ciderpress/nufxlib/Lzc.c
Andy McFadden 84706d7ea4 Update NufxLib snapshot to v3.0.0d2
This integrates the latest NufxLib sources, and updates CiderPress
to work with the API changes.
2015-01-04 11:29:51 -08:00

1095 lines
37 KiB
C

/*
* NuFX archive manipulation library
* Copyright (C) 2000-2007 by Andy McFadden, All Rights Reserved.
* This is free software; you can redistribute it and/or modify it under the
* terms of the BSD License, see the file COPYING-LIB.
*
* This is the LZW implementation found in the UNIX "compress" command,
* sometimes referred to as "LZC". GS/ShrinkIt v1.1 can unpack threads
* in LZC format, P8 ShrinkIt cannot. The only other application that
* is known to create LZC threads is the original NuLib.
*
* There's a lot of junk in here for the sake of smaller systems (e.g. MSDOS)
* and pre-ANSI compilers. For the most part it has been left unchanged.
* I have done some minor reformatting, and have undone the authors'
* penchant for assigning variables inside function call statements, but
* for the most part it is as it was. (A much cleaner implementation
* could probably be derived by adapting the NufxLib Lzw.c code...)
*/
#include "NufxLibPriv.h"
#ifdef ENABLE_LZC
/*#define DEBUG_LZC*/
/*
* Selected definitions from compress.h.
*/
typedef uint16_t CODE;
typedef uint8_t UCHAR;
typedef uint32_t INTCODE;
typedef uint32_t HASH;
typedef int FLAG;
#ifndef FALSE /* let's get some sense to this */
#define FALSE 0
#define TRUE !FALSE
#endif
#define CONST const
#ifndef FAR
# define FAR
#endif
#define NULLPTR(type) ((type FAR *) NULL)
#define ALLOCTYPE void
#define INITBITS 9
#define MINBITS 12
#define MAXMAXBITS 16
#define MAXBITS MAXMAXBITS
#define DFLTBITS MAXBITS
#define UNUSED ((CODE)0) /* Indicates hash table value unused */
#define CLEAR ((CODE)256) /* Code requesting table to be cleared */
#define FIRSTFREE ((CODE)257) /* First free code for token encoding */
#define MAXTOKLEN 512 /* Max chars in token; size of buffer */
#define OK kNuErrNone /* Result codes from functions: */
#define BIT_MASK 0x1f
#define BLOCK_MASK 0x80
#define CHECK_GAP 10000L /* ratio check interval, for COMP40 */
static UCHAR gNu_magic_header[] = { 0x1F,0x9D };
/* don't need these */
/*#define SPLIT_HT 1*/
/*#define SPLIT_PFX 1*/
/*#define COMP40 1*/
#define NOMEM kNuErrMalloc /* Ran out of memory */
#define TOKTOOBIG kNuErrBadData /* Token longer than MAXTOKLEN chars */
#define READERR kNuErrFileRead /* I/O error on input */
#define WRITEERR kNuErrFileWrite /* I/O error on output */
#define CODEBAD kNuErrBadData /* Infile contained a bad token code */
#define TABLEBAD kNuErrInternal /* The tables got corrupted (!) */
#define NOSAVING kNuErrNone /* no saving in file size */
/*
* Normally in COMPUSI.UNI.
*/
static inline ALLOCTYPE FAR *
Nu_LZC_emalloc(NuArchive* pArchive, uint32_t x, int y)
{
return Nu_Malloc(pArchive, x*y);
}
static inline void
Nu_LZC_efree(NuArchive* pArchive, ALLOCTYPE FAR * ptr)
{
Nu_Free(pArchive, ptr);
}
/*@H************************ < COMPRESS API > ****************************
* $@(#) compapi.c,v 4.3d 90/01/18 03:00:00 don Release ^ *
* *
* compress : compapi.c <current version of compress algorithm> *
* *
* port by : Donald J. Gloistein *
* *
* Source, Documentation, Object Code: *
* released to Public Domain. This code is based on code as documented *
* below in release notes. *
* *
*--------------------------- Module Description --------------------------*
* Contains source code for modified Lempel-Ziv method (LZW) compression *
* and decompression. *
* *
* This code module can be maintained to keep current on releases on the *
* Unix system. The command shell and dos modules can remain the same. *
* *
*--------------------------- Implementation Notes --------------------------*
* *
* compiled with : compress.h compress.fns compress.c *
* linked with : compress.obj compusi.obj *
* *
* problems: *
* *
* *
* CAUTION: Uses a number of defines for access and speed. If you change *
* anything, make sure about side effects. *
* *
* Compression: *
* Algorithm: use open addressing double hashing (no chaining) on the *
* prefix code / next character combination. We do a variant of Knuth's *
* algorithm D (vol. 3, sec. 6.4) along with G. Knott's relatively-prime *
* secondary probe. Here, the modular division first probe is gives way *
* to a faster exclusive-or manipulation. *
* Also block compression with an adaptive reset was used in original code, *
* whereby the code table is cleared when the compression ration decreases *
* but after the table fills. This was removed from this edition. The table *
* is re-sized at this point when it is filled , and a special CLEAR code is *
* generated for the decompressor. This results in some size difference from *
* straight version 4.0 joe Release. But it is fully compatible in both v4.0 *
* and v4.01 *
* *
* Decompression: *
* This routine adapts to the codes in the file building the "string" table *
* on-the-fly; requiring no table to be stored in the compressed file. The *
* tables used herein are shared with those of the compress() routine. *
* *
* Initials ---- Name --------------------------------- *
* DjG Donald J. Gloistein, current port to MsDos 16 bit *
* Plus many others, see rev.hst file for full list *
* LvR Lyle V. Rains, many thanks for improved implementation *
* of the compression and decompression routines. *
*************************************************************************@H*/
#include <stdio.h>
/*
* LZC state, largely variables with non-local scope.
*/
typedef struct LZCState {
NuArchive* pArchive;
int doCalcCRC;
uint16_t crc;
/* compression */
NuStraw* pStraw;
FILE* outfp;
long uncompRemaining;
/* expansion */
FILE* infp;
NuFunnel* pFunnel;
uint16_t* pCrc;
long compRemaining;
/*
* Globals from Compress sources.
*/
int offset;
long int in_count ; /* length of input */
long int bytes_out; /* length of compressed output */
INTCODE prefxcode, nextfree;
INTCODE highcode;
INTCODE maxcode;
HASH hashsize;
int bits;
char FAR *sfx;
#if (SPLIT_PFX)
CODE FAR *pfx[2];
#else
CODE FAR *pfx;
#endif
#if (SPLIT_HT)
CODE FAR *ht[2];
#else
CODE FAR *ht;
#endif
#ifdef COMP40
long int ratio;
long checkpoint; /* initialized to CHECK_GAP */
#endif
#ifdef DEBUG_LZC
int debug; /* initialized to FALSE */
#endif
NuError exit_stat;
int maxbits; /* initialized to DFLTBITS */
int block_compress; /* initialized to BLOCK_MASK */
/*
* Static local variables. Some of these were explicitly initialized
* to zero.
*/
INTCODE oldmaxcode; /* alloc_tables */
HASH oldhashsize; /* alloc_tables */
int oldbits; /* putcode */
UCHAR outbuf[MAXBITS]; /* putcode */
int prevbits; /* nextcode */
int size; /* nextcode */
UCHAR inbuf[MAXBITS]; /* nextcode */
} LZCState;
/*
* The following two parameter tables are the hash table sizes and
* maximum code values for various code bit-lengths. The requirements
* are that Hashsize[n] must be a prime number and Maxcode[n] must be less
* than Maxhash[n]. Table occupancy factor is (Maxcode - 256)/Maxhash.
* Note: I am using a lower Maxcode for 16-bit codes in order to
* keep the hash table size less than 64k entries.
*/
static CONST HASH gNu_hs[] = {
0x13FF, /* 12-bit codes, 75% occupancy */
0x26C3, /* 13-bit codes, 80% occupancy */
0x4A1D, /* 14-bit codes, 85% occupancy */
0x8D0D, /* 15-bit codes, 90% occupancy */
0xFFD9 /* 16-bit codes, 94% occupancy, 6% of code values unused */
};
#define Hashsize(maxb) (gNu_hs[(maxb) -MINBITS])
static CONST INTCODE gNu_mc[] = {
0x0FFF, /* 12-bit codes */
0x1FFF, /* 13-bit codes */
0x3FFF, /* 14-bit codes */
0x7FFF, /* 15-bit codes */
0xEFFF /* 16-bit codes, 6% of code values unused */
};
#define Maxcode(maxb) (gNu_mc[(maxb) -MINBITS])
#ifdef __STDC__
#ifdef DEBUG_LZC
#define allocx(type, ptr, size) \
(((ptr) = (type FAR *) Nu_LZC_emalloc(pArchive, (uint32_t)(size),sizeof(type))) == NULLPTR(type) \
? (DBUG(("%s: "#ptr" -- ", "LZC")), NOMEM) : OK \
)
#else
#define allocx(type,ptr,size) \
(((ptr) = (type FAR *) Nu_LZC_emalloc(pArchive, (uint32_t)(size),sizeof(type))) == NULLPTR(type) \
? NOMEM : OK \
)
#endif
#else
#define allocx(type,ptr,size) \
(((ptr) = (type FAR *) Nu_LZC_emalloc(pArchive, (uint32_t)(size),sizeof(type))) == NULLPTR(type) \
? NOMEM : OK \
)
#endif
#define free_array(type,ptr,offset) \
if (ptr != NULLPTR(type)) { \
Nu_LZC_efree(pArchive, (ALLOCTYPE FAR *)((ptr) + (offset))); \
(ptr) = NULLPTR(type); \
}
/*
* Macro to allocate new memory to a pointer with an offset value.
*/
#define alloc_array(type, ptr, size, offset) \
( allocx(type, ptr, (size) - (offset)) != OK \
? NOMEM \
: (((ptr) -= (offset)), OK) \
)
/*static char FAR *sfx = NULLPTR(char) ;*/
#define suffix(code) pLzcState->sfx[code]
#if (SPLIT_PFX)
/*static CODE FAR *pfx[2] = {NULLPTR(CODE), NULLPTR(CODE)};*/
#else
/*static CODE FAR *pfx = NULLPTR(CODE);*/
#endif
#if (SPLIT_HT)
/*static CODE FAR *ht[2] = {NULLPTR(CODE),NULLPTR(CODE)};*/
#else
/*static CODE FAR *ht = NULLPTR(CODE);*/
#endif
static int Nu_LZC_alloc_tables(LZCState* pLzcState, INTCODE newmaxcode,
HASH newhashsize)
{
NuArchive* pArchive = pLzcState->pArchive;
/*static INTCODE oldmaxcode = 0;*/
/*static HASH oldhashsize = 0;*/
if (newhashsize > pLzcState->oldhashsize) {
#if (SPLIT_HT)
free_array(CODE,pLzcState->ht[1], 0);
free_array(CODE,pLzcState->ht[0], 0);
#else
free_array(CODE,pLzcState->ht, 0);
#endif
pLzcState->oldhashsize = 0;
}
if (newmaxcode > pLzcState->oldmaxcode) {
#if (SPLIT_PFX)
free_array(CODE,pLzcState->pfx[1], 128);
free_array(CODE,pLzcState->pfx[0], 128);
#else
free_array(CODE,pLzcState->pfx, 256);
#endif
free_array(char,pLzcState->sfx, 256);
if ( alloc_array(char, pLzcState->sfx, newmaxcode + 1, 256)
#if (SPLIT_PFX)
|| alloc_array(CODE, pLzcState->pfx[0], (newmaxcode + 1) / 2, 128)
|| alloc_array(CODE, pLzcState->pfx[1], (newmaxcode + 1) / 2, 128)
#else
|| alloc_array(CODE, pLzcState->pfx, (newmaxcode + 1), 256)
#endif
) {
pLzcState->oldmaxcode = 0;
pLzcState->exit_stat = NOMEM;
return(NOMEM);
}
pLzcState->oldmaxcode = newmaxcode;
}
if (newhashsize > pLzcState->oldhashsize) {
if (
#if (SPLIT_HT)
alloc_array(CODE, pLzcState->ht[0], (newhashsize / 2) + 1, 0)
|| alloc_array(CODE, pLzcState->ht[1], newhashsize / 2, 0)
#else
alloc_array(CODE, pLzcState->ht, newhashsize, 0)
#endif
) {
pLzcState->oldhashsize = 0;
pLzcState->exit_stat = NOMEM;
return(NOMEM);
}
pLzcState->oldhashsize = newhashsize;
}
return (OK);
}
# if (SPLIT_PFX)
/*
* We have to split pfx[] table in half,
* because it's potentially larger than 64k bytes.
*/
# define prefix(code) (pLzcState->pfx[(code) & 1][(code) >> 1])
# else
/*
* Then pfx[] can't be larger than 64k bytes,
* or we don't care if it is, so we don't split.
*/
# define prefix(code) (pLzcState->pfx[code])
# endif
/* The initializing of the tables can be done quicker with memset() */
/* but this way is portable through out the memory models. */
/* If you use Microsoft halloc() to allocate the arrays, then */
/* include the pragma #pragma function(memset) and make sure that */
/* the length of the memory block is not greater than 64K. */
/* This also means that you MUST compile in a model that makes the */
/* default pointers to be far pointers (compact or large models). */
/* See the file COMPUSI.DOS to modify function emalloc(). */
# if (SPLIT_HT)
/*
* We have to split ht[] hash table in half,
* because it's potentially larger than 64k bytes.
*/
# define probe(hash) (pLzcState->ht[(hash) & 1][(hash) >> 1])
# define init_tables() \
{ \
hash = pLzcState->hashsize >> 1; \
pLzcState->ht[0][hash] = 0; \
while (hash--) pLzcState->ht[0][hash] = pLzcState->ht[1][hash] = 0; \
pLzcState->highcode = ~(~(INTCODE)0 << (pLzcState->bits = INITBITS)); \
pLzcState->nextfree = (pLzcState->block_compress ? FIRSTFREE : 256); \
}
# else
/*
* Then ht[] can't be larger than 64k bytes,
* or we don't care if it is, so we don't split.
*/
# define probe(hash) (pLzcState->ht[hash])
# define init_tables() \
{ \
hash = pLzcState->hashsize; \
while (hash--) pLzcState->ht[hash] = 0; \
pLzcState->highcode = ~(~(INTCODE)0 << (pLzcState->bits = INITBITS)); \
pLzcState->nextfree = (pLzcState->block_compress ? FIRSTFREE : 256); \
}
# endif
/*
* ===========================================================================
* Compression
* ===========================================================================
*/
static void Nu_prratio(long int num, long int den)
{
register int q; /* Doesn't need to be long */
if(num > 214748L) { /* 2147483647/10000 */
q = (int) (num / (den / 10000L));
}
else {
q = (int) (10000L * num / den); /* Long calculations, though */
}
if (q < 0) {
DBUG(("-"));
q = -q;
}
DBUG(("%d.%02d%%", q / 100, q % 100));
}
#ifdef COMP40
/* table clear for block compress */
/* this is for adaptive reset present in version 4.0 joe release */
/* DjG, sets it up and returns TRUE to compress and FALSE to not compress */
static int Nu_LZC_cl_block(LZCState* pLzcState)
{
register long int rat;
pLzcState->checkpoint = pLzcState->in_count + CHECK_GAP;
#ifdef DEBUG_LZC
if ( pLzcState->debug ) {
DBUG(( "count: %ld, ratio: ", pLzcState->in_count ));
Nu_prratio ( pLzcState->in_count, pLzcState->bytes_out );
DBUG(( "\n"));
}
#endif
if(pLzcState->in_count > 0x007fffff) { /* shift will overflow */
rat = pLzcState->bytes_out >> 8;
if(rat == 0) /* Don't divide by zero */
rat = 0x7fffffff;
else
rat = pLzcState->in_count / rat;
}
else
rat = (pLzcState->in_count << 8) / pLzcState->bytes_out; /* 8 fractional bits */
if ( rat > pLzcState->ratio ){
pLzcState->ratio = rat;
return FALSE;
}
else {
pLzcState->ratio = 0;
#ifdef DEBUG_LZC
if(pLzcState->debug) {
DBUG(( "clear\n" ));
}
#endif
return TRUE; /* clear the table */
}
return FALSE; /* don't clear the table */
}
#endif
static CONST UCHAR gNu_rmask[9] = {0x00, 0x01, 0x03, 0x07, 0x0f, 0x1f, 0x3f, 0x7f, 0xff};
static void Nu_LZC_putcode(LZCState* pLzcState, INTCODE code, register int bits)
{
/*static int oldbits = 0;*/
/*static UCHAR outbuf[MAXBITS];*/
register UCHAR *buf;
register int shift;
if (bits != pLzcState->oldbits) {
if (bits == 0) {
/* bits == 0 means EOF, write the rest of the buffer. */
if (pLzcState->offset > 0) {
fwrite(pLzcState->outbuf,1,(pLzcState->offset +7) >> 3, pLzcState->outfp);
pLzcState->bytes_out += ((pLzcState->offset +7) >> 3);
}
pLzcState->offset = 0;
pLzcState->oldbits = 0;
fflush(pLzcState->outfp);
return;
}
else {
/* Change the code size. We must write the whole buffer,
* because the expand side won't discover the size change
* until after it has read a buffer full.
*/
if (pLzcState->offset > 0) {
fwrite(pLzcState->outbuf, 1, pLzcState->oldbits, pLzcState->outfp);
pLzcState->bytes_out += pLzcState->oldbits;
pLzcState->offset = 0;
}
pLzcState->oldbits = bits;
#ifdef DEBUG_LZC
if ( pLzcState->debug ) {
DBUG(( "\nChange to %d bits\n", bits ));
}
#endif /* DEBUG_LZC */
}
}
/* Get to the first byte. */
buf = pLzcState->outbuf + ((shift = pLzcState->offset) >> 3);
if ((shift &= 7) != 0) {
*(buf) |= (*buf & gNu_rmask[shift]) | (UCHAR)(code << shift);
*(++buf) = (UCHAR)(code >> (8 - shift));
if (bits + shift > 16)
*(++buf) = (UCHAR)(code >> (16 - shift));
}
else {
/* Special case for fast execution */
*(buf) = (UCHAR)code;
*(++buf) = (UCHAR)(code >> 8);
}
if ((pLzcState->offset += bits) == (bits << 3)) {
pLzcState->bytes_out += bits;
fwrite(pLzcState->outbuf,1,bits,pLzcState->outfp);
pLzcState->offset = 0;
}
return;
}
#define kNuLZCEOF (-1)
/*
* Get the next byte from the input straw. Also updates the CRC
* if "doCalcCRC" is set to true.
*
* Returns kNuLZCEOF as the value when we're out of data.
*/
static NuError Nu_LZCGetcCRC(LZCState* pLzcState, int* pSym)
{
NuError err;
uint8_t c;
if (!pLzcState->uncompRemaining) {
*pSym = kNuLZCEOF;
return kNuErrNone;
}
err = Nu_StrawRead(pLzcState->pArchive, pLzcState->pStraw, &c, 1);
if (err == kNuErrNone) {
if (pLzcState->doCalcCRC)
pLzcState->crc = Nu_CalcCRC16(pLzcState->crc, &c, 1);
*pSym = c;
pLzcState->uncompRemaining--;
}
return err;
}
/*
* compress stdin to stdout
*/
static void Nu_LZC_compress(LZCState* pLzcState, uint32_t* pDstLen)
{
int c,adjbits;
register HASH hash;
register INTCODE code;
HASH hashf[256];
Assert(pLzcState->outfp != NULL);
pLzcState->maxcode = Maxcode(pLzcState->maxbits);
pLzcState->hashsize = Hashsize(pLzcState->maxbits);
#ifdef COMP40
/* Only needed for adaptive reset */
pLzcState->checkpoint = CHECK_GAP;
pLzcState->ratio = 0;
#endif
adjbits = pLzcState->maxbits -10;
for (c = 256; --c >= 0; ){
hashf[c] = ((( c &0x7) << 7) ^ c) << adjbits;
}
pLzcState->exit_stat = OK;
if (Nu_LZC_alloc_tables(pLzcState, pLzcState->maxcode, pLzcState->hashsize)) /* exit_stat already set */
return;
init_tables();
#if 0
/* if not zcat or filter */
if(is_list && !zcat_flg) { /* Open output file */
if (freopen(ofname, WRITE_FILE_TYPE, pLzcState->outfp) == NULL) {
pLzcState->exit_stat = NOTOPENED;
return;
}
if (!quiet)
fprintf(stderr, "%s: ",ifname); /*#if 0*/
setvbuf(Xstdout,zbuf,_IOFBF,ZBUFSIZE);
}
#endif
/*
* Check the input stream for previously seen strings. We keep
* adding characters to the previously seen prefix string until we
* get a character which forms a new (unseen) string. We then send
* the code for the previously seen prefix string, and add the new
* string to our tables. The check for previous strings is done by
* hashing. If the code for the hash value is unused, then we have
* a new string. If the code is used, we check to see if the prefix
* and suffix values match the current input; if so, we have found
* a previously seen string. Otherwise, we have a hash collision,
* and we try secondary hash probes until we either find the current
* string, or we find an unused entry (which indicates a new string).
*/
if (1 /*!nomagic*/) {
putc(gNu_magic_header[0], pLzcState->outfp);
putc(gNu_magic_header[1], pLzcState->outfp);
putc((char)(pLzcState->maxbits | pLzcState->block_compress), pLzcState->outfp);
if(ferror(pLzcState->outfp)){ /* check it on entry */
pLzcState->exit_stat = WRITEERR;
return;
}
pLzcState->bytes_out = 3L; /* includes 3-byte header mojo */
}
else
pLzcState->bytes_out = 0L; /* no 3-byte header mojo */
pLzcState->in_count = 1L;
pLzcState->offset = 0;
pLzcState->exit_stat = Nu_LZCGetcCRC(pLzcState, &c);
if (pLzcState->exit_stat != kNuErrNone)
return;
pLzcState->prefxcode = (INTCODE)c;
while (1) {
pLzcState->exit_stat = Nu_LZCGetcCRC(pLzcState, &c);
if (pLzcState->exit_stat != kNuErrNone)
return;
if (c == kNuLZCEOF)
break;
pLzcState->in_count++;
hash = pLzcState->prefxcode ^ hashf[c];
/* I need to check that my hash value is within range
* because my 16-bit hash table is smaller than 64k.
*/
if (hash >= pLzcState->hashsize)
hash -= pLzcState->hashsize;
if ((code = (INTCODE)probe(hash)) != UNUSED) {
if (suffix(code) != (char)c || (INTCODE)prefix(code) != pLzcState->prefxcode) {
/* hashdelta is subtracted from hash on each iteration of
* the following hash table search loop. I compute it once
* here to remove it from the loop.
*/
HASH hashdelta = (0x120 - c) << (adjbits);
do {
/* rehash and keep looking */
Assert(code >= FIRSTFREE && code <= pLzcState->maxcode);
if (hash >= hashdelta) hash -= hashdelta;
else hash += (pLzcState->hashsize - hashdelta);
Assert(hash < pLzcState->hashsize);
if ((code = (INTCODE)probe(hash)) == UNUSED)
goto newcode;
} while (suffix(code) != (char)c || (INTCODE)prefix(code) != pLzcState->prefxcode);
}
pLzcState->prefxcode = code;
}
else {
newcode: {
Nu_LZC_putcode(pLzcState, pLzcState->prefxcode, pLzcState->bits);
code = pLzcState->nextfree;
Assert(hash < pLzcState->hashsize);
Assert(code >= FIRSTFREE);
Assert(code <= pLzcState->maxcode + 1);
if (code <= pLzcState->maxcode) {
probe(hash) = (CODE)code;
prefix(code) = (CODE)pLzcState->prefxcode;
suffix(code) = (char)c;
if (code > pLzcState->highcode) {
pLzcState->highcode += code;
++pLzcState->bits;
}
pLzcState->nextfree = code + 1;
}
#ifdef COMP40
else if (pLzcState->in_count >= pLzcState->checkpoint && pLzcState->block_compress ) {
if (Nu_LZC_cl_block(pLzcState)){
#else
else if (pLzcState->block_compress){
#endif
Nu_LZC_putcode(pLzcState, (INTCODE)c, pLzcState->bits);
Nu_LZC_putcode(pLzcState, CLEAR, pLzcState->bits);
init_tables();
pLzcState->exit_stat = Nu_LZCGetcCRC(pLzcState, &c);
if (pLzcState->exit_stat != kNuErrNone)
return;
if (c == kNuLZCEOF)
break;
pLzcState->in_count++;
#ifdef COMP40
}
#endif
}
pLzcState->prefxcode = (INTCODE)c;
}
}
}
Nu_LZC_putcode(pLzcState, pLzcState->prefxcode, pLzcState->bits);
Nu_LZC_putcode(pLzcState, CLEAR, 0);
/*
* Print out stats on stderr
*/
if(1 /*zcat_flg == 0 && !quiet*/) {
#ifdef DEBUG_LZC
DBUG((
"%ld chars in, (%ld bytes) out, compression factor: ",
pLzcState->in_count, pLzcState->bytes_out ));
Nu_prratio( pLzcState->in_count, pLzcState->bytes_out );
DBUG(( "\n"));
DBUG(( "\tCompression as in compact: " ));
Nu_prratio( pLzcState->in_count-pLzcState->bytes_out, pLzcState->in_count );
DBUG(( "\n"));
DBUG(( "\tLargest code (of last block) was %d (%d bits)\n",
pLzcState->prefxcode - 1, pLzcState->bits ));
#else
DBUG(( "Compression: " ));
Nu_prratio( pLzcState->in_count-pLzcState->bytes_out, pLzcState->in_count );
#endif /* DEBUG_LZC */
}
if(pLzcState->bytes_out > pLzcState->in_count) /* if no savings */
pLzcState->exit_stat = NOSAVING;
*pDstLen = pLzcState->bytes_out;
return ;
}
/*
* NufxLib interface to LZC compression.
*/
static NuError Nu_CompressLZC(NuArchive* pArchive, NuStraw* pStraw, FILE* fp,
uint32_t srcLen, uint32_t* pDstLen, uint16_t* pCrc, int maxbits)
{
NuError err = kNuErrNone;
LZCState lzcState;
memset(&lzcState, 0, sizeof(lzcState));
lzcState.pArchive = pArchive;
lzcState.pStraw = pStraw;
lzcState.outfp = fp;
lzcState.uncompRemaining = srcLen;
if (pCrc == NULL) {
lzcState.doCalcCRC = false;
} else {
lzcState.doCalcCRC = true;
lzcState.crc = *pCrc;
}
lzcState.maxbits = maxbits;
lzcState.block_compress = BLOCK_MASK; /* enabled */
Nu_LZC_compress(&lzcState, pDstLen);
err = lzcState.exit_stat;
DBUG(("+++ LZC_compress returned with %d\n", err));
#if (SPLIT_HT)
free_array(CODE,lzcState.ht[1], 0);
free_array(CODE,lzcState.ht[0], 0);
#else
free_array(CODE,lzcState.ht, 0);
#endif
#if (SPLIT_PFX)
free_array(CODE,lzcState.pfx[1], 128);
free_array(CODE,lzcState.pfx[0], 128);
#else
free_array(CODE,lzcState.pfx, 256);
#endif
free_array(char,lzcState.sfx, 256);
if (pCrc != NULL)
*pCrc = lzcState.crc;
return err;
}
NuError Nu_CompressLZC12(NuArchive* pArchive, NuStraw* pStraw, FILE* fp,
uint32_t srcLen, uint32_t* pDstLen, uint16_t* pCrc)
{
return Nu_CompressLZC(pArchive, pStraw, fp, srcLen, pDstLen, pCrc, 12);
}
NuError Nu_CompressLZC16(NuArchive* pArchive, NuStraw* pStraw, FILE* fp,
uint32_t srcLen, uint32_t* pDstLen, uint16_t* pCrc)
{
return Nu_CompressLZC(pArchive, pStraw, fp, srcLen, pDstLen, pCrc, 16);
}
/*
* ===========================================================================
* Expansion
* ===========================================================================
*/
/*
* Write the next byte to the output funnel. Also updates the CRC
* if "doCalcCRC" is set to true.
*
* Returns kNuLZCEOF as the value when we're out of data.
*/
static NuError Nu_LZCPutcCRC(LZCState* pLzcState, char c)
{
NuError err;
err = Nu_FunnelWrite(pLzcState->pArchive, pLzcState->pFunnel,
(uint8_t*) &c, 1);
if (pLzcState->doCalcCRC)
pLzcState->crc = Nu_CalcCRC16(pLzcState->crc, (uint8_t*) &c, 1);
return err;
}
static int Nu_LZC_nextcode(LZCState* pLzcState, INTCODE* codeptr)
/* Get the next code from input and put it in *codeptr.
* Return (TRUE) on success, or return (FALSE) on end-of-file.
* Adapted from COMPRESS V4.0.
*/
{
/*static int prevbits = 0;*/
register INTCODE code;
/*static int size;*/
/*static UCHAR inbuf[MAXBITS];*/
register int shift;
UCHAR *bp;
/* If the next entry is a different bit-size than the preceeding one
* then we must adjust the size and scrap the old buffer.
*/
if (pLzcState->prevbits != pLzcState->bits) {
pLzcState->prevbits = pLzcState->bits;
pLzcState->size = 0;
}
/* If we can't read another code from the buffer, then refill it.
*/
shift = pLzcState->offset;
if (pLzcState->size - shift < pLzcState->bits) {
/* Read more input and convert size from # of bytes to # of bits */
long getSize;
getSize = pLzcState->bits;
if (getSize > pLzcState->compRemaining)
getSize = pLzcState->compRemaining;
if (!getSize) /* act like EOF */
return FALSE;
pLzcState->size = fread(pLzcState->inbuf, 1, getSize, pLzcState->infp) << 3;
if (pLzcState->size <= 0 || ferror(pLzcState->infp))
return(FALSE);
pLzcState->compRemaining -= getSize;
pLzcState->offset = shift = 0;
}
/* Get to the first byte. */
bp = pLzcState->inbuf + (shift >> 3);
/* Get first part (low order bits) */
code = (*bp++ >> (shift &= 7));
/* high order bits. */
code |= *bp++ << (shift = 8 - shift);
if ((shift += 8) < pLzcState->bits) code |= *bp << shift;
*codeptr = code & pLzcState->highcode;
pLzcState->offset += pLzcState->bits;
return (TRUE);
}
static void Nu_LZC_decompress(LZCState* pLzcState, uint32_t compressedLen)
{
NuArchive* pArchive = pLzcState->pArchive;
register int i;
register INTCODE code;
char sufxchar = 0;
INTCODE savecode;
FLAG fulltable = FALSE, cleartable;
/*static*/ char *token= NULL; /* String buffer to build token */
/*static*/ int maxtoklen = MAXTOKLEN;
int flags;
Assert(pLzcState->infp != NULL);
pLzcState->exit_stat = OK;
if (compressedLen < 3) {
/* not long enough to be valid! */
pLzcState->exit_stat = kNuErrBadData;
Nu_ReportError(NU_BLOB, pLzcState->exit_stat, "thread too short to be valid LZC");
return;
}
pLzcState->compRemaining = compressedLen;
/*
* This comes out of "compress.c" rather than "compapi.c".
*/
if ((getc(pLzcState->infp)!=(gNu_magic_header[0] & 0xFF))
|| (getc(pLzcState->infp)!=(gNu_magic_header[1] & 0xFF)))
{
DBUG(("not in compressed format\n"));
pLzcState->exit_stat = kNuErrBadData;
return;
}
flags = getc(pLzcState->infp); /* set -b from file */
pLzcState->block_compress = flags & BLOCK_MASK;
pLzcState->maxbits = flags & BIT_MASK;
if(pLzcState->maxbits > MAXBITS) {
DBUG(("compressed with %d bits, can only handle %d bits\n",
pLzcState->maxbits, MAXBITS));
pLzcState->exit_stat = kNuErrBadData;
return;
}
pLzcState->compRemaining -= 3;
/* Initialze the token buffer. */
token = (char*)Nu_Malloc(pArchive, maxtoklen);
if (token == NULL) {
pLzcState->exit_stat = NOMEM;
return;
}
if (Nu_LZC_alloc_tables(pLzcState, pLzcState->maxcode = ~(~(INTCODE)0 << pLzcState->maxbits),0)) /* exit_stat already set */
return;
#if 0
/* if not zcat or filter */
if(is_list && !zcat_flg) { /* Open output file */
if (freopen(ofname, WRITE_FILE_TYPE, stdout) == NULL) {
pLzcState->exit_stat = NOTOPENED;
return;
}
if (!quiet)
fprintf(stderr, "%s: ",ifname); /*#if 0*/
setvbuf(stdout,xbuf,_IOFBF,XBUFSIZE);
}
#endif
cleartable = TRUE;
savecode = CLEAR;
pLzcState->offset = 0;
do {
if ((code = savecode) == CLEAR && cleartable) {
pLzcState->highcode = ~(~(INTCODE)0 << (pLzcState->bits = INITBITS));
fulltable = FALSE;
pLzcState->nextfree = (cleartable = pLzcState->block_compress) == FALSE ? 256 : FIRSTFREE;
if (!Nu_LZC_nextcode(pLzcState, &pLzcState->prefxcode))
break;
/*putc((*/sufxchar = (char)pLzcState->prefxcode/*), stdout)*/;
pLzcState->exit_stat = Nu_LZCPutcCRC(pLzcState, sufxchar);
if (pLzcState->exit_stat != kNuErrNone)
return;
continue;
}
i = 0;
if (code >= pLzcState->nextfree && !fulltable) {
if (code != pLzcState->nextfree){
DBUG(("ERROR: code (0x%x) != nextfree (0x%x)\n",
code, pLzcState->nextfree));
pLzcState->exit_stat = CODEBAD;
return ; /* Non-existant code */
}
/* Special case for sequence KwKwK (see text of article) */
code = pLzcState->prefxcode;
token[i++] = sufxchar;
}
/* Build the token string in reverse order by chasing down through
* successive prefix tokens of the current token. Then output it.
*/
while (code >= 256) {
#ifdef DEBUG_LZC
/* These are checks to ease paranoia. Prefix codes must decrease
* monotonically, otherwise we must have corrupt tables. We can
* also check that we haven't overrun the token buffer.
*/
if (code <= (INTCODE)prefix(code)){
pLzcState->exit_stat= TABLEBAD;
return;
}
#endif
if (i >= maxtoklen) {
maxtoklen *= 2; /* double the size of the token buffer */
if ((token = Nu_Realloc(pArchive, token, maxtoklen)) == NULL) {
pLzcState->exit_stat = TOKTOOBIG;
return;
}
}
token[i++] = suffix(code);
code = (INTCODE)prefix(code);
}
/*putc(*/sufxchar = (char)code/*, stdout)*/;
pLzcState->exit_stat = Nu_LZCPutcCRC(pLzcState, sufxchar);
while (--i >= 0) {
/*putc(token[i], stdout);*/
pLzcState->exit_stat = Nu_LZCPutcCRC(pLzcState, token[i]);
}
if (pLzcState->exit_stat != kNuErrNone)
return;
/* If table isn't full, add new token code to the table with
* codeprefix and codesuffix, and remember current code.
*/
if (!fulltable) {
code = pLzcState->nextfree;
Assert(256 <= code && code <= pLzcState->maxcode);
prefix(code) = (CODE)pLzcState->prefxcode;
suffix(code) = sufxchar;
pLzcState->prefxcode = savecode;
if (code++ == pLzcState->highcode) {
if (pLzcState->highcode >= pLzcState->maxcode) {
fulltable = TRUE;
--code;
}
else {
++pLzcState->bits;
pLzcState->highcode += code; /* nextfree == highcode + 1 */
}
}
pLzcState->nextfree = code;
}
} while (Nu_LZC_nextcode(pLzcState, &savecode));
pLzcState->exit_stat = (ferror(pLzcState->infp))? READERR : OK;
Nu_Free(pArchive, token);
return ;
}
/*
* NufxLib interface to LZC expansion.
*/
NuError Nu_ExpandLZC(NuArchive* pArchive, const NuRecord* pRecord,
const NuThread* pThread, FILE* infp, NuFunnel* pFunnel, uint16_t* pCrc)
{
NuError err = kNuErrNone;
LZCState lzcState;
memset(&lzcState, 0, sizeof(lzcState));
lzcState.pArchive = pArchive;
lzcState.infp = infp;
lzcState.pFunnel = pFunnel;
if (pCrc == NULL) {
lzcState.doCalcCRC = false;
} else {
lzcState.doCalcCRC = true;
lzcState.crc = *pCrc;
}
Nu_LZC_decompress(&lzcState, pThread->thCompThreadEOF);
err = lzcState.exit_stat;
DBUG(("+++ LZC_decompress returned with %d\n", err));
#if (SPLIT_HT)
free_array(CODE,lzcState.ht[1], 0);
free_array(CODE,lzcState.ht[0], 0);
#else
free_array(CODE,lzcState.ht, 0);
#endif
#if (SPLIT_PFX)
free_array(CODE,lzcState.pfx[1], 128);
free_array(CODE,lzcState.pfx[0], 128);
#else
free_array(CODE,lzcState.pfx, 256);
#endif
free_array(char,lzcState.sfx, 256);
if (pCrc != NULL)
*pCrc = lzcState.crc;
return err;
}
#endif /*ENABLE_LZC*/