI flag_clear(I); break; } case 0x78: { // SEI flag_set(I); break; } case 0xB8: { // CLV flag_clear(V); break; } case 0xC6: { // DEC zpg uint8_t zpg = read_pc_inc(); set_flags(N | Z, m = bus.read(zpg) - 1); bus.write(zpg, m); break; } case 0xD6: { // DEC zpg, X uint8_t zpg = (read_pc_inc() + x) % 0xFF; set_flags(N | Z, m = bus.read(zpg) - 1); bus.write(zpg, m); break; } case 0xDE: { // DEC abs, X uint8_t low = read_pc_inc(); uint8_t high = read_pc_inc(); uint16_t addr = low + high * 256 + x; set_flags(N | Z, m = bus.read(addr) - 1); bus.write(addr, m); break; } case 0xCE: { // DEC abs uint8_t low = read_pc_inc(); uint8_t high = read_pc_inc(); uint16_t addr = low + high * 256; set_flags(N | Z, m = bus.read(addr) - 1); bus.write(addr, m); break; } case 0xCA: { // DEX set_flags(N | Z, x = x - 1); break; } case 0xFE: { // INC abs, X uint8_t low = read_pc_inc(); uint8_t high = read_pc_inc(); uint16_t addr = low + high * 256 + x; if((addr - x) / 256 != addr / 256) clk.add_cpu_cycles(1); set_flags(N | Z, m = bus.read(addr) + 1); bus.write(addr, m); break; } case 0xEE: { // INC abs uint8_t low = read_pc_inc(); uint8_t high = read_pc_inc(); uint16_t addr = low + high * 256; set_flags(N | Z, m = bus.read(addr) + 1); bus.write(addr, m); break; } case 0xE6: { // INC zpg uint8_t zpg = read_pc_inc(); set_flags(N | Z, m = bus.read(zpg) + 1); bus.write(zpg, m); break; } case 0xF6: { // INC zpg, X uint8_t zpg = (read_pc_inc() + x) & 0xFF; set_flags(N | Z, m = bus.read(zpg) + 1); bus.write(zpg, m); break; } case 0xE8: { // INX set_flags(N | Z, x = x + 1); break; } case 0xC8: { // INY set_flags(N | Z, y = y + 1); break; } case 0x10: { // BPL int32_t rel = (read_pc_inc() + 128) % 256 - 128; if(!isset(N)) { clk.add_cpu_cycles(1); if((pc + rel) / 256 != pc / 256) clk.add_cpu_cycles(1); pc += rel; } break; } case 0x50: { // BVC int32_t rel = (read_pc_inc() + 128) % 256 - 128; if(!isset(V)) { clk.add_cpu_cycles(1); if((pc + rel) / 256 != pc / 256) clk.add_cpu_cycles(1); pc += rel; } break; } case 0x70: { // BVS int32_t rel = (read_pc_inc() + 128) % 256 - 128; if(isset(V)) { clk.add_cpu_cycles(1); if((pc + rel) / 256 != pc / 256) clk.add_cpu_cycles(1); pc += rel; } break; } case 0x30: { // BMI int32_t rel = (read_pc_inc() + 128) % 256 - 128; if(isset(N)) { clk.add_cpu_cycles(1); if((pc + rel) / 256 != pc / 256) clk.add_cpu_cycles(1); pc += rel; } break; } case 0x90: { // BCC int32_t rel = (read_pc_inc() + 128) % 256 - 128; if(!isset(C)) { clk.add_cpu_cycles(1); if((pc + rel) / 256 != pc / 256) clk.add_cpu_cycles(1); pc += rel; } break; } case 0xB0: { // BCS int32_t rel = (read_pc_inc() + 128) % 256 - 128; if(isset(C)) { clk.add_cpu_cycles(1); if((pc + rel) / 256 != pc / 256) clk.add_cpu_cycles(1); pc += rel; } break; } case 0xD0: { // BNE int32_t rel = (read_pc_inc() + 128) % 256 - 128; if(!isset(Z)) { clk.add_cpu_cycles(1); if((pc + rel) / 256 != pc / 256) clk.add_cpu_cycles(1); pc += rel; } break; } case 0xF0: { // BEQ int32_t rel = (read_pc_inc() + 128) % 256 - 128; if(isset(Z)) { clk.add_cpu_cycles(1); if((pc + rel) / 256 != pc / 256) clk.add_cpu_cycles(1); pc += rel; } break; } case 0xA1: { // LDA (ind, X) uint8_t zpg = (read_pc_inc() + x) & 0xFF; uint8_t low = bus.read(zpg); uint8_t high = bus.read((zpg + 1) & 0xFF); uint16_t addr = low + high * 256; set_flags(N | Z, a = bus.read(addr)); break; } case 0xB5: { // LDA zpg, X uint8_t zpg = read_pc_inc(); uint16_t addr = zpg + x; set_flags(N | Z, a = bus.read(addr & 0xFF)); break; } case 0xB1: { // LDA ind, Y uint8_t zpg = read_pc_inc(); uint8_t low = bus.read(zpg); uint8_t high = bus.read((zpg + 1) & 0xFF); uint16_t addr = low + high * 256 + y; if((addr - y) / 256 != addr / 256) clk.add_cpu_cycles(1); set_flags(N | Z, a = bus.read(addr)); break; } case 0xA5: { // LDA zpg uint8_t zpg = read_pc_inc(); set_flags(N | Z, a = bus.read(zpg)); break; } case 0xDD: { // CMP abs, X uint8_t low = read_pc_inc(); uint8_t high = read_pc_inc(); uint16_t addr = low + high * 256; m = bus.read(addr + x); if((addr + x) / 256 != addr / 256) clk.add_cpu_cycles(1); flag_change(C, m <= a); set_flags(N | Z, m = a - m); break; } case 0xC1: { // CMP (ind, X) uint8_t zpg = (read_pc_inc() + x) & 0xFF; uint8_t low = bus.read(zpg); uint8_t high = bus.read((zpg + 1) & 0xFF); uint16_t addr = low + high * 256; m = bus.read(addr); flag_change(C, m <= a); set_flags(N | Z, m = a - m); break; } case 0xD9: { // CMP abs, Y uint8_t low = read_pc_inc(); uint8_t high = read_pc_inc(); uint16_t addr = low + high * 256; m = bus.read(addr + y); if((addr + y) / 256 != addr / 256) clk.add_cpu_cycles(1); flag_change(C, m <= a); set_flags(N | Z, m = a - m); break; } case 0xB9: { // LDA abs, Y uint8_t low = read_pc_inc(); uint8_t high = read_pc_inc(); uint16_t addr = low + high * 256; set_flags(N | Z, a = bus.read(addr + y)); if((addr + y) / 256 != addr / 256) clk.add_cpu_cycles(1); break; } case 0xBC: { // LDY abs, X uint8_t low = read_pc_inc(); uint8_t high = read_pc_inc(); uint16_t addr = low + high * 256; set_flags(N | Z, y = bus.read(addr + x)); if((addr + x) / 256 != addr / 256) clk.add_cpu_cycles(1); break; } case 0xBD: { // LDA abs, X uint8_t low = read_pc_inc(); uint8_t high = read_pc_inc(); uint16_t addr = low + high * 256; set_flags(N | Z, a = bus.read(addr + x)); if((addr + x) / 256 != addr / 256) clk.add_cpu_cycles(1); break; } case 0xF5: { // SBC zpg, X uint8_t zpg = (read_pc_inc() + x) & 0xFF; m = bus.read(zpg); uint8_t borrow = isset(C) ? 0 : 1; if(isset(D)) { uint8_t bcd = a / 16 * 10 + a % 16; flag_change(C, !(bcd < m + borrow)); flag_change(V, sbc_overflow_d(bcd, m, borrow)); set_flags(N | Z, bcd = bcd - (m + borrow)); a = bcd / 10 * 16 + bcd % 10; } else { flag_change(C, !(a < (m + borrow))); flag_change(V, sbc_overflow(a, m, borrow)); set_flags(N | Z, a = a - (m + borrow)); } break; } case 0xE5: { // SBC zpg uint8_t zpg = read_pc_inc(); m = bus.read(zpg); uint8_t borrow = isset(C) ? 0 : 1; if(isset(D)) { uint8_t bcd = a / 16 * 10 + a % 16; flag_change(C, !(bcd < m + borrow)); flag_change(V, sbc_overflow_d(bcd, m, borrow)); set_flags(N | Z, bcd = bcd - (m + borrow)); a = bcd / 10 * 16 + bcd % 10; } else { flag_change(C, !(a < (m + borrow))); flag_change(V, sbc_overflow(a, m, borrow)); set_flags(N | Z, a = a - (m + borrow)); } break; } case 0xE1: { // SBC ind, X uint8_t zpg = (read_pc_inc() + x) & 0xFF; uint8_t low = bus.read(zpg); uint8_t high = bus.read((zpg + 1) & 0xFF); uint16_t addr = low + high * 256; if((addr - y) / 256 != addr / 256) clk.add_cpu_cycles(1); m = bus.read(addr); uint8_t borrow = isset(C) ? 0 : 1; if(isset(D)) { uint8_t bcd = a / 16 * 10 + a % 16; flag_change(C, !(bcd < m + borrow)); flag_change(V, sbc_overflow_d(bcd, m, borrow)); set_flags(N | Z, bcd = bcd - (m + borrow)); a = bcd / 10 * 16 + bcd % 10; } else { flag_change(C, !(a < (m + borrow))); flag_change(V, sbc_overflow(a, m, borrow)); set_flags(N | Z, a = a - (m + borrow)); } break; } case 0xF1: { // SBC ind, Y uint8_t zpg = read_pc_inc(); uint8_t low = bus.read(zpg); uint8_t high = bus.read((zpg + 1) & 0xFF); uint16_t addr = low + high * 256 + y; if((addr - y) / 256 != addr / 256) clk.add_cpu_cycles(1); m = bus.read(addr); uint8_t borrow = isset(C) ? 0 : 1; if(isset(D)) { uint8_t bcd = a / 16 * 10 + a % 16; flag_change(C, !(bcd < m + borrow)); flag_change(V, sbc_overflow_d(bcd, m, borrow)); set_flags(N | Z, bcd = bcd - (m + borrow)); a = bcd / 10 * 16 + bcd % 10; } else { flag_change(C, !(a < (m + borrow))); flag_change(V, sbc_overflow(a, m, borrow)); set_flags(N | Z, a = a - (m + borrow)); } break; } case 0xF9: { // SBC abs, Y uint8_t low = read_pc_inc(); uint8_t high = read_pc_inc(); uint16_t addr = low + high * 256 + y; if((addr - y) / 256 != addr / 256) clk.add_cpu_cycles(1); uint8_t m = bus.read(addr); uint8_t borrow = isset(C) ? 0 : 1; if(isset(D)) { uint8_t bcd = a / 16 * 10 + a % 16; flag_change(C, !(bcd < m + borrow)); flag_change(V, sbc_overflow_d(bcd, m, borrow)); set_flags(N | Z, bcd = bcd - (m + borrow)); a = bcd / 10 * 16 + bcd % 10; } else { flag_change(C, !(a < (m + borrow))); flag_change(V, sbc_overflow(a, m, borrow)); set_flags(N | Z, a = a - (m + borrow)); } break; } case 0xFD: { // SBC abs, X uint8_t low = read_pc_inc(); uint8_t high = read_pc_inc(); uint16_t addr = low + high * 256 + x; if((addr - x) / 256 != addr / 256) clk.add_cpu_cycles(1); uint8_t m = bus.read(addr); uint8_t borrow = isset(C) ? 0 : 1; if(isset(D)) { uint8_t bcd = a / 16 * 10 + a % 16; flag_change(C, !(bcd < m + borrow)); flag_change(V, sbc_overflow_d(bcd, m, borrow)); set_flags(N | Z, bcd = bcd - (m + borrow)); a = bcd / 10 * 16 + bcd % 10; } else { flag_change(C, !(a < (m + borrow))); flag_change(V, sbc_overflow(a, m, borrow)); set_flags(N | Z, a = a - (m + borrow)); } break; } case 0xED: { // SBC abs uint8_t low = read_pc_inc(); uint8_t high = read_pc_inc(); uint16_t addr = low + high * 256; uint8_t m = bus.read(addr); uint8_t borrow = isset(C) ? 0 : 1; if(isset(D)) { uint8_t bcd = a / 16 * 10 + a % 16; flag_change(C, !(bcd < m + borrow)); flag_change(V, sbc_overflow_d(bcd, m, borrow)); set_flags(N | Z, bcd = bcd - (m + borrow)); a = bcd / 10 * 16 + bcd % 10; } else { flag_change(C, !(a < (m + borrow))); flag_change(V, sbc_overflow(a, m, borrow)); set_flags(N | Z, a = a - (m + borrow)); } break; } case 0xE9: { // SBC imm uint8_t m = read_pc_inc(); uint8_t borrow = isset(C) ? 0 : 1; if(isset(D)) { uint8_t bcd = a / 16 * 10 + a % 16; flag_change(C, !(bcd < m + borrow)); flag_change(V, sbc_overflow_d(bcd, m, borrow)); set_flags(N | Z, bcd = bcd - (m + borrow)); a = bcd / 10 * 16 + bcd % 10; } else { flag_change(C, !(a < (m + borrow))); flag_change(V, sbc_overflow(a, m, borrow)); set_flags(N | Z, a = a - (m + borrow)); } break; } case 0x71: { // ADC (ind), Y uint8_t zpg = read_pc_inc(); uint8_t low = bus.read(zpg); uint8_t high = bus.read((zpg + 1) & 0xFF); uint16_t addr = low + high * 256 + y; if((addr - y) / 256 != addr / 256) clk.add_cpu_cycles(1); m = bus.read(addr); uint8_t carry = isset(C) ? 1 : 0; if(isset(D)) { uint8_t bcd = a / 16 * 10 + a % 16; flag_change(C, ((uint16_t)bcd + (uint16_t)m + carry) > 99); flag_change(V, adc_overflow_d(bcd, m, carry)); set_flags(N | Z, bcd = bcd + m + carry); a = bcd / 10 * 16 + bcd % 10; } else { flag_change(C, ((uint16_t)a + (uint16_t)m + carry) > 0xFF); flag_change(V, adc_overflow(a, m, carry)); set_flags(N | Z, a = a + m + carry); } break; } case 0x61: { // ADC (ind, X) uint8_t zpg = (read_pc_inc() + x) & 0xFF; uint8_t low = bus.read(zpg); uint8_t high = bus.read((zpg + 1) & 0xFF); uint16_t addr = low + high * 256; if((addr - y) / 256 != addr / 256) clk.add_cpu_cycles(1); m = bus.read(addr); uint8_t carry = isset(C) ? 1 : 0; if(isset(D)) { uint8_t bcd = a / 16 * 10 + a % 16; flag_change(C, ((uint16_t)bcd + (uint16_t)m + carry) > 99); flag_change(V, adc_overflow_d(bcd, m, carry)); set_flags(N | Z, bcd = bcd + m + carry); a = bcd / 10 * 16 + bcd % 10; } else { flag_change(C, ((uint16_t)a + (uint16_t)m + carry) > 0xFF); flag_change(V, adc_overflow(a, m, carry)); set_flags(N | Z, a = a + m + carry); } break; } case 0x6D: { // ADC abs uint8_t low = read_pc_inc(); uint8_t high = read_pc_inc(); uint16_t addr = low + high * 256; m = bus.read(addr); uint8_t carry = isset(C) ? 1 : 0; if(isset(D)) { uint8_t bcd = a / 16 * 10 + a % 16; flag_change(C, ((uint16_t)bcd + (uint16_t)m + carry) > 99); flag_change(V, adc_overflow_d(bcd, m, carry)); set_flags(N | Z, bcd = bcd + m + carry); a = bcd / 10 * 16 + bcd % 10; } else { flag_change(C, ((uint16_t)a + (uint16_t)m + carry) > 0xFF); flag_change(V, adc_overflow(a, m, carry)); set_flags(N | Z, a = a + m + carry); } break; } case 0x65: { // ADC uint8_t zpg = read_pc_inc(); m = bus.read(zpg); uint8_t carry = isset(C) ? 1 : 0; if(isset(D)) { uint8_t bcd = a / 16 * 10 + a % 16; flag_change(C, ((uint16_t)bcd + (uint16_t)m + carry) > 99); flag_change(V, adc_overflow_d(bcd, m, carry)); set_flags(N | Z, bcd = bcd + m + carry); a = bcd / 10 * 16 + bcd % 10; } else { flag_change(C, ((uint16_t)a + (uint16_t)m + carry) > 0xFF); flag_change(V, adc_overflow(a, m, carry)); set_flags(N | Z, a = a + m + carry); } break; } case 0x7D: { // ADC abs, X uint8_t low = read_pc_inc(); uint8_t high = read_pc_inc(); uint16_t addr = low + high * 256 + x; if((addr - x) / 256 != addr / 256) clk.add_cpu_cycles(1); m = bus.read(addr); uint8_t carry = isset(C) ? 1 : 0; if(isset(D)) { uint8_t bcd = a / 16 * 10 + a % 16; flag_change(C, ((uint16_t)bcd + (uint16_t)m + carry) > 99); flag_change(V, adc_overflow_d(bcd, m, carry)); set_flags(N | Z, bcd = bcd + m + carry); a = bcd / 10 * 16 + bcd % 10; } else { flag_change(C, ((uint16_t)a + (uint16_t)m + carry) > 0xFF); flag_change(V, adc_overflow(a, m, carry)); set_flags(N | Z, a = a + m + carry); } break; } case 0x79: { // ADC abs, Y uint8_t low = read_pc_inc(); uint8_t high = read_pc_inc(); uint16_t addr = low + high * 256 + y; if((addr - y) / 256 != addr / 256) clk.add_cpu_cycles(1); m = bus.read(addr); uint8_t carry = isset(C) ? 1 : 0; if(isset(D)) { uint8_t bcd = a / 16 * 10 + a % 16; flag_change(C, ((uint16_t)bcd + (uint16_t)m + carry) > 99); flag_change(V, adc_overflow_d(bcd, m, carry)); set_flags(N | Z, bcd = bcd + m + carry); a = bcd / 10 * 16 + bcd % 10; } else { flag_change(C, ((uint16_t)a + (uint16_t)m + carry) > 0xFF); flag_change(V, adc_overflow(a, m, carry)); set_flags(N | Z, a = a + m + carry); } break; } case 0x69: { // ADC m = read_pc_inc(); uint8_t carry = isset(C) ? 1 : 0; if(isset(D)) { uint8_t bcd = a / 16 * 10 + a % 16; flag_change(C, ((uint16_t)bcd + (uint16_t)m + carry) > 99); flag_change(V, adc_overflow_d(bcd, m, carry)); set_flags(N | Z, bcd = bcd + m + carry); a = bcd / 10 * 16 + bcd % 10; } else { flag_change(C, ((uint16_t)a + (uint16_t)m + carry) > 0xFF); flag_change(V, adc_overflow(a, m, carry)); set_flags(N | Z, a = a + m + carry); } break; } case 0x0E: { // ASL abs uint16_t addr = read_pc_inc() + read_pc_inc() * 256; m = bus.read(addr); flag_change(C, m & 0x80); set_flags(N | Z, m = m << 1); bus.write(addr, m); break; } case 0x1E: { // ASL abs uint16_t addr = read_pc_inc() + read_pc_inc() * 256; m = bus.read(addr + x); flag_change(C, m & 0x80); set_flags(N | Z, m = m << 1); bus.write(addr + x, m); break; } case 0x06: { // ASL uint8_t zpg = read_pc_inc(); m = bus.read(zpg); flag_change(C, m & 0x80); set_flags(N | Z, m = m << 1); bus.write(zpg, m); break; } case 0x16: { // ASL uint8_t zpg = read_pc_inc(); m = bus.read((zpg + x) & 0xFF); flag_change(C, m & 0x80); set_flags(N | Z, m = m << 1); bus.write((zpg + x) & 0xFF, m); break; } case 0x0A: { // ASL flag_change(C, a & 0x80); set_flags(N | Z, a = a << 1); break; } case 0x5E: { // LSR abs, X uint8_t low = read_pc_inc(); uint8_t high = read_pc_inc(); uint16_t addr = low + high * 256; m = bus.read(addr + x); flag_change(C, m & 0x01); set_flags(N | Z, m = m >> 1); bus.write(addr + x, m); break; } case 0x46: { // LSR uint8_t zpg = read_pc_inc(); m = bus.read(zpg); flag_change(C, m & 0x01); set_flags(N | Z, m = m >> 1); bus.write(zpg, m); break; } case 0x56: { // LSR zpg, X uint8_t zpg = read_pc_inc() + x; m = bus.read(zpg & 0xFF); flag_change(C, m & 0x01); set_flags(N | Z, m = m >> 1); bus.write(zpg, m); break; } case 0x4E: { // LSR uint8_t low = read_pc_inc(); uint8_t high = read_pc_inc(); uint16_t addr = low + high * 256; m = bus.read(addr); flag_change(C, m & 0x01); set_flags(N | Z, m = m >> 1); bus.write(addr, m); break; } case 0x4A: { // LSR flag_change(C, a & 0x01); set_flags(N | Z, a = a >> 1); break; } case 0x68: { // PLA set_flags(N | Z, a = stack_pull()); break; } case 0x48: { // PHA stack_push(a); break; } case 0x01: { // ORA (ind, X) uint8_t zpg = (read_pc_inc() + x) & 0xFF; uint8_t low = bus.read(zpg); uint8_t high = bus.read((zpg + 1) & 0xFF); uint16_t addr = low + high * 256; m = bus.read(addr); set_flags(N | Z, a = a | m); break; } case 0x15: { // ORA zpg, X uint8_t zpg = (read_pc_inc() + x) & 0xFF; m = bus.read(zpg); set_flags(N | Z, a = a | m); break; } case 0x0D: { // ORA abs uint8_t low = read_pc_inc(); uint8_t high = read_pc_inc(); uint16_t addr = low + high * 256; m = bus.read(addr); set_flags(N | Z, a = a | m); break; } case 0x19: { // ORA abs, Y uint8_t low = read_pc_inc(); uint8_t high = read_pc_inc(); uint16_t addr = low + high * 256; m = bus.read(addr + y); if((addr + y) / 256 != addr / 256) clk.add_cpu_cycles(1); set_flags(N | Z, a = a | m); break; } case 0x1D: { // ORA abs, X uint8_t low = read_pc_inc(); uint8_t high = read_pc_inc(); uint16_t addr = low + high * 256; m = bus.read(addr + x); if((addr + x) / 256 != addr / 256) clk.add_cpu_cycles(1); set_flags(N | Z, a = a | m); break; } case 0x11: { // ORA (ind), Y uint8_t zpg = read_pc_inc(); uint8_t low = bus.read(zpg); uint8_t high = bus.read((zpg + 1) & 0xFF); uint16_t addr = low + high * 256 + y; if((addr - y) / 256 != addr / 256) clk.add_cpu_cycles(1); m = bus.read(addr); set_flags(N | Z, a = a | m); break; } case 0x05: { // ORA zpg uint8_t zpg = read_pc_inc(); m = bus.read(zpg); set_flags(N | Z, a = a | m); break; } case 0x09: { // ORA imm uint8_t imm = read_pc_inc(); set_flags(N | Z, a = a | imm); break; } case 0x35: { // AND zpg, X uint8_t zpg = (read_pc_inc() + x) & 0xFF; set_flags(N | Z, a = a & bus.read(zpg)); break; } case 0x21: { // AND (ind, X) uint8_t zpg = (read_pc_inc() + x) & 0xFF; uint8_t low = bus.read(zpg); uint8_t high = bus.read((zpg + 1) & 0xFF); uint16_t addr = low + high * 256; if((addr - y) / 256 != addr / 256) clk.add_cpu_cycles(1); set_flags(N | Z, a = a & bus.read(addr)); break; } case 0x31: { // AND (ind), y uint8_t zpg = read_pc_inc(); uint8_t low = bus.read(zpg); uint8_t high = bus.read((zpg + 1) & 0xFF); uint16_t addr = low + high * 256 + y; if((addr - y) / 256 != addr / 256) clk.add_cpu_cycles(1); set_flags(N | Z, a = a & bus.read(addr)); break; } case 0x3D: { // AND abs, x uint8_t low = read_pc_inc(); uint8_t high = read_pc_inc(); uint16_t addr = low + high * 256; set_flags(N | Z, a = a & bus.read(addr + x)); if((addr + x) / 256 != addr / 256) clk.add_cpu_cycles(1); break; } case 0x39: { // AND abs, y uint8_t low = read_pc_inc(); uint8_t high = read_pc_inc(); uint16_t addr = low + high * 256; set_flags(N | Z, a = a & bus.read(addr + y)); if((addr + y) / 256 != addr / 256) clk.add_cpu_cycles(1); break; } case 0x2D: { // AND abs uint8_t low = read_pc_inc(); uint8_t high = read_pc_inc(); uint16_t addr = low + high * 256; set_flags(N | Z, a = a & bus.read(addr)); break; } case 0x25: { // AND zpg uint8_t zpg = read_pc_inc(); set_flags(N | Z, a = a & bus.read(zpg)); break; } case 0x29: { // AND imm uint8_t imm = read_pc_inc(); set_flags(N | Z, a = a & imm); break; } case 0x88: { // DEY set_flags(N | Z, y = y - 1); break; } case 0x7E: { // ROR abs, X uint8_t low = read_pc_inc(); uint8_t high = read_pc_inc(); uint16_t addr = low + high * 256; m = bus.read(addr + x); bool c = isset(C); flag_change(C, m & 0x01); set_flags(N | Z, m = (c ? 0x80 : 0x00) | (m >> 1)); bus.write(addr + x, m); break; } case 0x36: { // ROL zpg,X uint8_t zpg = (read_pc_inc() + x) & 0xFF; m = bus.read(zpg); bool c = isset(C); flag_change(C, m & 0x80); set_flags(N | Z, m = (c ? 0x01 : 0x00) | (m << 1)); bus.write(zpg, m); break; } case 0x3E: { // ROL abs, X uint8_t low = read_pc_inc(); uint8_t high = read_pc_inc(); uint16_t addr = low + high * 256; m = bus.read(addr + x); bool c = isset(C); flag_change(C, m & 0x80); set_flags(N | Z, m = (c ? 0x01 : 0x00) | (m << 1)); bus.write(addr + x, m); break; } case 0x2A: { // ROL bool c = isset(C); flag_change(C, a & 0x80); set_flags(N | Z, a = (c ? 0x01 : 0x00) | (a << 1)); break; } case 0x6A: { // ROR bool c = isset(C); flag_change(C, a & 0x01); set_flags(N | Z, a = (c ? 0x80 : 0x00) | (a >> 1)); break; } case 0x6E: { // ROR abs uint8_t low = read_pc_inc(); uint8_t high = read_pc_inc(); uint16_t addr = low + high * 256; m = bus.read(addr); bool c = isset(C); flag_change(C, m & 0x01); set_flags(N | Z, m = (c ? 0x80 : 0x00) | (m >> 1)); bus.write(addr, m); break; } case 0x66: { // ROR uint8_t zpg = read_pc_inc(); m = bus.read(zpg); bool c = isset(C); flag_change(C, m & 0x01); set_flags(N | Z, m = (c ? 0x80 : 0x00) | (m >> 1)); bus.write(zpg, m); break; } case 0x76: { // ROR uint8_t zpg = (read_pc_inc() + x) & 0xFF; m = bus.read(zpg); bool c = isset(C); flag_change(C, m & 0x01); set_flags(N | Z, m = (c ? 0x80 : 0x00) | (m >> 1)); bus.write(zpg, m); break; } case 0x2E: { // ROL abs uint8_t low = read_pc_inc(); uint8_t high = read_pc_inc(); uint16_t addr = low + high * 256; m = bus.read(addr); bool c = isset(C); flag_change(C, m & 0x80); set_flags(N | Z, m = (c ? 0x01 : 0x00) | (m << 1)); bus.write(addr, m); break; } case 0x26: { // ROL uint8_t zpg = read_pc_inc(); bool c = isset(C); m = bus.read(zpg); flag_change(C, m & 0x80); set_flags(N | Z, m = (c ? 0x01 : 0x00) | (m << 1)); bus.write(zpg, m); break; } case 0x4C: { // JMP uint8_t low = read_pc_inc(); uint8_t high = read_pc_inc(); uint16_t addr = low + high * 256; pc = addr; break; } case 0x6C: { // JMP indirect uint8_t low = read_pc_inc(); uint8_t high = read_pc_inc(); uint16_t addr = low + high * 256; uint8_t addrl = bus.read(addr); uint8_t addrh = bus.read(addr + 1); addr = addrl + addrh * 256; pc = addr; break; } case 0x9D: { // STA abs, x uint8_t low = read_pc_inc(); uint8_t high = read_pc_inc(); uint16_t addr = low + high * 256; bus.write(addr + x, a); break; } case 0x99: { // STA uint8_t low = read_pc_inc(); uint8_t high = read_pc_inc(); uint16_t addr = low + high * 256; bus.write(addr + y, a); break; } case 0x91: { // STA (ind), Y uint8_t zpg = read_pc_inc(); uint8_t low = bus.read(zpg); uint8_t high = bus.read((zpg + 1) & 0xFF); uint16_t addr = low + high * 256 + y; bus.write(addr, a); break; } case 0x81: { // STA (ind, X) uint8_t zpg = (read_pc_inc() + x) & 0xFF; uint8_t low = bus.read(zpg); uint8_t high = bus.read((zpg + 1) & 0xFF); uint16_t addr = low + high * 256; bus.write(addr, a); break; } case 0x8D: { // STA uint8_t low = read_pc_inc(); uint8_t high = read_pc_inc(); uint16_t addr = low + high * 256; bus.write(addr, a); break; } case 0x08: { // PHP stack_push(p | B2 | B); break; } case 0x28: { // PLP p = stack_pull() & ~ (B2 | B); break; } case 0x24: { // BIT uint8_t zpg = read_pc_inc(); m = bus.read(zpg); flag_change(Z, (a & m) == 0); flag_change(N, m & 0x80); flag_change(V, m & 0x40); break; } case 0x2C: { // BIT uint8_t low = read_pc_inc(); uint8_t high = read_pc_inc(); uint16_t addr = low + high * 256; m = bus.read(addr); flag_change(Z, (a & m) == 0); flag_change(N, m & 0x80); flag_change(V, m & 0x40); break; } case 0xB4: { // LDY uint8_t zpg = read_pc_inc(); set_flags(N | Z, y = bus.read((zpg + x) & 0xFF)); break; } case 0xAE: { // LDX abs uint8_t low = read_pc_inc(); uint8_t high = read_pc_inc(); uint16_t addr = low + high * 256; set_flags(N | Z, x = bus.read(addr)); break; } case 0xBE: { // LDX uint8_t low = read_pc_inc(); uint8_t high = read_pc_inc(); uint16_t addr = low + high * 256 + y; if((addr - y) / 256 != addr / 256) clk.add_cpu_cycles(1); set_flags(N | Z, x = bus.read(addr)); break; } case 0xA6: { // LDX uint8_t zpg = read_pc_inc(); set_flags(N | Z, x = bus.read(zpg)); break; } case 0xB6: { // LDX zpg, Y uint8_t zpg = (read_pc_inc() + y) & 0xFF; set_flags(N | Z, x = bus.read(zpg)); break; } case 0xA4: { // LDY uint8_t zpg = read_pc_inc(); set_flags(N | Z, y = bus.read(zpg)); break; } case 0xAC: { // LDY uint8_t low = read_pc_inc(); uint8_t high = read_pc_inc(); uint16_t addr = low + high * 256; set_flags(N | Z, y = bus.read(addr)); break; } case 0xA2: { // LDX uint8_t imm = read_pc_inc(); set_flags(N | Z, x = imm); break; } case 0xA0: { // LDY uint8_t imm = read_pc_inc(); set_flags(N | Z, y = imm); break; } case 0xA9: { // LDA uint8_t imm = read_pc_inc(); set_flags(N | Z, a = imm); break; } case 0xAD: { // LDA uint8_t low = read_pc_inc(); uint8_t high = read_pc_inc(); uint16_t addr = low + high * 256; set_flags(N | Z, a = bus.read(addr)); break; } case 0xCC: { // CPY abs uint8_t low = read_pc_inc(); uint8_t high = read_pc_inc(); uint16_t addr = low + high * 256; m = bus.read(addr); flag_change(C, m <= y); set_flags(N | Z, m = y - m); break; } case 0xEC: { // CPX abs uint8_t low = read_pc_inc(); uint8_t high = read_pc_inc(); uint16_t addr = low + high * 256; m = bus.read(addr); flag_change(C, m <= x); set_flags(N | Z, m = x - m); break; } case 0xE0: { // CPX uint8_t imm = read_pc_inc(); flag_change(C, imm <= x); set_flags(N | Z, imm = x - imm); break; } case 0xC0: { // CPY uint8_t imm = read_pc_inc(); flag_change(C, imm <= y); set_flags(N | Z, imm = y - imm); break; } case 0x55: { // EOR zpg, X uint8_t zpg = read_pc_inc() + x; m = bus.read(zpg & 0xFF); set_flags(N | Z, a = a ^ m); break; } case 0x41: { // EOR (ind, X) uint8_t zpg = (read_pc_inc() + x) & 0xFF; uint8_t low = bus.read(zpg); uint8_t high = bus.read((zpg + 1) & 0xFF); uint16_t addr = low + high * 256; m = bus.read(addr); set_flags(N | Z, a = a ^ m); break; } case 0x4D: { // EOR abs uint8_t low = read_pc_inc(); uint8_t high = read_pc_inc(); uint16_t addr = low + high * 256; m = bus.read(addr); set_flags(N | Z, a = a ^ m); break; } case 0x5D: { // EOR abs, X uint8_t low = read_pc_inc(); uint8_t high = read_pc_inc(); uint16_t addr = low + high * 256; m = bus.read(addr + x); if((addr + x) / 256 != addr / 256) clk.add_cpu_cycles(1); set_flags(N | Z, a = a ^ m); break; } case 0x59: { // EOR abs, Y uint8_t low = read_pc_inc(); uint8_t high = read_pc_inc(); uint16_t addr = low + high * 256; m = bus.read(addr + y); if((addr + y) / 256 != addr / 256) clk.add_cpu_cycles(1); set_flags(N | Z, a = a ^ m); break; } case 0x45: { // EOR uint8_t zpg = read_pc_inc(); set_flags(N | Z, a = a ^ bus.read(zpg)); break; } case 0x49: { // EOR uint8_t imm = read_pc_inc(); set_flags(N | Z, a = a ^ imm); break; } case 0x51: { // EOR uint8_t zpg = read_pc_inc(); uint8_t low = bus.read(zpg); uint8_t high = bus.read((zpg + 1) & 0xFF); uint16_t addr = low + high * 256 + y; if((addr - y) / 256 != addr / 256) clk.add_cpu_cycles(1); m = bus.read(addr); set_flags(N | Z, a = a ^ m); break; } case 0xD1: { // CMP uint8_t zpg = read_pc_inc(); uint8_t low = bus.read(zpg); uint8_t high = bus.read((zpg + 1) & 0xFF); uint16_t addr = low + high * 256 + y; if((addr - y) / 256 != addr / 256) clk.add_cpu_cycles(1); m = bus.read(addr); flag_change(C, m <= a); set_flags(N | Z, m = a - m); break; } case 0xC5: { // CMP uint8_t zpg = read_pc_inc(); m = bus.read(zpg); flag_change(C, m <= a); set_flags(N | Z, m = a - m); break; } case 0xCD: { // CMP uint8_t low = read_pc_inc(); uint8_t high = read_pc_inc(); uint16_t addr = low + high * 256; m = bus.read(addr); flag_change(C, m <= a); set_flags(N | Z, m = a - m); break; } case 0xC9: { // CMP uint8_t imm = read_pc_inc(); flag_change(C, imm <= a); set_flags(N | Z, imm = a - imm); break; } case 0xD5: { // CMP uint8_t zpg = read_pc_inc() + x; m = bus.read(zpg & 0xFF); flag_change(C, m <= a); set_flags(N | Z, m = a - m); break; } case 0xE4: { // CPX uint8_t zpg = read_pc_inc(); m = bus.read(zpg); flag_change(C, m <= x); set_flags(N | Z, m = x - m); break; } case 0xC4: { // CPY uint8_t zpg = read_pc_inc(); m = bus.read(zpg); flag_change(C, m <= y); set_flags(N | Z, m = y - m); break; } case 0x85: { // STA uint8_t zpg = read_pc_inc(); bus.write(zpg, a); break; } case 0x40: { // RTI p = stack_pull() & ~ (B2 | B); uint8_t pcl = stack_pull(); uint8_t pch = stack_pull(); pc = pcl + pch * 256; break; } case 0x60: { // RTS uint8_t pcl = stack_pull(); uint8_t pch = stack_pull(); pc = pcl + pch * 256 + 1; break; } case 0x95: { // STA uint8_t zpg = read_pc_inc(); bus.write((zpg + x) & 0xFF, a); break; } case 0x94: { // STY uint8_t zpg = read_pc_inc(); bus.write((zpg + x) & 0xFF, y); break; } case 0x8E: { // STX abs uint8_t low = read_pc_inc(); uint8_t high = read_pc_inc(); uint16_t addr = low + high * 256; bus.write(addr, x); break; } case 0x86: { // STX uint8_t zpg = read_pc_inc(); bus.write(zpg, x); break; } case 0x96: { // STX zpg, Y uint8_t zpg = read_pc_inc(); uint16_t addr = (zpg + y) & 0xFF; bus.write(addr, x); break; } case 0x84: { // STY uint8_t zpg = read_pc_inc(); bus.write(zpg, y); break; } case 0x8C: { // STY uint8_t low = read_pc_inc(); uint8_t high = read_pc_inc(); uint16_t addr = low + high * 256; bus.write(addr, y); break; } case 0x20: { // JSR stack_push((pc + 1) >> 8); stack_push((pc + 1) & 0xFF); uint8_t low = read_pc_inc(); uint8_t high = read_pc_inc(); uint16_t addr = low + high * 256; pc = addr; break; } #if EMULATE_65C02 // 65C02 instructions case 0x0F: case 0x1F: case 0x2F: case 0x3F: case 0x4F: case 0x5F: case 0x6F: case 0x7F: { // BBRn zpg, rel, 65C02 int whichbit = (inst >> 4) & 0x7; uint8_t zpg = read_pc_inc(); uint8_t m = bus.read(zpg); int32_t rel = (read_pc_inc() + 128) % 256 - 128; if(!(m & (1 << whichbit))) { // if((pc + rel) / 256 != pc / 256) // clk.add_cpu_cycles(1); // XXX ??? pc += rel; } break; } case 0x8F: case 0x9F: case 0xAF: case 0xBF: case 0xCF: case 0xDF: case 0xEF: case 0xFF: { // BBSn zpg, rel, 65C02 int whichbit = (inst >> 4) & 0x7; uint8_t zpg = read_pc_inc(); uint8_t m = bus.read(zpg); int32_t rel = (read_pc_inc() + 128) % 256 - 128; if(m & (1 << whichbit)) { // if((pc + rel) / 256 != pc / 256) // clk.add_cpu_cycles(1); // XXX ??? pc += rel; } break; } case 0x5A: { // PHY, 65C02 stack_push(y); break; } case 0x7A: { // PLY, 65C02 set_flags(N | Z, y = stack_pull()); break; } case 0xFA: { // PLX, 65C02 set_flags(N | Z, x = stack_pull()); break; } case 0x80: { // BRA imm, 65C02 int32_t rel = (read_pc_inc() + 128) % 256 - 128; if((pc + rel) / 256 != pc / 256) clk.add_cpu_cycles(1); pc += rel; break; } case 0x64: { // STZ zpg, 65C02 uint8_t zpg = read_pc_inc(); bus.write(zpg, 0); break; } case 0x9C: { // STZ abs, 65C02 uint8_t low = read_pc_inc(); uint8_t high = read_pc_inc(); uint16_t addr = low + high * 256; bus.write(addr, 0x0); break; } case 0xDA: { // PHX, 65C02 stack_push(x); break; } case 0xB2: { // LDA (zpg), 65C02 uint8_t zpg = read_pc_inc(); uint8_t low = bus.read(zpg); uint8_t high = bus.read((zpg + 1) & 0xFF); uint16_t addr = low + high * 256; set_flags(N | Z, a = bus.read(addr)); break; } case 0x92: { // STA (zpg), 65C02 uint8_t zpg = read_pc_inc(); uint8_t low = bus.read(zpg); uint8_t high = bus.read((zpg + 1) & 0xFF); uint16_t addr = low + high * 256; bus.write(addr, a); break; } case 0x72: { // ADC (zpg), 65C02 uint8_t zpg = read_pc_inc(); uint8_t low = bus.read(zpg); uint8_t high = bus.read((zpg + 1) & 0xFF); uint16_t addr = low + high * 256; m = bus.read(addr); uint8_t carry = isset(C) ? 1 : 0; if(isset(D)) { uint8_t bcd = a / 16 * 10 + a % 16; flag_change(C, ((uint16_t)bcd + (uint16_t)m + carry) > 99); flag_change(V, adc_overflow_d(bcd, m, carry)); set_flags(N | Z, bcd = bcd + m + carry); a = bcd / 10 * 16 + bcd % 10; } else { flag_change(C, ((uint16_t)a + (uint16_t)m + carry) > 0xFF); flag_change(V, adc_overflow(a, m, carry)); set_flags(N | Z, a = a + m + carry); } break; } case 0x75: { // ADC zpg, X uint8_t zpg = read_pc_inc(); uint16_t addr = (zpg + x)& 0xFF; m = bus.read(addr); uint8_t carry = isset(C) ? 1 : 0; if(isset(D)) { uint8_t bcd = a / 16 * 10 + a % 16; flag_change(C, ((uint16_t)bcd + (uint16_t)m + carry) > 99); flag_change(V, adc_overflow_d(bcd, m, carry)); set_flags(N | Z, bcd = bcd + m + carry); a = bcd / 10 * 16 + bcd % 10; } else { flag_change(C, ((uint16_t)a + (uint16_t)m + carry) > 0xFF); flag_change(V, adc_overflow(a, m, carry)); set_flags(N | Z, a = a + m + carry); } break; } case 0x3A: { // DEC, 65C02 set_flags(N | Z, a = a - 1); break; } case 0x1A: { // INC, 65C02 set_flags(N | Z, a = a + 1); break; } case 0x12: { // ORA (ind), 65C02 uint8_t zpg = read_pc_inc(); uint8_t low = bus.read(zpg); uint8_t high = bus.read((zpg + 1) & 0xFF); uint16_t addr = low + high * 256; m = bus.read(addr); set_flags(N | Z, a = a | m); break; } case 0xD2: { // CMP (zpg), 65C02 instruction uint8_t zpg = read_pc_inc(); uint8_t low = bus.read(zpg); uint8_t high = bus.read((zpg + 1) & 0xFF); uint16_t addr = low + high * 256; m = bus.read(addr); flag_change(C, m <= a); set_flags(N | Z, m = a - m); break; } case 0x1C: { // TRB abs uint8_t low = read_pc_inc(); uint8_t high = read_pc_inc(); uint16_t addr = low + high * 256; m = bus.read(addr); set_flags(Z, m & a); bus.write(addr, m & ~a); break; } case 0x14: { // TRB zpg uint8_t zpgaddr = read_pc_inc(); m = bus.read(zpgaddr); set_flags(Z, m & a); bus.write(zpgaddr, m & ~a); break; } case 0x0C: { // TSB abs uint8_t low = read_pc_inc(); uint8_t high = read_pc_inc(); uint16_t addr = low + high * 256; m = bus.read(addr); set_flags(Z, m & a); bus.write(addr, m | a); break; } case 0x04: { // TRB zpg uint8_t zpgaddr = read_pc_inc(); m = bus.read(zpgaddr); set_flags(Z, m & a); bus.write(zpgaddr, m | a); break; } case 0x02: case 0x22: case 0x42: case 0x62: case 0x82: case 0xC2: case 0xE2: { // two-byte NOP, 2 cycles uint8_t ignored = read_pc_inc(); (void)ignored; break; } case 0x03: case 0x13: case 0x23: case 0x33: case 0x43: case 0x53: case 0x63: case 0x73: case 0x83: case 0x93: case 0xA3: case 0xB3: case 0xC3: case 0xD3: case 0xE3: case 0xF3: { // one-byte NOP, 1 cycle break; } case 0x0B: case 0x1B: case 0x2B: case 0x3B: case 0x4B: case 0x5B: case 0x6B: case 0x7B: case 0x8B: case 0x9B: case 0xAB: case 0xBB: case 0xCB: case 0xDB: case 0xEB: case 0xFB: { // one-byte NOP, 1 cycle break; } case 0x44: { // two-byte NOP, 3 cycles uint8_t ignored = read_pc_inc(); (void)ignored; break; } case 0x54: case 0xD4: case 0xF4: { // two-byte NOP, 4 cycles uint8_t ignored = read_pc_inc(); (void)ignored; break; } case 0x5C: { // three-byte NOP, 8 cycles uint8_t ignored1 = read_pc_inc(); (void)ignored1; uint8_t ignored2 = read_pc_inc(); (void)ignored2; break; } case 0xDC: case 0xFC: { // three-byte NOP, 4 cycles uint8_t ignored1 = read_pc_inc(); (void)ignored1; uint8_t ignored2 = read_pc_inc(); (void)ignored2; break; } case 0x7C: { // JMP (ind, X) uint8_t low = read_pc_inc(); uint8_t high = read_pc_inc(); uint16_t addr = low + high * 256 + x; uint8_t addrl = bus.read(addr); uint8_t addrh = bus.read(addr + 1); addr = addrl + addrh * 256; pc = addr; break; } case 0x89: { // BIT imm m = read_pc_inc(); flag_change(Z, (a & m) == 0); break; } case 0x9E: { // STZ abs, X uint8_t low = read_pc_inc(); uint8_t high = read_pc_inc(); uint16_t addr = low + high * 256; bus.write(addr + x, 0); break; } #endif // EMULATE_65C02 default: printf("unhandled instruction %02X at %04X\n", inst, pc - 1); fflush(stdout); exit(1); } assert(cycles[inst] > 0); clk.add_cpu_cycles(cycles[inst]); } }; template const int32_t CPU6502::cycles[256] = { /* 0x0- */ 7, 6, 2, 1, 5, 3, 5, 0, 3, 2, 2, 1, 6, 4, 6, 5, /* 0x1- */ 2, 5, 5, 1, 5, 4, 6, 0, 2, 4, 2, 1, 6, 4, 7, 5, /* 0x2- */ 6, 6, 2, 1, 3, 3, 5, 0, 4, 2, 2, 1, 4, 4, 6, 5, /* 0x3- */ 2, 5, 0, 1, 0, 4, 6, 0, 2, 4, 2, 1, 0, 4, 7, 5, /* 0x4- */ 6, 6, 2, 1, 3, 3, 5, 0, 3, 2, 2, 1, 3, 4, 6, 5, /* 0x5- */ 2, 5, 0, 1, 4, 4, 6, 0, 2, 4, 3, 1, 8, 4, 7, 5, /* 0x6- */ 6, 6, 2, 1, 3, 3, 5, 0, 4, 2, 2, 1, 5, 4, 6, 5, /* 0x7- */ 2, 5, 5, 1, 0, 4, 6, 0, 2, 4, 4, 1, 6, 4, 7, 5, /* 0x8- */ 2, 6, 2, 1, 3, 3, 3, 0, 2, 2, 2, 1, 4, 4, 4, 5, /* 0x9- */ 2, 6, 5, 1, 4, 4, 4, 0, 2, 5, 2, 1, 4, 5, 5, 5, /* 0xA- */ 2, 6, 2, 1, 3, 3, 3, 0, 2, 2, 2, 1, 4, 4, 4, 5, /* 0xB- */ 2, 5, 5, 1, 4, 4, 4, 0, 2, 4, 2, 1, 4, 4, 4, 5, /* 0xC- */ 2, 6, 2, 1, 3, 3, 5, 0, 2, 2, 2, 1, 4, 4, 3, 5, /* 0xD- */ 2, 5, 5, 1, 4, 4, 6, 0, 2, 4, 3, 1, 4, 4, 7, 5, /* 0xE- */ 2, 6, 2, 1, 3, 3, 5, 0, 2, 2, 2, 1, 4, 4, 6, 5, /* 0xF- */ 2, 5, 0, 1, 4, 4, 6, 0, 2, 4, 4, 1, 4, 4, 7, 5, }; #endif // CPU6502_H