// The MIT License (MIT) // // Copyright (c) 2015 Stefan Arentz - http://github.com/st3fan/ewm // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in all // copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE // SOFTWARE. #include #include #include #include #include "cpu.h" #include "mem.h" // The following two are our memory primitives that properly set go // through the handler functions for all registered memory. They will // take more time but do the right thing. uint8_t mem_get_byte(struct cpu_t *cpu, uint16_t addr) { if (addr < cpu->ram_size) { return cpu->ram[addr]; } struct mem_t *mem = cpu->mem; while (mem != NULL) { if (mem->enabled && addr >= mem->start && addr <= mem->end) { if (mem->read_handler != NULL && mem->flags & MEM_FLAGS_READ) { return ((mem_read_handler_t) mem->read_handler)((struct cpu_t*) cpu, mem, addr); } } mem = mem->next; } return 0; } extern struct ewm_two_t *two; void mem_set_byte(struct cpu_t *cpu, uint16_t addr, uint8_t v) { if (addr < cpu->ram_size) { cpu->ram[addr] = v; return; } struct mem_t *mem = cpu->mem; while (mem != NULL) { if (mem->enabled && addr >= mem->start && addr <= mem->end) { if (mem->write_handler && mem->flags & MEM_FLAGS_WRITE) { ((mem_write_handler_t) mem->write_handler)((struct cpu_t*) cpu, mem, addr, v); } return; } mem = mem->next; } } // Getters uint8_t mem_get_byte_abs(struct cpu_t *cpu, uint16_t addr) { return mem_get_byte(cpu, addr); } uint8_t mem_get_byte_absx(struct cpu_t *cpu, uint16_t addr) { return mem_get_byte(cpu, addr + cpu->state.x); } uint8_t mem_get_byte_absy(struct cpu_t *cpu, uint16_t addr) { return mem_get_byte(cpu, addr + cpu->state.y); } uint8_t mem_get_byte_zpg(struct cpu_t *cpu, uint8_t addr) { return mem_get_byte(cpu, addr); } uint8_t mem_get_byte_zpgx(struct cpu_t *cpu, uint8_t addr) { return mem_get_byte(cpu, ((uint16_t) addr + cpu->state.x) & 0x00ff); } uint8_t mem_get_byte_zpgy(struct cpu_t *cpu, uint8_t addr) { return mem_get_byte(cpu, ((uint16_t) addr + cpu->state.y) & 0x00ff); } uint8_t mem_get_byte_indx(struct cpu_t *cpu, uint8_t addr) { return mem_get_byte(cpu, (((uint16_t) cpu->ram[((uint16_t)addr+1+cpu->state.x)&0x00ff] << 8) | (uint16_t) cpu->ram[((uint16_t) addr+cpu->state.x) & 0x00ff])); } uint8_t mem_get_byte_indy(struct cpu_t *cpu, uint8_t addr) { return mem_get_byte(cpu, (((uint16_t) cpu->ram[addr+1] << 8) | (uint16_t) cpu->ram[addr]) + cpu->state.y); } uint8_t mem_get_byte_ind(struct cpu_t *cpu, uint8_t addr) { return mem_get_byte(cpu, ((uint16_t) cpu->ram[addr+1] << 8) | (uint16_t) cpu->ram[addr]); } uint16_t mem_get_word(struct cpu_t *cpu, uint16_t addr) { return ((uint16_t) mem_get_byte(cpu, addr+1) << 8) | (uint16_t) mem_get_byte(cpu, addr); } // Setters void mem_set_byte_zpg(struct cpu_t *cpu, uint8_t addr, uint8_t v) { mem_set_byte(cpu, addr, v); } void mem_set_byte_zpgx(struct cpu_t *cpu, uint8_t addr, uint8_t v) { mem_set_byte(cpu, ((uint16_t) addr + cpu->state.x) & 0x00ff, v); } void mem_set_byte_zpgy(struct cpu_t *cpu, uint8_t addr, uint8_t v) { mem_set_byte(cpu, ((uint16_t) addr + cpu->state.y) & 0x00ff, v); } void mem_set_byte_abs(struct cpu_t *cpu, uint16_t addr, uint8_t v) { mem_set_byte(cpu, addr, v); } void mem_set_byte_absx(struct cpu_t *cpu, uint16_t addr, uint8_t v) { mem_set_byte(cpu, addr+cpu->state.x, v); } void mem_set_byte_absy(struct cpu_t *cpu, uint16_t addr, uint8_t v) { mem_set_byte(cpu, addr+cpu->state.y, v); } void mem_set_byte_indx(struct cpu_t *cpu, uint8_t addr, uint8_t v) { mem_set_byte(cpu, (((uint16_t) cpu->ram[((uint16_t)addr+1+cpu->state.x)&0x00ff] << 8) | (uint16_t) cpu->ram[((uint16_t) addr+cpu->state.x) & 0x00ff]), v); } void mem_set_byte_indy(struct cpu_t *cpu, uint8_t addr, uint8_t v) { mem_set_byte(cpu, (((uint16_t) cpu->ram[addr+1] << 8) | (uint16_t) cpu->ram[addr]) + cpu->state.y, v); } void mem_set_byte_ind(struct cpu_t *cpu, uint8_t addr, uint8_t v) { mem_set_byte(cpu, (((uint16_t) cpu->ram[addr+1] << 8) | (uint16_t) cpu->ram[addr]), v); } void mem_set_word(struct cpu_t *cpu, uint16_t addr, uint16_t v) { mem_set_byte(cpu, addr+0, (uint8_t) v); // TODO Did I do this right? mem_set_byte(cpu, addr+1, (uint8_t) (v >> 8)); } /* MOD */ void mem_mod_byte_zpg(struct cpu_t *cpu, uint8_t addr, mem_mod_t op) { mem_set_byte_zpg(cpu, addr, op(cpu, mem_get_byte_zpg(cpu, addr))); } void mem_mod_byte_zpgx(struct cpu_t *cpu, uint8_t addr, mem_mod_t op) { mem_set_byte_zpgx(cpu, addr, op(cpu, mem_get_byte_zpgx(cpu, addr))); } void mem_mod_byte_zpgy(struct cpu_t *cpu, uint8_t addr, mem_mod_t op) { mem_set_byte_zpgy(cpu, addr, op(cpu, mem_get_byte_zpgy(cpu, addr))); } void mem_mod_byte_abs(struct cpu_t *cpu, uint16_t addr, mem_mod_t op) { mem_set_byte_abs(cpu, addr, op(cpu, mem_get_byte_abs(cpu, addr))); } void mem_mod_byte_absx(struct cpu_t *cpu, uint16_t addr, mem_mod_t op) { mem_set_byte_absx(cpu, addr, op(cpu, mem_get_byte_absx(cpu, addr))); } void mem_mod_byte_absy(struct cpu_t *cpu, uint16_t addr, mem_mod_t op) { mem_set_byte_absy(cpu, addr, op(cpu, mem_get_byte_absy(cpu, addr))); } void mem_mod_byte_indx(struct cpu_t *cpu, uint8_t addr, mem_mod_t op) { mem_set_byte_indx(cpu, addr, op(cpu, mem_get_byte_indx(cpu, addr))); } void mem_mod_byte_indy(struct cpu_t *cpu, uint8_t addr, mem_mod_t op) { mem_set_byte_indy(cpu, addr, op(cpu, mem_get_byte_indy(cpu, addr))); } // For parsing --memory options struct ewm_memory_option_t *parse_memory_option(char *s) { char *type = strtok(s, ":"); if (type == NULL || (strcmp(type, "ram") != 0 && strcmp(type, "rom") != 0)) { return NULL; } char *address = strtok(NULL, ":"); if (address == NULL) { return NULL; } char *path = strtok(NULL, ":"); if (path == NULL) { return NULL; } struct ewm_memory_option_t *m = (struct ewm_memory_option_t*) malloc(sizeof(struct ewm_memory_option_t)); m->type = strcmp(type, "ram") == 0 ? EWM_MEMORY_TYPE_RAM : EWM_MEMORY_TYPE_ROM; m->path = path; m->address = atoi(address); m->next = NULL; return m; } int cpu_add_memory_from_options(struct cpu_t *cpu, struct ewm_memory_option_t *m) { while (m != NULL) { fprintf(stderr, "[EWM] Adding %s $%.4X %s\n", m->type == EWM_MEMORY_TYPE_RAM ? "RAM" : "ROM", m->address, m->path); if (m->type == EWM_MEMORY_TYPE_RAM) { if (cpu_add_ram_file(cpu, m->address, m->path) == NULL) { fprintf(stderr, "[MEM] Failed to add RAM from %s\n", m->path); return -1; } } else { if (cpu_add_rom_file(cpu, m->address, m->path) == NULL) { fprintf(stderr, "[MEM] Failed to add ROM from %s\n", m->path); return -1; } } m = m->next; } return 0; }