diskii/supermon/supermon.go

845 lines
23 KiB
Go

// Copyright © 2016 Zellyn Hunter <zellyn@gmail.com>
// Package supermon contains routines for working with the on-disk
// structures of NakedOS/Super-Mon disks.
package supermon
import (
"encoding/binary"
"fmt"
"strconv"
"strings"
"github.com/zellyn/diskii/disk"
"github.com/zellyn/diskii/errors"
"github.com/zellyn/diskii/types"
)
const (
// FileIllegal (zero) is not allowed in the sector map.
FileIllegal = 0
// FileFree signifies unused space in the sector map.
FileFree = 0xff
// FileReserved signifies space used by NakedOS in the sector map.
FileReserved = 0xfe
)
// SectorMap is the list of sectors by file. It's always 560 bytes
// long (35 tracks * 16 sectors).
type SectorMap []byte
// LoadSectorMap loads a NakedOS sector map.
func LoadSectorMap(diskbytes []byte) (SectorMap, error) {
sm := SectorMap(make([]byte, 560))
sector09, err := disk.ReadSector(diskbytes, 0, 9)
if err != nil {
return sm, err
}
sector0A, err := disk.ReadSector(diskbytes, 0, 0xA)
if err != nil {
return sm, err
}
sector0B, err := disk.ReadSector(diskbytes, 0, 0xB)
if err != nil {
return sm, err
}
copy(sm[0:0x30], sector09[0xd0:])
copy(sm[0x30:0x130], sector0A)
copy(sm[0x130:0x230], sector0B)
return sm, nil
}
// FirstFreeFile returns the first file number that isn't already
// used. It returns 0 if all are already used.
func (sm SectorMap) FirstFreeFile() byte {
for file := byte(0x01); file < 0xfe; file++ {
sectors := sm.SectorsForFile(file)
if len(sectors) == 0 {
return file
}
}
return 0
}
// Persist writes the current contents of a sector map back back to
// disk.
func (sm SectorMap) Persist(diskbytes []byte) error {
sector09, err := disk.ReadSector(diskbytes, 0, 9)
if err != nil {
return err
}
copy(sector09[0xd0:], sm[0:0x30])
if err := disk.WriteSector(diskbytes, 0, 9, sector09); err != nil {
return err
}
if err := disk.WriteSector(diskbytes, 0, 0xA, sm[0x30:0x130]); err != nil {
return err
}
return disk.WriteSector(diskbytes, 0, 0xB, sm[0x130:0x230])
}
// FreeSectors returns the number of blocks free in a sector map.
func (sm SectorMap) FreeSectors() int {
count := 0
for _, file := range sm {
if file == FileFree {
count++
}
}
return count
}
// Verify checks that we actually have a NakedOS disk.
func (sm SectorMap) Verify() error {
for sector := byte(0); sector <= 0xB; sector++ {
if file := sm.FileForSector(0, sector); file != FileReserved {
return fmt.Errorf("expected track 0, sectors 0-C to be reserved (0xFE), but got 0x%02X in sector %X", file, sector)
}
}
for track := byte(0); track < 35; track++ {
for sector := byte(0); sector < 16; sector++ {
file := sm.FileForSector(track, sector)
if file == FileIllegal {
return fmt.Errorf("found illegal sector map value (%02X), in track %X sector %X", FileIllegal, track, sector)
}
}
}
return nil
}
// FileForSector returns the file that owns the given track/sector, or
// zero if the track or sector is too high.
func (sm SectorMap) FileForSector(track, sector byte) byte {
if track >= 35 {
return FileIllegal
}
if sector >= 16 {
return FileIllegal
}
return sm[int(track)*16+int(sector)]
}
// SetFileForSector sets the file that owns the given track/sector, or
// returns an error if the track or sector is too high.
func (sm SectorMap) SetFileForSector(track, sector, file byte) error {
if track >= 35 {
return fmt.Errorf("track %d >34", track)
}
if sector >= 16 {
return fmt.Errorf("sector %d >15", sector)
}
if file == FileIllegal || file == FileFree || file == FileReserved {
return fmt.Errorf("illegal file number: 0x%0X", file)
}
sm[int(track)*16+int(sector)] = file
return nil
}
// SectorsForFile returns the list of sectors that belong to the given
// file.
func (sm SectorMap) SectorsForFile(file byte) []disk.TrackSector {
var result []disk.TrackSector
for track := byte(0); track < 35; track++ {
for sector := byte(0); sector < 16; sector++ {
if file == sm.FileForSector(track, sector) {
result = append(result, disk.TrackSector{Track: track, Sector: sector})
}
}
}
return result
}
// SectorsByFile returns a map of file number to slice of sectors.
func (sm SectorMap) SectorsByFile() map[byte][]disk.TrackSector {
result := map[byte][]disk.TrackSector{}
for file := byte(0x01); file < FileReserved; file++ {
sectors := sm.SectorsForFile(file)
if len(sectors) > 0 {
result[file] = sectors
}
}
return result
}
// ReadFile reads the contents of a file.
func (sm SectorMap) ReadFile(diskbytes []byte, file byte) ([]byte, error) {
var result []byte
for _, ts := range sm.SectorsForFile(file) {
bytes, err := disk.ReadSector(diskbytes, ts.Track, ts.Sector)
if err != nil {
return nil, err
}
result = append(result, bytes...)
}
return result, nil
}
// Delete deletes a file from the sector map. It does not persist the changes.
func (sm SectorMap) Delete(file byte) {
for i, f := range sm {
if f == file {
sm[i] = FileFree
}
}
}
// WriteFile writes the contents of a file. It returns true if the
// file already existed.
func (sm SectorMap) WriteFile(diskbytes []byte, file byte, contents []byte, overwrite bool) (bool, error) {
sectorsNeeded := (len(contents) + 255) / 256
cts := make([]byte, 256*sectorsNeeded)
copy(cts, contents)
existing := len(sm.SectorsForFile(file))
existed := existing > 0
free := sm.FreeSectors() + existing
if free < sectorsNeeded {
return existed, errors.OutOfSpacef("file %d requires %d sectors, but only %d are available", file, sectorsNeeded, free)
}
if existed {
if !overwrite {
return existed, errors.FileExistsf("file %d already exists", file)
}
sm.Delete(file)
}
i := 0
OUTER:
for track := byte(0); track < disk.FloppyTracks; track++ {
for sector := byte(0); sector < disk.FloppySectors; sector++ {
if sm.FileForSector(track, sector) == FileFree {
if err := disk.WriteSector(diskbytes, track, sector, cts[i*256:(i+1)*256]); err != nil {
return existed, err
}
if err := sm.SetFileForSector(track, sector, file); err != nil {
return existed, err
}
i++
if i == sectorsNeeded {
break OUTER
}
}
}
}
if err := sm.Persist(diskbytes); err != nil {
return existed, err
}
return existed, nil
}
// Symbol represents a single Super-Mon symbol.
type Symbol struct {
// Address is the memory address the symbol points to, or 0 for an
// empty symbol table entry.
Address uint16
// Name is the name of the symbol.
Name string
// Link is the index of the next symbol in the symbol chain for this
// hash key, or -1 if none.
Link int
}
func (s Symbol) String() string {
return fmt.Sprintf("{%s:%04X:%d}", s.Name, s.Address, s.Link)
}
// decodeSymbol decodes a Super-Mon encoded symbol table entry,
// returning the string representation.
func decodeSymbol(five []byte, extra byte) string {
result := ""
value := uint64(five[0]) + uint64(five[1])<<8 + uint64(five[2])<<16 + uint64(five[3])<<24 + uint64(five[4])<<32 + uint64(extra)<<40
for value&0x1f > 0 {
if value&0x1f < 27 {
result += string(rune(value&0x1f + '@'))
value >>= 5
continue
}
if value&0x20 == 0 {
result += string(rune((value & 0x1f) - 0x1b + '0'))
} else {
result += string(rune((value & 0x1f) - 0x1b + '5'))
}
value >>= 6
}
return result
}
// encodeSymbol encodes a symbol name into the five+1 bytes used in a
// Super-Mon encoded symbol table entry. The returned byte array will
// always be six bytes long. If it can't be encoded, it returns an
// error. Empty strings are encoded as all zeros.
func encodeSymbol(name string) (six []byte, err error) {
if name == "" {
six := make([]byte, 6)
return six, nil
}
if len(name) > 9 {
return nil, fmt.Errorf("invalid Super-Mon symbol %q: too long", name)
}
if len(name) < 3 {
return nil, fmt.Errorf("invalid Super-Mon symbol %q: too short", name)
}
nm := []byte(strings.ToUpper(name))
value := uint64(0)
bits := 0
for i := len(nm) - 1; i >= 0; i-- {
ch := nm[i]
switch {
case 'A' <= ch && ch <= 'Z':
value = value<<5 + uint64(ch-'@')
bits += 5
case '0' <= ch && ch <= '4':
value = value<<6 + 0x1b + uint64(ch-'0')
bits += 6
case '5' <= ch && ch <= '9':
value = value<<6 + 0x3b + uint64(ch-'5')
bits += 6
}
if bits > 48 {
return nil, fmt.Errorf("invalid Super-Mon symbol %q: too long", name)
}
}
eight := make([]byte, 8)
six = make([]byte, 6)
binary.LittleEndian.PutUint64(eight, value)
copy(six, eight)
return six, nil
}
// SymbolTable represents an entire Super-Mon symbol table. It'll
// always be 819 entries long, because it includes blanks.
type SymbolTable []Symbol
// ReadSymbolTable reads the symbol table from a disk. If there are
// problems with the symbol table (like it doesn't exist, or the link
// pointers are problematic), it'll return nil and an error.
func (sm SectorMap) ReadSymbolTable(diskbytes []byte) (SymbolTable, error) {
table := make(SymbolTable, 0, 819)
symtbl1, err := sm.ReadFile(diskbytes, 3)
if err != nil {
return nil, err
}
if len(symtbl1) != 0x1000 {
return nil, fmt.Errorf("expected file FSYMTBL1(0x3) to be 0x1000 bytes long; got 0x%04X", len(symtbl1))
}
symtbl2, err := sm.ReadFile(diskbytes, 4)
if err != nil {
return nil, err
}
if len(symtbl2) != 0x1000 {
return nil, fmt.Errorf("expected file FSYMTBL1(0x4) to be 0x1000 bytes long; got 0x%04X", len(symtbl2))
}
five := []byte{0, 0, 0, 0, 0}
for i := 0; i < 0x0fff; i += 5 {
address := uint16(symtbl1[i]) + uint16(symtbl1[i+1])<<8
if address == 0 {
table = append(table, Symbol{})
continue
}
linkAddr := uint16(symtbl1[i+2]) + uint16(symtbl1[i+3])<<8
link := -1
if linkAddr != 0 {
if linkAddr < 0xD000 || linkAddr >= 0xDFFF {
return nil, fmt.Errorf("expected symbol table link address between 0xD000 and 0xDFFE; got 0x%04X", linkAddr)
}
if (linkAddr-0xD000)%5 != 0 {
return nil, fmt.Errorf("expected symbol table link address to 0xD000+5x; got 0x%04X", linkAddr)
}
link = (int(linkAddr) - 0xD000) / 5
}
extra := symtbl1[i+4]
copy(five, symtbl2[i:i+5])
name := decodeSymbol(five, extra)
symbol := Symbol{
Address: address,
Name: name,
Link: link,
}
table = append(table, symbol)
}
for i, sym := range table {
if sym.Address != 0 && sym.Link != -1 {
if sym.Link == i {
return nil, fmt.Errorf("Symbol %q (0x%04X) links to itself", sym.Name, sym.Address)
}
linkSym := table[sym.Link]
if addrHash(sym.Address) != addrHash(linkSym.Address) {
return nil, fmt.Errorf("Symbol %q (0x%04X) with hash 0x%02X links to symbol %q (0x%04X) with hash 0x%02X",
sym.Name, sym.Address, addrHash(sym.Address), linkSym.Name, linkSym.Address, addrHash(linkSym.Address))
}
}
}
return table, nil
}
// WriteSymbolTable writes a symbol table to a disk.
func (sm SectorMap) WriteSymbolTable(diskbytes []byte, st SymbolTable) error {
symtbl1 := make([]byte, 0x1000)
symtbl2 := make([]byte, 0x1000)
for i, sym := range st {
offset := i * 5
linkAddr := 0
six, err := encodeSymbol(sym.Name)
if err != nil {
return err
}
if sym.Link != -1 {
linkAddr = sym.Link*5 + 0xD000
}
symtbl1[offset] = byte(sym.Address % 256)
symtbl1[offset+1] = byte(sym.Address >> 8)
symtbl1[offset+2] = byte(linkAddr % 256)
symtbl1[offset+3] = byte(linkAddr >> 8)
symtbl1[offset+4] = six[5]
copy(symtbl2[offset:offset+5], six)
}
if _, err := sm.WriteFile(diskbytes, 3, symtbl1, true); err != nil {
return fmt.Errorf("unable to write first half of symbol table: %v", err)
}
if _, err := sm.WriteFile(diskbytes, 4, symtbl2, true); err != nil {
return fmt.Errorf("unable to write first second of symbol table: %v", err)
}
return nil
}
// addrHash computes the SuperMon hash for an address.
func addrHash(addr uint16) byte {
return (byte(addr) ^ byte(addr>>8)) & 0x7f
}
// SymbolsByAddress returns a map of addresses to slices of symbols.
func (st SymbolTable) SymbolsByAddress() map[uint16][]Symbol {
result := map[uint16][]Symbol{}
for _, symbol := range st {
if symbol.Address != 0 {
result[symbol.Address] = append(result[symbol.Address], symbol)
}
}
return result
}
// SymbolsForAddress returns a slice of symbols for a given address.
func (st SymbolTable) SymbolsForAddress(address uint16) []Symbol {
result := []Symbol{}
for _, symbol := range st {
if symbol.Address == address {
result = append(result, symbol)
}
}
return result
}
// ByName returns the address of the named symbol, or 0 if it's not in
// the symbol table.
func (st SymbolTable) ByName(name string) uint16 {
for _, symbol := range st {
if strings.EqualFold(name, symbol.Name) {
return symbol.Address
}
}
return 0
}
// DeleteSymbol deletes an existing symbol. Returns true if the named
// symbol was found.
func (st SymbolTable) DeleteSymbol(name string) bool {
for i, sym := range st {
if strings.EqualFold(name, sym.Name) {
sym.Name = ""
sym.Address = 0
for j := range st {
if i == j {
continue
}
if st[j].Link == i {
st[j].Link = sym.Link
break
}
}
st[i] = sym
return true
}
}
return false
}
// AddSymbol adds a new symbol. If a symbol with the given name
// already exists with a different address, it deletes it first.
func (st SymbolTable) AddSymbol(name string, address uint16) error {
if address == 0 {
return fmt.Errorf("cannot set symbol %q to address 0", name)
}
hash := addrHash(address)
pos := -1
for j, sym := range st {
if strings.EqualFold(name, sym.Name) {
// If we can, simply update the address.
if addrHash(sym.Address) == hash {
st[j].Address = address
return nil
}
st.DeleteSymbol(name)
pos = j
break
}
if pos == -1 && sym.Address == 0 {
pos = j
}
}
if pos == -1 {
return fmt.Errorf("symbol table full")
}
for j, sym := range st {
if addrHash(sym.Address) == hash && sym.Link == -1 {
st[j].Link = pos
break
}
}
st[pos].Name = name
st[pos].Address = address
st[pos].Link = -1
return nil
}
// NameForFile returns a string representation of a filename:
// either DFxx, or a symbol, if one exists for that value.
func NameForFile(file byte, st SymbolTable) string {
symbols := st.SymbolsForAddress(0xDF00 + uint16(file))
if len(symbols) > 0 {
return symbols[0].Name
}
return fmt.Sprintf("DF%02X", file)
}
// FullnameForFile returns a string representation of a filename:
// either DFxx, or a DFxx:symbol, if one exists for that value.
func FullnameForFile(file byte, st SymbolTable) string {
symbols := st.SymbolsForAddress(0xDF00 + uint16(file))
if len(symbols) > 0 {
return fmt.Sprintf("DF%02X:%s", file, symbols[0].Name)
}
return fmt.Sprintf("DF%02X", file)
}
// parseAddressFilename parses filenames of the form DFxx and returns
// the xx part. Invalid filenames result in 0.
func parseAddressFilename(filename string) byte {
if addr, err := strconv.ParseUint(filename, 16, 16); err == nil {
if addr > 0xDF00 && addr < 0xDFFE {
return byte(addr - 0xDF00)
}
if addr > 0x00 && addr < 0xFE {
return byte(addr)
}
}
return 0
}
// FileForName returns a byte file number for a representation of a
// filename: either DFxx, or a symbol, if one exists with the given
// name and points to a DFxx address.
func (st SymbolTable) FileForName(filename string) (byte, error) {
if addr := parseAddressFilename(filename); addr != 0 {
return addr, nil
}
for _, symbol := range st {
if strings.EqualFold(symbol.Name, filename) {
if symbol.Address > 0xDF00 && symbol.Address < 0xDFFE {
return byte(symbol.Address - 0xDF00), nil
}
break
}
}
return 0, errors.FileNotFoundf("filename %q not found", filename)
}
// ParseCompoundSymbol parses an address, symbol, or compound of both
// in the forms XXXX, symbolname, or XXXX:symbolname.
func (st SymbolTable) ParseCompoundSymbol(name string) (address uint16, symAddress uint16, symbol string, err error) {
if name == "" {
return 0, 0, "", fmt.Errorf("expected symbol name, got %q", name)
}
parts := strings.Split(name, ":")
if len(parts) > 2 {
return 0, 0, "", fmt.Errorf("more than one colon in compound address:symbol: %q", name)
}
if len(parts) == 1 {
// If there's a symbol by that name, use it.
if addr := st.ByName(name); addr != 0 {
return 0, addr, name, nil
}
// If we can parse it as an address, do so.
if addr, err := strconv.ParseUint(name, 16, 16); err == nil {
return uint16(addr), 0, "", nil
}
// If it's a valid symbol name, assume that's what it is.
if _, err := encodeSymbol(name); err != nil {
//nolint:nilerr
return 0, 0, name, nil
}
return 0, 0, "", fmt.Errorf("%q is not a valid symbol name or address", name)
}
if parts[0] == "" {
return 0, 0, "", fmt.Errorf("empty address part of compound address:symbol: %q", name)
}
if parts[1] == "" {
return 0, 0, "", fmt.Errorf("empty symbol part of compound address:symbol: %q", name)
}
// If we can parse it as an address, do so.
addr, err := strconv.ParseUint(parts[0], 16, 16)
if err != nil {
return 0, 0, "", fmt.Errorf("error parsing address part of %q: %v", name, err)
}
if _, err := encodeSymbol(parts[1]); err != nil {
return 0, 0, name, err
}
return uint16(addr), st.ByName(parts[1]), parts[1], nil
}
// FilesForCompoundName parses a complex filename of the form DFxx,
// FILENAME, or DFxx:FILENAME, returning the file number before the
// colon, and the file name number after the colon, and the symbol
// name.
func (st SymbolTable) FilesForCompoundName(filename string) (numFile byte, namedFile byte, symbol string, err error) {
parts := strings.Split(filename, ":")
if len(parts) > 2 {
return 0, 0, "", fmt.Errorf("more than one colon in compound filename: %q", filename)
}
if len(parts) == 1 {
numFile = parseAddressFilename(filename)
if numFile != 0 {
return numFile, 0, "", nil
}
file, err := st.FileForName(filename)
if err != nil {
//nolint:nilerr
return 0, 0, filename, nil
}
return file, file, filename, nil
}
numFile = parseAddressFilename(parts[0])
if numFile == 0 {
return 0, 0, "", fmt.Errorf("invalid file number: %q", parts[0])
}
if numFile2 := parseAddressFilename(parts[1]); numFile2 != 0 {
return 0, 0, "", fmt.Errorf("cannot use valid file number (%q) as a filename", parts[1])
}
namedFile, err = st.FileForName(parts[1])
if err != nil {
//nolint:nilerr
return numFile, 0, parts[1], nil
}
return numFile, namedFile, parts[1], nil
}
// Operator is a disk.Operator - an interface for performing
// high-level operations on files and directories.
type Operator struct {
data []byte
SM SectorMap
ST SymbolTable
debug int
}
var _ types.Operator = Operator{}
// operatorName is the keyword name for the operator that undestands
// NakedOS/Super-Mon disks.
const operatorName = "nakedos"
// Name returns the name of the Operator.
func (o Operator) Name() string {
return operatorName
}
// HasSubdirs returns true if the underlying operating system on the
// disk allows subdirectories.
func (o Operator) HasSubdirs() bool {
return false
}
// Catalog returns a catalog of disk entries. subdir should be empty
// for operating systems that do not support subdirectories.
func (o Operator) Catalog(subdir string) ([]types.Descriptor, error) {
var descs []types.Descriptor
sectorsByFile := o.SM.SectorsByFile()
for file := byte(1); file < FileReserved; file++ {
l := len(sectorsByFile[file])
if l == 0 {
continue
}
descs = append(descs, types.Descriptor{
Name: NameForFile(file, o.ST),
Fullname: FullnameForFile(file, o.ST),
Sectors: l,
Length: l * 256,
Locked: false,
Type: types.FiletypeBinary,
})
}
return descs, nil
}
// GetFile retrieves a file by name.
func (o Operator) GetFile(filename string) (types.FileInfo, error) {
file, err := o.ST.FileForName(filename)
if err != nil {
return types.FileInfo{}, err
}
data, err := o.SM.ReadFile(o.data, file)
if err != nil {
return types.FileInfo{}, fmt.Errorf("error reading file DF%02x: %v", file, err)
}
if len(data) == 0 {
return types.FileInfo{}, fmt.Errorf("file DF%02x not fount", file)
}
desc := types.Descriptor{
Name: NameForFile(file, o.ST),
Sectors: len(data) / 256,
Length: len(data),
Locked: false,
Type: types.FiletypeBinary,
}
fi := types.FileInfo{
Descriptor: desc,
Data: data,
}
if file == 1 {
fi.StartAddress = 0x1800
}
return fi, nil
}
// Delete deletes a file by name. It returns true if the file was
// deleted, false if it didn't exist.
func (o Operator) Delete(filename string) (bool, error) {
file, err := o.ST.FileForName(filename)
if err != nil {
return false, err
}
existed := len(o.SM.SectorsForFile(file)) > 0
o.SM.Delete(file)
if err := o.SM.Persist(o.data); err != nil {
return existed, err
}
if o.ST != nil {
changed := o.ST.DeleteSymbol(filename)
if changed {
if err := o.SM.WriteSymbolTable(o.data, o.ST); err != nil {
return existed, err
}
}
}
return existed, nil
}
// PutFile writes a file by name. If the file exists and overwrite
// is false, it returns with an error. Otherwise it returns true if
// an existing file was overwritten.
func (o Operator) PutFile(fileInfo types.FileInfo, overwrite bool) (existed bool, err error) {
if fileInfo.Descriptor.Type != types.FiletypeBinary {
return false, fmt.Errorf("%s: only binary file type supported; got %q", operatorName, fileInfo.Descriptor.Type)
}
if fileInfo.Descriptor.Length != len(fileInfo.Data) {
return false, fmt.Errorf("mismatch between FileInfo.Descriptor.Length (%d) and actual length of FileInfo.Data field (%d)", fileInfo.Descriptor.Length, len(fileInfo.Data))
}
numFile, namedFile, symbol, err := o.ST.FilesForCompoundName(fileInfo.Descriptor.Name)
if err != nil {
return false, err
}
if symbol != "" {
if o.ST == nil {
return false, fmt.Errorf("cannot use symbolic names on disks without valid symbol tables in files 0x03 and 0x04")
}
if _, err := encodeSymbol(symbol); err != nil {
return false, err
}
}
if numFile == 0 {
numFile = o.SM.FirstFreeFile()
if numFile == 0 {
return false, fmt.Errorf("all files already used")
}
}
existed, err = o.SM.WriteFile(o.data, numFile, fileInfo.Data, overwrite)
if err != nil {
return existed, err
}
if namedFile != numFile && symbol != "" {
if err := o.ST.AddSymbol(symbol, 0xDF00+uint16(numFile)); err != nil {
return existed, err
}
if err := o.SM.WriteSymbolTable(o.data, o.ST); err != nil {
return existed, err
}
}
return existed, nil
}
// DiskOrder returns the Physical-to-Logical mapping order.
func (o Operator) DiskOrder() types.DiskOrder {
return types.DiskOrderRaw
}
// GetBytes returns the disk image bytes, in logical order.
func (o Operator) GetBytes() []byte {
return o.data
}
// OperatorFactory is a types.OperatorFactory for DOS 3.3 disks.
type OperatorFactory struct {
}
// Name returns the name of the operator.
func (of OperatorFactory) Name() string {
return operatorName
}
// SeemsToMatch returns true if the []byte disk image seems to match the
// system of this operator.
func (of OperatorFactory) SeemsToMatch(diskbytes []byte, debug int) bool {
// For now, just return true if we can run Catalog successfully.
sm, err := LoadSectorMap(diskbytes)
if err != nil {
return false
}
if err := sm.Verify(); err != nil {
return false
}
return true
}
// Operator returns an Operator for the []byte disk image.
func (of OperatorFactory) Operator(diskbytes []byte, debug int) (types.Operator, error) {
sm, err := LoadSectorMap(diskbytes)
if err != nil {
return nil, err
}
if err := sm.Verify(); err != nil {
return nil, err
}
op := Operator{data: diskbytes, SM: sm, debug: debug}
st, err := sm.ReadSymbolTable(diskbytes)
if err == nil {
op.ST = st
}
return op, nil
}
// DiskOrder returns the Physical-to-Logical mapping order.
func (of OperatorFactory) DiskOrder() types.DiskOrder {
return Operator{}.DiskOrder()
}