// The MIT License (MIT) // // Copyright (c) 2015 Stefan Arentz - http://github.com/st3fan/ewm // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in all // copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE // SOFTWARE. #include #include #include #include #include #include #include #include #include #include #include #include "cpu.h" #include "ins.h" #include "mem.h" #include "fmt.h" /* Private API */ typedef void (*cpu_instruction_handler_t)(struct cpu_t *cpu); typedef void (*cpu_instruction_handler_byte_t)(struct cpu_t *cpu, uint8_t oper); typedef void (*cpu_instruction_handler_word_t)(struct cpu_t *cpu, uint16_t oper); // Stack management. void _cpu_push_byte(struct cpu_t *cpu, uint8_t b) { _mem_set_byte_direct(cpu, 0x0100 + cpu->state.sp, b); cpu->state.sp -= 1; } void _cpu_push_word(struct cpu_t *cpu, uint16_t w) { _cpu_push_byte(cpu, (uint8_t) (w >> 8)); _cpu_push_byte(cpu, (uint8_t) w); } uint8_t _cpu_pull_byte(struct cpu_t *cpu) { cpu->state.sp += 1; return _mem_get_byte_direct(cpu, 0x0100 + cpu->state.sp); } uint16_t _cpu_pull_word(struct cpu_t *cpu) { return (uint16_t) _cpu_pull_byte(cpu) | ((uint16_t) _cpu_pull_byte(cpu) << 8); } uint8_t _cpu_stack_free(struct cpu_t *cpu) { return cpu->state.sp; } uint8_t _cpu_stack_used(struct cpu_t *cpu) { return 0xff - cpu->state.sp; } // Because we keep the processor status bits in separate fields, we // need a function to combine them into a single register. This is // only used when we need to push the register on the stack for // interupt handlers. If this turns out to be inefficient then they // can be stored in their native form in a byte. uint8_t _cpu_get_status(struct cpu_t *cpu) { return 0x30 | (((cpu->state.n != 0) & 0x01) << 7) | (((cpu->state.v != 0) & 0x01) << 6) | (((cpu->state.b != 0) & 0x01) << 4) | (((cpu->state.d != 0) & 0x01) << 3) | (((cpu->state.i != 0) & 0x01) << 2) | (((cpu->state.z != 0) & 0x01) << 1) | (((cpu->state.c != 0) & 0x01) << 0); } void _cpu_set_status(struct cpu_t *cpu, uint8_t status) { cpu->state.n = (status & (1 << 7)); cpu->state.v = (status & (1 << 6)); cpu->state.b = (status & (1 << 4)); cpu->state.d = (status & (1 << 3)); cpu->state.i = (status & (1 << 2)); cpu->state.z = (status & (1 << 1)); cpu->state.c = (status & (1 << 0)); } static int cpu_execute_instruction(struct cpu_t *cpu) { /* Trace code - Refactor into its own function or module */ char trace_instruction[256]; char trace_state[256]; char trace_stack[256]; if (cpu->trace) { cpu_format_instruction(cpu, trace_instruction); } /* Fetch instruction */ cpu_instruction_t *i = &instructions[mem_get_byte(cpu, cpu->state.pc)]; if (i->handler == NULL) { return EWM_CPU_ERR_UNIMPLEMENTED_INSTRUCTION; } // If strict mode and if we need the stack, check if that works out if (cpu->strict && i->stack != 0) { if (i->stack > 0) { if (_cpu_stack_free(cpu) < i->stack) { return EWM_CPU_ERR_STACK_OVERFLOW; } } else { if (_cpu_stack_used(cpu) < -(i->stack)) { return EWM_CPU_ERR_STACK_UNDERFLOW; } } } /* Remember the PC since some instructions modify it */ uint16_t pc = cpu->state.pc; /* Advance PC */ if (pc == cpu->state.pc) { cpu->state.pc += i->bytes; } /* Execute instruction */ switch (i->bytes) { case 1: ((cpu_instruction_handler_t) i->handler)(cpu); break; case 2: ((cpu_instruction_handler_byte_t) i->handler)(cpu, mem_get_byte(cpu, pc+1)); break; case 3: ((cpu_instruction_handler_word_t) i->handler)(cpu, mem_get_word(cpu, pc+1)); break; } if (cpu->trace) { cpu_format_state(cpu, trace_state); cpu_format_stack(cpu, trace_stack); char bytes[10]; switch (i->bytes) { case 1: snprintf(bytes, sizeof bytes, "%.2X", mem_get_byte(cpu, pc)); break; case 2: snprintf(bytes, sizeof bytes, "%.2X %.2X", mem_get_byte(cpu, pc), mem_get_byte(cpu, pc+1)); break; case 3: snprintf(bytes, sizeof bytes, "%.2X %.2X %.2X", mem_get_byte(cpu, pc), mem_get_byte(cpu, pc+1), mem_get_byte(cpu, pc+2)); break; } fprintf(cpu->trace, "%.4X: %-8s %-11s %-20s %s\n", pc, bytes, trace_instruction, trace_state, trace_stack); } return 0; } /* Public API */ void cpu_init(struct cpu_t *cpu) { memset(cpu, 0x00, sizeof(struct cpu_t)); } void cpu_shutdown(struct cpu_t *cpu) { if (cpu->trace != NULL) { (void) fclose(cpu->trace); cpu->trace = NULL; } } void cpu_add_mem(struct cpu_t *cpu, struct mem_t *mem) { if (cpu->mem == NULL) { cpu->mem = mem; mem->next = NULL; } else { mem->next = cpu->mem; cpu->mem = mem; } // If this is RAM mapped to the zero-page and to the stack then we // keep a shortcut to it so that we can do direct and fast access // with our _mem_get/set_byte/word_direct functions. // // This makes two assumptions: when RAM is added, it covers both // pages. And that mem->obj points to a block of memory. This is // fine for the Apple I and Apple II emulators. if (mem->type == MEM_TYPE_RAM) { if (mem->start == 0x0000 && mem->length >= 0x200) { cpu->memory = mem->obj; } } } // RAM Memory static uint8_t _ram_read(struct cpu_t *cpu, struct mem_t *mem, uint16_t addr) { return ((uint8_t*) mem->obj)[addr - mem->start]; } static void _ram_write(struct cpu_t *cpu, struct mem_t *mem, uint16_t addr, uint8_t b) { ((uint8_t*) mem->obj)[addr - mem->start] = b; } void cpu_add_ram(struct cpu_t *cpu, uint16_t start, uint16_t length) { cpu_add_ram_data(cpu, start, length, calloc(length, 0x01)); } void cpu_add_ram_data(struct cpu_t *cpu, uint16_t start, uint16_t length, uint8_t *data) { struct mem_t *mem = (struct mem_t*) malloc(sizeof(struct mem_t)); mem->type = MEM_TYPE_RAM; mem->obj = data; mem->start = start; mem->length = length; mem->read_handler = _ram_read; mem->write_handler = _ram_write; mem->next = NULL; cpu_add_mem(cpu, mem); } void cpu_add_ram_file(struct cpu_t *cpu, uint16_t start, char *path) { int fd = open(path, O_RDONLY); if (fd == -1) { return; } struct stat file_info; if (fstat(fd, &file_info) == -1) { close(fd); return; } if (file_info.st_size > (64 * 1024 - start)) { close(fd); return; } char *data = malloc(file_info.st_size); if (read(fd, data, file_info.st_size) != file_info.st_size) { close(fd); return; } close(fd); cpu_add_ram_data(cpu, start, file_info.st_size, (uint8_t*) data); } // ROM Memory static uint8_t _rom_read(struct cpu_t *cpu, struct mem_t *mem, uint16_t addr) { return ((uint8_t*) mem->obj)[addr - mem->start]; } void cpu_add_rom_data(struct cpu_t *cpu, uint16_t start, uint16_t length, uint8_t *data) { struct mem_t *mem = (struct mem_t*) malloc(sizeof(struct mem_t)); mem->type = MEM_TYPE_ROM; mem->obj = data; mem->start = start; mem->length = length; mem->read_handler = _rom_read; mem->write_handler = NULL; mem->next = NULL; cpu_add_mem(cpu, mem); } void cpu_add_rom_file(struct cpu_t *cpu, uint16_t start, char *path) { int fd = open(path, O_RDONLY); if (fd == -1) { return; } struct stat file_info; if (fstat(fd, &file_info) == -1) { close(fd); return; } if (file_info.st_size > (64 * 1024 - start)) { close(fd); return; } char *data = malloc(file_info.st_size); if (read(fd, data, file_info.st_size) != file_info.st_size) { close(fd); return; } close(fd); cpu_add_rom_data(cpu, start, file_info.st_size, (uint8_t*) data); } // IO Memory void cpu_add_iom(struct cpu_t *cpu, uint16_t start, uint16_t length, void *obj, mem_read_handler_t read_handler, mem_write_handler_t write_handler) { struct mem_t *mem = (struct mem_t*) malloc(sizeof(struct mem_t)); mem->type = MEM_TYPE_IOM; mem->obj = obj; mem->start = start; mem->length = length; mem->read_handler = read_handler; mem->write_handler = write_handler; mem->next = NULL; cpu_add_mem(cpu, mem); } void cpu_strict(struct cpu_t *cpu, bool strict) { cpu->strict = true; } int cpu_trace(struct cpu_t *cpu, char *path) { if (cpu->trace != NULL) { (void) fclose(cpu->trace); cpu->trace = NULL; } if (path != NULL) { printf("MOO Tracing to %s\n", path); cpu->trace = fopen(path, "w"); if (cpu->trace == NULL) { return errno; } } return 0; } void cpu_reset(struct cpu_t *cpu) { cpu->state.pc = mem_get_word(cpu, EWM_VECTOR_RES); cpu->state.a = 0x00; cpu->state.x = 0x00; cpu->state.y = 0x00; cpu->state.n = 0; cpu->state.v = 0; cpu->state.b = 0; cpu->state.d = 0; cpu->state.i = 1; cpu->state.z = 0; cpu->state.c = 0; cpu->state.sp = 0xff; } int cpu_irq(struct cpu_t *cpu) { if (cpu->strict && _cpu_stack_free(cpu) < 3) { return EWM_CPU_ERR_STACK_OVERFLOW; } _cpu_push_word(cpu, cpu->state.pc); _cpu_push_byte(cpu, _cpu_get_status(cpu)); cpu->state.i = 1; cpu->state.pc = mem_get_word(cpu, EWM_VECTOR_IRQ); return 0; } int cpu_nmi(struct cpu_t *cpu) { if (cpu->strict && _cpu_stack_free(cpu) < 3) { return EWM_CPU_ERR_STACK_OVERFLOW; } _cpu_push_word(cpu, cpu->state.pc); _cpu_push_byte(cpu, _cpu_get_status(cpu)); cpu->state.i = 1; cpu->state.pc = mem_get_word(cpu, EWM_VECTOR_NMI); return 0; } int cpu_run(struct cpu_t *cpu) { uint64_t instruction_count = 0; int err = 0; while ((err = cpu_execute_instruction(cpu)) == 0) { /* TODO: Tick? */ instruction_count++; } return err; } int cpu_boot(struct cpu_t *cpu) { cpu_reset(cpu); return cpu_run(cpu); } int cpu_step(struct cpu_t *cpu) { return cpu_execute_instruction(cpu); }